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Abstract 

Background  For achieving long-term sustainability of intensive agricultural practices, it is pivotal to understand 
belowground functional stability as belowground organisms play essential roles in soil biogeochemical cycling. It is 
commonly believed that resource availability is critical for controlling the soil biodiversity and belowground organ-
ism interactions that ultimately lead to the stabilization or collapse of terrestrial ecosystem functions, but evidence 
to support this belief is still limited. Here, we leveraged field experiments from the Chinese National Ecosystem 
Research Network (CERN) and two microcosm experiments mimicking high and low resource conditions to explore 
how resource availability mediates soil biodiversity and potential multi-trophic interactions to control functional trait 
stability.

Results  We found that agricultural practice-induced higher resource availability increased potential cross-trophic 
interactions over 316% in fields, which in turn had a greater effect on functional trait stability, while low resource 
availability made the stability more dependent on the potential within trophic interactions and soil biodiversity. This 
large-scale pattern was confirmed by fine-scale microcosm systems, showing that microcosms with sufficient nutrient 
supply increase the proportion of potential cross-trophic interactions, which were positively associated with func-
tional stability. Resource-driven belowground biodiversity and multi-trophic interactions ultimately feedback to the 
stability of plant biomass.

Conclusions  Our results indicated the importance of potential multi-trophic interactions in supporting belowground 
functional trait stability, especially when nutrients are sufficient, and also suggested the ecological benefits of fertiliza-
tion programs in modern agricultural intensification.
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Background
Belowground organisms contribute to ecosystem func-
tioning through their effects on physical properties and 
biological processes [1]. Intensive land use with resource 
inputs drives changes in the soil biotic community struc-
ture, which ultimately impacts the maintenance of soil 
functionality and crop productivity [2–4]. Therefore, 
quantifying the effect of resource levels on soil biota is 
a step toward maintaining the sustainability of inten-
sive agricultural ecosystems. Different from plant com-
munities, in which heterogeneous resource acquisition 
stabilize crop production [5], the belowground species 
for nutrient acquisition to influence the biotic com-
munity are far more multifaceted. Millions of bacteria, 
fungi, protists, and nematodes, among others, make up 
soil communities with multiple trophic levels and form 
complex ecological interaction webs [6, 7]. These multi-
trophic groups in manipulated experiments [8, 9], and at 
global scale [1, 10–12], have been observed to regulate 
the capacity of ecosystems to provide multiple services. 
Because the functional effects of any trophic group may 
depend on the abundance and diversity of others [13], 
resource-driven environmental selection has different 
impacts on the biodiversity involved in various trophic 
groups. For example, resource deficiency not only pro-
vides niche for oligotrophic microbial species growth by 
limiting opportunists that are poorly adapted to local 
environment [14] but also has been found to shift high 
trophic-level species diversity [15–18]. Theoretically, 
this may lead to the functional effects of multi-trophic 
groups complementing or opposing each other. However, 
whether and how resource-driven alteration of biodiver-
sity further changes the soil functional stability has not 
been assessed.

Besides soil biodiversity, the large numbers of indi-
vidual species belowground also establish a myriad of 
positive and negative, direct and indirect interactions to 
stabilize ecosystem functions [7, 19, 20]. Heterogeneous 
resource utilization by decomposers (so-called bottom-
up forces) and higher trophic species (top-down forces) 
profoundly affect the assembly of multi-trophic ecologi-
cal webs [13, 21, 22] through frequent interactions among 
the within trophic groups (soil organisms occupying the 
same levels in the food chain) and cross-trophic groups 
(soil organisms occupying the different levels in the food 
chain) [23]. Under laboratory conditions, high nutrient 
concentrations have been shown to increase the num-
ber of negative interactions between bacterial species 
and result in the loss of species richness and decreased 
stability of the microbial community [24]. Conversely, in 
the intensive cropping fields, soil with periodic input of 
resources (such as fertilizer and organic matter inputs), 
compared with no resource application, enhanced 

microbial functional diversity [25, 26]. Besides within 
trophic interactions, the intensity of grazing between 
bacteria and protists can be influenced by the supply 
of carbon and phosphorus resources [27, 28]. However, 
most previous studies [8, 24] typically focused on the 
resource regulation of single trophic level, neglecting the 
fact that shifts in nutrient conditions have cyclic impacts 
on the biodiversity and multi-functionality across mul-
tiple trophic levels by both top-down and bottom-up 
forces [29]. Therefore, exploration of resource-driven, 
potential multi-trophic interactions, and their effects on 
functional stability, will provide a clearer overall perspec-
tive for the role played by the complex community of 
organisms in driving ecosystem services.

Empirical community ecology holds that taxonomi-
cally different organisms can contain similar functional 
traits which ensure that the extinction of individual spe-
cies, due to external disturbances, does not cause a col-
lapse of the entire functional system [30]. As a result, the 
degree of functional redundancy, to a certain extent, can 
be used to estimate the functional stability in a given eco-
system [31]. In this study, we used functional trait stabil-
ity, the redundancy of individual biochemical functional 
genotypic trait (R) [32] and the inverse of the coefficient 
of variation of R [33] of given multiple functional genes 
from a functional gene-array-based high-throughput 
technology [34], to evaluate the magnitude of soil poten-
tial functional stability in intensive agroecosystems. We 
hypothesized that long-term impacts of anthropogenic 
resource change on belowground functional trait stabil-
ity strongly depend on how such drivers influence bio-
diversity and potential multi-trophic interactions. We 
collected soil samples (including high and low resource 
categories from 4 treatments) at 5 typical agro-ecologi-
cal experimental stations that have been continuously 
cultivated for over 25  years from the Chinese National 
Ecosystem Research Network (CERN). Using these 
multi-site field investigations and the two controlled 
microcosm experiments, we attempt to answer (i) does 
resource availability mediate the effects of soil biodiver-
sity and potential multi-trophic interactions on func-
tional trait stability? and (ii) if so, how does the relative 
importance of biodiversity and potential multi-trophic 
interactions change for stabilizing functional traits at dif-
ferent resource levels?

Methods
Field site description, sampling, and resource level 
classification
Samples with different resource availability were col-
lected from 4 treatments of 5 agroecosystem field sta-
tions located in Fengqiu (FQ), Qiyang (QY), Changwu 
(CW), Yanting (YT), and Fukang (FK) (Figure S1). 
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These stations belong to the Chinese National Ecosys-
tem Research Network (CERN, http://​www.​cern.​ac.​
cn), and experiments were established in 1980. Data of 
mean annual temperature and mean annual precipitation 
in each site were obtained from the website of Weather 
China (http://​www.​weath​er.​com.​cn). The 4 treatments 
of different resource applications: (I) C, no resource 
application; (II) NK, chemical nitrogen (N) and potas-
sium (K) applied but without phosphorus (P); (III) NPK, 
chemical N, P and K applied; (IV) NPKM, application of 
chemical NPK plus organic manure. Details of fertilizer 
amount and crop planting (including soybean, maize, and 
wheat) are described in Table S1. These treatments were 
conducted as randomly distributed triplicate plots in 
each field site. In total, 60 soil samples (5 sites × 4 treat-
ments × 3 replicates) were collected after spring crop 
harvest in 2015. Soil chemical properties were measured 
using standard methods (Supplementary Methods) and 
listed in Table S2.

To obtain a quantitative index of soil resource avail-
ability for each sample, the resource-relevant soil 
properties (including soil organic carbon (SOC), total 

nitrogen (TN), total phosphorus (TP), total potassium 
(TK), the ratio of ammonium nitrogen and nitrate 
nitrogen to total nitrogen (NH4

+-N+NO3
--N):TN, 

the ratio of available phosphorus to total phosphorus 
(AP:TP) and the ratio of available potassium to total 
potassium (AK:TK)) were individually standardized 
using the following equation.

where RP is the resource-relevant soil properties (SOC, 
TN, TP, TK, (NH4

+-N + NO3
−-N):TN, AP:TP and 

AK:TK) of samples, RPmin is minimum RP value, and 
RPmax is maximum RP value across all samples.

The standardized samples were then averaged across 
resource-relevant soil properties to represent resource 
availability. We then classified samples of each site into 
low and high resource categories according to resource 
availability (Fig. 1a).

To verify the reliability of resource classification, the 
soil fertility index (SFI) of each sample among sites 

(1)SRP =
RP − RPmin

RPmax − RPmin

Fig. 1  The composite resource availability indicator (CRAI), soil fertility index (SFI), biodiversity, functional trait stability, and their relationships 
between low and high resource availability environments. a The differences of CRAI between low and high resource category at each sampling 
site. b The differences of SFI between low and high resource environments at each sampling site. c, d Comparisons of biodiversity and functional 
stability at each sampling site. Asterisks denote significant differences between metrics for low and high resource availability soils within each site 
(n = 6) (Wilcoxon rank-sum test, *, P < 0.05; **, P < 0.01). e The linear relationships between belowground biodiversity and functional trait stability. 
The blue and black solid lines represent the significant relationships in low-resource sites and all sampling sites, respectively. No significant 
relationship was found in high resource availability soils

http://www.cern.ac.cn
http://www.cern.ac.cn
http://www.weather.com.cn
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was evaluated using the equation of Integrated Quality 
Index [35, 36] as follows:

where Wi is the weight of indicator i in farmland sites 
containing n common chemical indicators (concentration 
of organic matter, AP, AK, and soil pH) from National 
Cultivated Land Quality Grade [37]. Si is the score of 
indicator i calculated by the model of score function from 
National Cultivated Land Quality Grade supported in 
Table S3.

Soil biodiversity measures
High-quality 1000  ng soil DNA (260/280 and 260/230 
ratios ≥ 1.8, NanoDrop ND-1000 spectrophotometer, 
NanoDrop Technologies, Delaware, USA) were extracted 
from each sample (Supplementary methods) and used 
for molecular analysis. Complete documentation of the 
high-throughput sequencing is also provided in Supple-
mentary methods and specific primer information for 
bacteria, fungi, protists, and nematodes are presented in 
Table S4. The raw read counts (Dataset S1 and S2) were 
rarefied and then transformed to relative abundances 
(separately for bacteria, fungi, protists, and nematodes) 
and merged into a new integrated operational taxonomic 
units (OTU) table [38]. We used this integrated OTU 
table for the subsequent analyses.

In this study, the integrated Shannon index (includ-
ing OTUs of bacteria, fungi, protists, and nematodes) 
calculated from the integrated OTU table was used to 
determine the biodiversity. To prove the rationality of the 
calculated biodiversity, the diversity (richness, Shannon, 
and evenness) of soil bacteria, fungi, protists, and nema-
todes were individually standardized using the following 
Eq. (3) from previous publications [39, 40]:

where RD is the raw diversity (richness, Shannon, and 
evenness) of the sample, RDmin is minimum diversity 
value, and RDmax is maximum diversity value across all 
samples.

The standardized samples were then averaged across 
organism groups to represent Bioref (diversity). As we 
expected, the biodiversity (integrated Shannon) calcu-
lated from the integrated OTU table was highly corre-
lated with that of Bioref (richness), Bioref (Shannon), and 
Bioref (evenness) both in low and high resource groups 
(Figure S2) and the diversity (richness, Shannon, and 
evenness) of each group of soil organisms (Figure S3), 
indicating integrated Shannon can be used to character-
ize the biodiversity of the overall community.

(2)IQI =
n

i=1
Wi × Si

(3)Bioref

(

diversity
)

=
RD − RDmin

RDmax − RDmin

Soil functional trait stability measures
We used DNA-based microarray GeoChip 5.0 to assess 
soil functional traits based on genotypic characteristics 
(Supplementary methods) [34]. Functional trait stability 
was calculated by the redundancy of individual biochem-
ical functional traits (R) [32] (Dataset S3) and the inverse 
of the coefficient of variation of R (1/CV) [33]. The 1/CV 
is calculated by the ratio of the mean (μ) to the standard 
deviation (σ) of R in each sample [41] as:

where F being the mean of the frequency of all functional 
traits in the sample, Fi is the frequency of the ith func-
tional trait, and n is the number of functional traits in the 
sample.

The standardization of R and 1/CV refers to the calcu-
lation method of Bioref (diversity) in the manuscript and 
then takes the average value of R and 1/CV of standard-
ized samples to calculate functional trait stability accord-
ing to:

where s(R) and s( 1
CV ) denote standardized R and 1/CV, 

respectively.

Microbial network construction and potential 
multi‑trophic interactions measures
We used the Spearman correlation matrix (|r|> 0.6, 
P < 0.05) to construct co-occurrence networks through 
the WGCNA package [42]. This promising approach is 
widely used to discover the co-occurrence correlation 
between OTUs [43–46]. Nodes in all networks represent 
OTUs and the links that connect these nodes represent 
correlations between OTUs [47]. We adjusted all P-val-
ues for multiple testing using the Benjamini and Hoch-
berg false discovery rate (FDR) controlling procedure 
by “multtest” R (version 3.6.1) package [48]. The cutoff 
of FDR-adjusted P-values was 0.05. Network properties 
were calculated with the “igraph” package. Correlation 
networks were visualized using Gephi (version 0.9.1) and 
Cytoscape (version 3.7.2) software.

Co-occurrence networks of soil organisms were con-
structed for low and high resource availability indepen-
dently based on the integrated OTU table (including 
bacteria, fungi, protists, and nematodes datasets). The 
OTUs were filtered by setting 20 as the minimum occur-
rence across 30 of low and high resource samples, respec-
tively. The proportions of multiple association types 

(4)
1

CV
=

u

σ

=
F

√

∑

n

i=1 (Fi−F)
2

n

(5)Functional trait stability =
1

2
× (s(R)+ s(

1

CV
))
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(positive/negative within trophic and positive/negative 
cross-trophic associations) and network properties were 
calculated by extracting sub-networks for each soil sam-
ple from the integrated networks [49] (Fig. 2a). Then, to 
determine the consistency of the resource-driven asso-
ciation patterns found in integrated networks, we re-con-
structed 10 site-dependent co-occurrence networks (2 
resource levels × 5 sites) (Figure S4).

To distinguish the potential multi-trophic interac-
tions in the co-occurrence networks, the connections 
between the same trophic level were classified as within 

trophic associations and connections between different 
trophic levels were classified as cross-trophic associa-
tions. The two classifications represent potential within 
and cross-trophic interactions, respectively [23, 50]. 
In total, 20 types of potential species interactions were 
divided into four categories: positive within trophic, 
negative within trophic, positive cross-trophic, and 
negative cross-trophic interactions (Table S5). We con-
sidered bacteria and fungi as the basal trophic level and 
protist and nematode as the high trophic level in this 
study.

Fig. 2  The construction of integrated co-occurrence networks of soil organisms (including bacteria, fungi, protists, and nematodes) and 
proportions of potential multi-trophic interactions types in low and high available resource environments. a Visualization of integrated 
co-occurrence networks across low (left) and high (right) resource availability environments based on Spearman correlation matrix (|r|> 0.6, P < 0.05). 
Each node represents OTUs. These nodes were clustered according to the category of kingdoms and marked with purple (nematode), green 
(protist), yellow (fungi), and white (bacteria) colors. Each link between the same and different kingdoms represents a significant pairwise association 
between them. The color of links was used to distinguish trophic levels between nodes. Blue links represent within trophic associations (potential 
within trophic interactions), while red links represent cross-trophic association (potential cross-trophic interactions). The shape of links was used to 
distinguish the impact of associations. The solid and dashed lines represent positive and negative associations between nodes, respectively. The 
thickness of links represents the proportion of a certain type of association in total associations. b, c Average proportion of within trophic (WTA) 
and cross-trophic associations (CTA) in low and high available resource. Asterisks denote significant differences between metrics for low and high 
resource availability soils (n = 30) (Wilcoxon rank-sum test, asterisk, P < 0.0001; ns, not significant)
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Microcosm study
To determine whether the pattern of functional trait 
stability regulation found in the field is consistent at 
the microdomain scale, we designed two microcosmic 
experiments. These were conducted in liquid culture, 
independent from the field experiments presented above, 
enabling us to test the results from the field experiments. 
Following the protocol outlined by Bonkowski et al. [51], 
we used full-strength wheat grass medium (WG) and 
1/100 diluted WG to imitate high- and low-resource liq-
uid incubation systems.

For experiment 1, soil biota from 20  g fresh soil of C 
and NPKM treatments (representing typical original low 
and high resource environments) of the Yanting Ecologi-
cal Experimental Station (Table S1) were gently shaken 
and suspended in 100 mL phosphate buffer (PBS). Then, 
500 μL soil suspension containing soil biota was added 
to 5  mL WG and 1/100 diluted WG liquid medium, 
respectively, and incubated at 26 °C on a rotating shaker 
at 120  rpm in the dark. After 4  days, 500 μL of culture 
was transferred to fresh medium for subculturing, and 
the remaining culture was collected for microbial carbon 
metabolic profiles using Biolog EcoPlates. Subculturing 
was performed 3 times. After 12 days of incubation, the 
subcultures were collected for DNA extraction and high-
throughput sequencing of organisms (including bacteria, 
fungi, protists, and nematodes). To assess the functional 
stability (temporal stability of functional traits based on 
microbial carbon metabolism) of the microcosm, Biolog 
EcoPlates (Biolog® Inc., CA, USA) was used to measure 
the average well color development (AWCD) at the end 
of each subculturing by tracking its temporal dynam-
ics (Figure S5, Database 4). It is a simple and high-sen-
sitivity method to determine the overall functional traits 
of microbiota [52–54]. By measuring the invariability of 
functional traits at different time intervals, we quanti-
fied functional stability as the inverse of the coefficient of 
variation of AWCD (μ/σ) [55, 56], which is the ratio of 
the mean to the standard deviation of the AWCD of each 
subculturing over time, and the formula is as follows:

where A being the mean of the AWCD in the sample, Ai 
is the AWCD of the ith subculturing, and n is the number 
of subculturing in the sample.

The Biolog EcoPlates consisted of 96-well microplates 
containing 31 different carbon sources plus three repli-
cate blank wells. Microbial extraction and incubation in 
the Biolog EcoPlates followed the protocol outlined in 
Chen et al. [57].

(6)
Functional stability =

u

σ

=
A

√

∑

n

i=1 (Ai−A)
2

n

For experiment 2, we used heat-killed and selectively 
filtered soil suspension to create different trophic micro-
systems for culturing the model plant Arabidopsis thali-
ana. Soil suspension of field NPKM was prepared as 
mentioned above (experiment 1). Then 100  mL suspen-
sion were divided into 3 aliquots. One (suspension i) was 
heat-killed through 120 °C for 20 min. Another (suspen-
sion ii) was filtered through 1-µm sterile filter to remove 
large size body species including fungi, protists, and nem-
atodes. The third (suspension iii) was untreated to keep 
all species alive. Then the three suspensions were respec-
tively mixed with WG and 1/100 WG in the volume ratio 
of 1:10 to make 6 types of medium (i + WG, ii + WG, 
iii + WG, i + 1/100 WG, ii + 1/100 WG, iii + 1/100 WG) 
for culturing Arabidopsis thaliana seedlings. The cul-
ture systems were divided into 3 categories according to 
soil suspensions: system I, the axenic culture including 
i + WG and i + 1/100 WG; system II, within trophic-level 
culture including ii + WG and ii + 1/100 WG; system 
III, multi-trophic-level culture including iii + WG and 
iii + 1/100 WG.

Seeds of wild-type Arabidopsis thaliana were surface-
sterilized using 70% ethanol and 1.5% NaClO [38]. Individ-
ual seeds were sown onto the surface of 1/2 Murashige and 
Skoog (MS) solid medium (Sigma-Aldrich M5519, pH 5.7). 
The medium were incubated for 2 days at 4 °C in the dark 
and then transferred to a light incubator (14 h light/10 h 
dark, humidity 60%, temperature 20  °C) for germination 
[58]. After 10  days, seedlings with consistent size were 
transferred to a cell culture plate (flat bottom with lid). 
Four seedlings were placed together into each well (diam-
eter = 2.4  cm; height = 1.8  cm) with degreasing cotton at 
the bottom, and then injecting 3300 µL of culture medium 
into the well. To simultaneously meet the development of 
plant Arabidopsis thaliana and microorganisms [59, 60], 
we set the temperature at 20℃ as ambient, temperatures 
reduced 5 ℃ below ambient as temperature stress [61, 62]. 
Each well of the micro-system represented a replicate. For 
each medium, 24 replicates were conducted, with twelve 
replicates incubated at 15 ℃, and another twelve replicates 
were incubated at 20 ℃. Other culture conditions (includ-
ing light and humidity) were the same as for seed germina-
tion. In total, 576 seedlings (4 plants × 24 wells × 6 culture 
mediums) were transferred into 144 wells for the determi-
nation of plant growth stability in different trophic-level 
systems. Controls with water addition instead of culture 
medium were conducted in an identical manner. For each 
culture well, the medium was replaced with fresh aliquots 
at 4-day intervals. After 8 days of incubation, seedlings in 
each well (n = 4) were selected for fresh biomass detec-
tion. The stability of plant biomass (Database 5) in different 
trophic-level micro-systems was calculated by the biomass 
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resistance under low temperature stress as described by 
Orwin and Wardle [63]:

where D0 is the difference between the samples cultured 
at 20 ℃ (C0) and soil subjected to temperature stress 
(samples cultured at 15 ℃) at the end of the disturbance.

Statistical analysis
Wilcoxon rank-sum test was used to assess the dif-
ferences of soil quality index, biodiversity, functional 
stability, and soil biotic and abiotic characteristics 
between low and high resources in each site and one-
way ANOVA was performed to assess the differences 
in plant biomass and resistance among different treat-
ments using Tukey’s honest significant difference (HSD) 
tests (P < 0.05) in SPSS 20.0 software (SPSS, Chicago, IL, 
USA). The richness (Chao1 index), Shannon, and even-
ness indices were calculated with QIIME (Version 1.7.0). 
Random forest modeling was used to quantitatively 
assess the important predictors of functional trait stabil-
ity involving soil characteristics and climatic factors. The 
analyses were conducted using the RandomForest pack-
age in R (version 3.6.1), and the significance of the model 
and predictor was determined using the rfUtilities and 
rfPermute packages [64, 65].

We used the Partial Least Squares Structural Equation 
Modeling (PLS-SEM) to estimate the driving factors directly 
and indirectly affect functional trait stability. PLS-SEM 
is more suitable for the estimation of very complex mod-
els with many latent variables and the analysis of less strict 
assumptions about the distribution of samples and error 
terms [66]. The PLS path modeling method was developed 
by Wold [67] and the PLS algorithm is essentially a sequence 
of regressions in terms of weight vectors [68]. The weight 
vectors obtained at convergence satisfy fixed point equa-
tions [69]. All PLS-SEM analyses were conducted using the 
Smart PLS 3.0 software (SmartPLS GmbH, Boenningstedt, 
Germany) [70]. To fit our model, we examined the fitting 
index of the model (Cronbach’s alpha > 0.7, composite relia-
bility > 0.6, average variance extracted (AVE) > 0.5, path coef-
ficients (P < 0.05)) (Table S6). The Goodness-of-Fit (GoF) 
index was established to evaluate the overall fitness of the 
model [71]. According to the GoF thresholds of 0.1, 0.25, 
and 0.36, the overall model fit was appropriately divided 
into weak, medium, and strong [72].

Results
Resource status affects the relationship 
between biodiversity and functional trait stability
To determine whether resource availability is impor-
tant in controlling soil biodiversity, potential species 

(7)Resistance = 1− (
2|D0|

C0+ |D0|
)

interaction, and functional trait stability, we classified 
soil samples according to the resource availability in each 
site. As we expected, site samples in the high resource 
category showed greater resource availability (1.4–2.9 
folds) than those in the low resource category (Fig.  1a, 
P < 0.05, Wilcoxon rank-sum test). We then used the soil 
fertility index (SFI, a common index for the evaluation 
of soil resource quality [73]) to support the rationality of 
the resource classifications (Table S3). The SFI of the high 
resource category ranged from 1.2 to 1.5 times higher 
than the low resource category among sites (Fig.  1b, 
P < 0.01, Wilcoxon rank-sum test), suggesting our classifi-
cation represents actual nutrient availability.

In soil samples across agroecosystems, we found that 
low resource availability resulted in an average of 2.5 and 
152% reduction in belowground biodiversity and func-
tional trait stability (Fig.  1c,d, P < 0.05, Wilcoxon rank-
sum test). Moreover, resource-driven average variability 
of functional trait stability (P < 0.01) was 50.43% greater 
than that of biodiversity (P < 0.05). After evaluating the 
relationship between biodiversity and functional trait 
stability, we found that soil biodiversity, in low resource 
availability samples only, exhibited strong linear correla-
tions with functional trait stability (Fig.  1e, R2 = 0.189, 
F = 6.505 and P < 0.05). Once resource availability was 
sufficient, no significant relationship was observed 
(Fig. 1e, P > 0.05). Diversity of single groups of organisms 
(bacteria, fungi, protists, and nematodes) also yielded 
no significant relationships with functional trait stability 
under high resource conditions (Figure S6). However, if 
all samples were assessed as a single group, a significant 
positive relationship appeared again (Fig. 1e, R2 = 0.135, 
F = 9.044, and P < 0.01).

Resource availability mediates soil potential multi‑trophic 
interactions
To compare resource-driven potential species interac-
tion differences, we constructed integrated co-occur-
rence networks (including bacteria, fungi, protists, 
and nematodes) of both low and high resource soils. In 
total, 648,475 and 693,116 associations (links) among 
4609 and 4522 OTUs were captured in the low and 
high resource co-occurrence networks, respectively. A 
greater number of smaller microorganism nodes (bac-
teria and fungi) and their associated links were found 
than higher trophic nodes (protists and nematodes) and 
relevant links (Fig.  2a and Figure S4a). Then, we classi-
fied those links into within trophic (WTA) and cross-
trophic (CTA) associations by judging whether the two 
nodes connected by links belonged to different trophic 
levels (Fig.  2b,c and Table S7). Obviously, the average 
proportion of overall WTA in the low resource net-
work was higher than that in the corresponding high 
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resource network (Fig.  2b, P< 0.01). This is attributed 
to the increase of positive WTA across low and high 
resource conditions (Fig.  2b and Figure S4b). By con-
trast, the increasing proportion of positive and negative 
cross-trophic associations made the average overall CTA 
across high resource networks 316% higher than those 
across low resource network (Fig.  2c). To further verify 
the consistency of resource-driven allocation of potential 
interactions between multi-trophic levels, we also con-
structed 10 site-dependent co-occurrence networks with 
high- and low-resource levels. These generated networks 
captured 6694–19,955 associations among 891–4117 
OTUs (Figure. S4a, Table S7). Similarly, the variances of 
average WTA and CTA of site-dependent networks were 
consistent with integrated co-occurrence networks (Fig-
ure. S4b-c and Figure S7).

Effects of potential multi‑trophic interactions on functional 
trait stability
Using the common linear regression model, we found the 
different relations between potential multi-trophic inter-
actions and functional trait stability (Fig. 3). Surprisingly, 
each type of association at low and high resource levels 
showed an opposite relationship with functional trait sta-
bility (R2 = 0.147–0.646; P < 0.05), although an individual 
linear relationship between negative WTA and functional 
trait stability was not significant (R2 = 0.09, P > 0.05) 
under high resource. That is, if the relation showed posi-
tive at low resource, then it turns to be negative at high 
resource, and vice versa. Another interesting finding is 
that, at the same resource level, the correlation between 
overall WTA and functional trait stability showed an 
opposite trend to that of overall CTA and functional trait 
stability (Fig.  3a, b). Within the WTA, due to the pre-
dominance of positive WTA, the relationship between 
positive WTA and functional trait stability is the same 
as that of overall WTA, showing a positive relationship 
under low-resource conditions (R2 = 0.603 and 0.598, 
P < 0.001), but negative relationship under high resource 
conditions (R2 = 0.341 and 0.147, P < 0.001 and P < 0.05). 
However, for CTAs, it showed that functional trait sta-
bility decreased significantly with positive, negative, 
and overall CTA in low resources (R2 = 0.408–0.646, 
P < 0.001), but increased in high resources (R2 = 0.247–
0.341, P < 0.01). These aforementioned linear regressions 
have also appeared between site-dependent network 
associations and soil functional stability (Figure S8).

Drivers of soil functional trait stability
To determine the relative importance of resource-driven 
biodiversity and potential multi-trophic interactions 
on soil functional trait stability, we used Random For-
est modeling first to separate and assess the important 

abiotic predictors of the functional trait stability (Fig. 4a). 
Then, the partial least structural equation modeling 
(PLS-SEMs) was used to quantify the contribution of 
important predictors to resource-driven biodiversity, 
potential multi-trophic interactions, and functional trait 
stability (Fig.  4b,c, Figure S9). The overall fitness of the 
resulting structural equation model is extremely strong 
(GoodFit = 0.719), suggesting that all of the impor-
tant relationships were specified in the model (Table 
S6). Our PLS-SEMs explained 65% and 63% of the vari-
ance found in the functional trait stability of the low and 
high resource systems, respectively, after accounting 
for key ecosystem factors (P < 0.01) such as soil proper-
ties (TP, AP:TP, AP, C:N, pH, and AK:TK) and climate 
factors (MAP and MAT) (Fig.  4a). According to the 
scale of our investigation, we found that soil properties 
had a greater impact on belowground biodiversity and 
potential species interactions than the climate factors 
(Fig.  4b, c). When resources were low, soil properties 
influence functional trait stability indirectly via increases 
in biodiversity (path coefficient = 1.06, P = 0.002) and 
WTA (path coefficient = 0.997, P = 0.004). Although 
low resources depressed CTA, it had no direct effect on 
functional trait stability (P > 0.05). However, when soil 
resources were sufficient, soil properties shift to increase 
CTA but depress biodiversity and WTA. The variation 
in functional stability was explained entirely by potential 
multi-trophic interactions, especially CTA (path coeffi-
cient = 0.804, P = 0.006). Meanwhile, the direct effect of 
soil biodiversity on functional stability was not obvious. 
It is also consistent with the neutral relationship between 
biodiversity and functional trait stability across high-
resource sites (Fig. 1e).

Verification using experimental microcosm study
Based on the field investigation, we found that resource 
supply resulted in a greater impact of cross-trophic asso-
ciations on soil functional trait stability over large scales 
(Figs. 3 and 4). To confirm this pattern, we further con-
ducted microcosm-scale, liquid culture experiments 1 
and 2 with full-strength and diluted (1/100) WG (wheat 
grass) media. Soil organisms from the field soils of Yant-
ing site were extracted in suspension, and then incubated 
in high (full-strength WG) and low nutrient incubation 
(1/100 diluted WG), respectively (Figs. 5a and 6a).

For experiment 1, we evaluated the effects of resource-
driven multiple trophic associations and biodiversity 
on functional stability (Fig.  5a). Given continuous full-
strength (high) resource incubation (microcosms of 
C-High and M-High), the functional stability increased 
13.75% (P = 0.026) and 50.15% (P = 0.001) compared 
to those of 1/100 resource incubation (microcosms of 
C-Low and M-Low), respectively (Fig.  5b), suggesting 
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abundant resources enhanced the stability of carbon 
metabolism. Whereas for the incubated biodiversity, only 
M-high increased 110% compared to M-Low (Fig.  5c, 
P = 0.047, Wilcoxon rank-sum test), and no difference 
was observed between C-Low and C-High (Fig.  5c, 
P > 0.05). Among these 4 microcosms, the propor-
tion of CTA in high resource incubations (C-High and 
M-High) increased an average of 2 folds over those in low 
resource incubations (C-Low and M-Low), respectively 

(Fig. 5e, Figure S10, P < 0.001). As we expected, the incu-
bated biodiversity showed a positive association with 
functional stability only when culturing resources were 
low (Fig.  5d, R2 = 0.35 and P < 0.05). Once the culturing 
resources become sufficient, no significant correlation 
was found indicating biodiversity cannot always sup-
port functional stability (Fig. 5d, R2 = 0.07 and P > 0.05). 
In contrast, the proportion of CTA transitioned from 
no relationship (R2 = 0.02 and P > 0.05) to a significant 

Fig. 3  Types of trophic association effects on soil functional trait stability across low and high resource available environments. Blue and red dots 
represent samples from low and high resource treatments, respectively. Solid and dashed lines represent the significant and non-significant linear 
relationships in low and high resource environments, respectively. WTA, within trophic association; CTA, cross-trophic association. *, P < 0.05; **, 
P < 0.01; ***, P < 0.001
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positive relationship (R2 = 0.71, and P < 0.001) with func-
tional stability as the resource availability changed from 
low to high (Fig. 5f ), suggesting the importance of CTA 
in stabilizing system multi-functionality in a resource-
rich environment. Additionally, the functional stability 
in the microcosms was significantly linearly correlated 
with the functional trait stability measured from the field 
experiment (Figure S11, R2 = 0.84, F = 21.2 and P = 0.01), 
indicating consistent characteristics from the micro- and 
macro-scale studies.

To better understand whether the belowground func-
tional stability enhancement finally cause the feedback to 
stabilize plant production, we established three different 
trophic-level micro-culture systems and planted Arabi-
dopsis thaliana as the model in experiment 2 (Fig. 6a and 
Figure S12). Interestingly, system III with high resource 
availability always maintained maximum biomass, at 
both normal and low temperatures (Fig.  6b, P < 0.05). 
Whereas in systems I and II, plant biomass (Dataset S5) 
did not change with the different levels of resources at 
the same temperature (Fig. 6b, P > 0.05). Then, the stabil-
ity of plant production was assessed by comparing the 
resistance of plant biomass to low temperature (Fig. 6c). 
In the absence of belowground organisms (system I), no 
difference in the stability of plant biomass was found 
between resource levels (P > 0.05). But once trophic-level 
organisms (bacteria) were co-cultured with plant roots 
in system II, low temperature reduced the stability of 
plant biomass 27.47% under the high resource condition 
(P < 0.05). In contrast, when multi-trophic-level organ-
isms (including bacteria, fungi, protists and nematodes) 

were co-cultured in system III, a decrease in biomass 
stability was observed under the low resource condition. 
These results implied that multi-trophic associations in 
the presence of high nutrient concentration are the key 
drivers of the stability of micro-ecosystem functioning.

Discussion
Despite the fundamental importance of stabilizing eco-
system functions for agricultural sustainability, a clear 
understanding of what determines functional stabil-
ity is still lacking [73, 74]. Belowground biodiversity [1, 
8, 10, 11] and interactions between species [75, 76] play 
key roles in stabilizing ecosystem multi-functionality, 
but how they comprehensively affect functional stability 
in intensive agroecosystems remains largely unknown. 
Here, we argue that the magnitude of impacts of biodi-
versity and potential multi-trophic interactions between 
organisms on functional trait stability depended on the 
level of resource availability. To be more specific, biodi-
versity, and potential within trophic interactions in low 
resource availability, and potential cross-trophic interac-
tions in high resource availability are the drivers for the 
stability of belowground functional traits.

Community response to resource alteration usually 
begins with individual physiological and metabolic pro-
cesses, followed by species reordering, and finally spe-
cies mortality and immigration [77]. In this study, we 
found that long-term resource limitation, in agricultural 
systems reduced soil biodiversity, while resource input 
showed the opposite trend (Fig. 1c). It seems to be con-
trary to the natural pattern that resource limitation 

Fig. 4  The direct and indirect effects of drivers on soil functional trait stability. a Mean predictor importance of factors on functional trait stability 
based on random forest analysis. Significant predictors revealed in the random forest analysis are marked with asterisks. *, P < 0.05; **, P < 0.01; 
***, P < 0.001. Highly significant predictors (P < 0.01, columns marked with green) were selected for structural equation modeling. b, c Direct and 
indirect effects of driving factors on functional trait stabilities in low and high resource environments using Partial Least Squares Structural Equation 
Modeling (PLS-SEM), respectively. The ellipses represent the latent variables, and the rectangles represent the observed variables. The factor on 
the side of the latent variable is the observed variable, and the value in parentheses indicates the weight of the indicator. The black and red arrows 
in the PLS-SEM indicate positive and negative relationships, respectively, and gray arrows represent non-significant paths (P > 0.05). Numbers on 
the arrows are path coefficients, and the path widths represent the strength of path coefficient. OM, organic matter; AP, available phosphorus; AK, 
available potassium, NO3

−-N, nitrate nitrogen, NH4
+-N, ammonia nitrogen; (NO3

−-N + NH4
+-N): TN, the ratio of the sum of nitrate nitrogen and 

ammonia nitrogen to total nitrogen; AK:TK, the ratio of available potassium to total potassium; AP:TP, the ratio of available phosphorus to total 
phosphorus; C:N, the ratio of soil organic carbon to soil total nitrogen; C:P, the ratio of soil organic carbon to soil total phosphorus; MAT, mean 
annual temperature; MAP, mean annual precipitation
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increases the opportunities for speciation in the case of 
plant communities [78, 79]. Different from natural eco-
systems, single (P) or multiple nutrient (N, P, K) limita-
tions caused by imbalanced fertilization in intensive 
agroecosystem directly leads to the extreme elemental 
stoichiometry in soil [80]. These important soil proper-
ties (e.g., P) will affect belowground biological function-
ing by the change of survival strategies of microbiomes 
and the loss of biodiversity [81, 82]. Conversely, high 
resource availability maintained soil biodiversity (Fig. 1c). 
It should be noted that the high resource mentioned in 

this study does not refer to nutrient enrichment caused 
by excessive fertilization. Actually, the amount of 
resource input, taking nitrogen (N, < 18 g N m−2  year−1) 
as the example in this study, is similar to “low N input” 
(≤ 16  g N m−2  year−1) standard in other studies, which 
showed “high N input (≥ 32 g N m−2 year−1)” negatively 
affect bacterial diversity [83]. Additionally, the types of 
resources, especially organic fertilizers, which have high 
heterogeneity in their nutrient composition, can provide 
opportunities for different species coexistence through 
niche differentiation facilitation [25].

Fig. 5  Experiment 1 of microcosm study. a Diagram of experiment 1 design. b, c The functional stability and incubated biodiversity after low and 
high resource incubations. Dots with error bars represent mean values and standard error of mean (n = 6) (Wilcoxon rank-sum test, *, P < 0.05; **, 
P < 0.01; ns, not significant). d Relationship between incubated biodiversity and functional stability after low and high resource incubations. The 
solid and dotted lines represent the significant and non-significant relationships, respectively. e Radar chart of the proportion of cross- and within 
trophic associations after high and low resource incubations. Different lowercase letters with brown and red colors represent significant differences 
of the proportion of cross-trophic and within trophic associations, respectively. f Relationship between cross-trophic association and functional 
stability after low and high resource incubations. WG, wheat grass medium; C-Low (light blue dots), soil suspension from C (control) was cultivated 
in low resource medium (1/100 diluted WG); C-High (dark blue dots), soil suspension from C (control) was cultivated in high resource medium (WG); 
M-Low (light red dots), soil suspension from M (NPKM) was cultivated in low resource medium; M-High (dark red dots), soil suspension from M 
(NPKM) was cultivated in high resource medium
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Consistent with Pennekamp et al. [84], our field survey 
and microcosm study both supported that biodiversity 
can increase overall ecosystem stability when biodiver-
sity is low in resource-limited conditions (Fig.  1d,e). A 
similar positive biodiversity-functional trait stability rela-
tionship can be found when all samples are taken into 
account, regardless of resource levels (Fig. 1e). It was in 
line with a multi-continent natural terrestrial ecosystem 
investigation that soil biodiversity enhances the ability 
of the ecosystem to maintain multi-functionality [85]. 
When resources were sufficient, both in the field experi-
ment and microcosm study, although biodiversity and 
functional trait stability were synergistically improved, 
their linear relationship was not significant (Fig. 1e) and 
the relative importance of biodiversity to functional trait 
stability in PLS-SEM model was not obviously (Fig. 4c). 
Similar results were obtained in our two independent 
experiments, pointing to the robustness of our find-
ings. Similarly, neutral effects of diversity on the tempo-
ral variability of aquatic algal communities also occur in 
the nutrient-rich microcosms [86]. In fact, theoretical 
models show that the effect of biodiversity on ecosystem 
stability can be positive, neutral, and negative [87, 88]. 

Some ecologists argued that the mysterious relationship 
between biodiversity and ecosystem stability is due to the 
fact that biodiversity is one of the divers of this relation-
ship [87]. Here, we suggested that in addition to biodi-
versity, there are other drivers that underpin functional 
stability. Resource alteration may be of importance for 
the magnitude of biodiversity and other drivers affecting 
functional stability.

Chronic resource alteration also affected the inter-
actions among species, the patterns and strengths 
of which strongly link to ecosystem stability [24, 
75]. Using co-occurrence networks, a promising 
approach to investigate various types of potential 
interactions between organisms [8, 89], we found that 
when resources were limited, associations within the 
same trophic group, especially positive associations, 
enhanced the effect on the stability of multi-function-
ality (Fig. 3a, Fig. 4b, Figure S8a). This is easy to under-
stand, as chronic resource depletion will push soil basal 
trophic-level decomposers, especially oligotrophic taxa, 
to cooperate closely to metabolize refractory organic 
substrates for survival [90]. The facilitation of different 
functional traits among small size species maintained 

Fig. 6  Experiment 2 of microcosm study. a Diagram of experiment 2 design. b Seedling biomass in different trophic-level culturing systems 
incubated at 20 °C (left) and 15 °C (right), respectively. System I, Control, axenic culture; system II: within trophic-level culture; system III: 
multi-trophic-level culture. Each sample includes four seedlings of Arabidopsis thaliana. c Plant biomass stability in different trophic-level cultures. 
The data are shown as the means ± standard deviations (n = 12). The error bars with different letters indicate significant differences as determined 
by one-way analysis of variance (ANOVA) followed by Tukey’s HSD test (P < 0.05)
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the belowground multi-functionality. In parallel, the 
slow turnover of low levels of resources reduced energy 
fluxes to upper trophic organisms in the trophic pyra-
mid [91] (Fig. 7), resulting in a decline in populations of 
mid-level consumers and weakening the ability of top-
down forces to modulate functioning in the community 
[23] (Fig. 3b, Fig. 4b,c, and Figure S8d-f ).

In contrast, nutrient supplementation led to pro-
nounced competitive interactions between bacterial 
species [24]. This can be reflected by the more negative 
within trophic associations in high resource environ-
ments (Fig. 2b). As a result, microbial R-strategists would 
occupy the habitat niche through the rapid proliferation. 

However, the rapid growth of prey (R-strategists in par-
ticular) would subsequently increase the population of 
their predators (upper trophic level), due to the energy 
flow toward different trophic levels [22, 92]. Therefore, 
the increased proportion of cross-trophic associations 
were observed in both field and microcosm under high 
resource conditions (Fig. 2c and Fig. 5e). From the adja-
cent pairs of trophic-level perspective, theoretically, 
increased cross-trophic associations would provide a 
heterogeneous niche for more functional redundant spe-
cies to coexist [93, 94] and should stabilize multi-func-
tionality [13, 95] In line with this, the positive impact of 
cross-trophic associations on functional trait stability 

Fig. 7  Schematic diagram of the potential regulation of belowground biodiversity and potential multi-trophic interactions to functional trait 
stability in low and high resource environments. Under the low resource condition, the biodiversity and species associations between the same 
trophic levels jointly affect the functional trait stability; while under the high resource condition, cross-trophic associations determine the functional 
trait stability. The boxes under the arrows indicate the functional trait pool. Circles with different colors indicate different functional traits. The size of 
the circle represents the coefficient of variation (CV) of the functional trait. The larger the circle, the greater the 1/CV. 1/CV is obtained by the ratio of 
the mean (μ) to the standard deviation (σ) of frequency of every functional trait. The larger the average value of standardized redundancy and 1/CV, 
the greater connectivity and stability of the functional traits
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becomes prominent when resources are high according 
to the PLS-SEM modeling (Fig.  4c). More importantly, 
this positive belowground effect could be passed up to 
support the stability of plant biomass (Fig. 6b,c), suggest-
ing the importance of overlooked soil–plant functional 
feedbacks in agro-ecosystems [96].

Different species in the community co-evolved to con-
trol ecosystem stability through multiple drivers such 
as microbial biodiversity and composition, microbiome 
complexity, and multi-trophic species interactions [8, 10, 
75, 97]. Here, we found that the magnitude of each driver 
affecting belowground functional trait stability relies on 
soil resource status (Fig. 7). Frequent excessive resource 
inputs have been used to support global productivity at 
the expense of the decline of ecosystem stability and the 
loss of biodiversity [92, 97]. However, intensive plant-
ing with resource limitations, the other extreme, also 
destabilizes community function. Our results imply the 
importance of scheduled and quantitative resource com-
plementation in maintain soil biodiversity and potential 
multi-trophic interactions for stabilizing functions of 
sustainable and healthy agro-ecosystems.

Conclusions
Our results demonstrated that resource availability con-
trolled the soil functional trait stability through mediat-
ing belowground biodiversity and potential multi-trophic 
interactions. Potential within trophic interactions and 
soil biodiversity together determined the functional 
trait stability when resource availability was low. High 
resource availability increased the potential cross-trophic 
interactions which greatly support the stability of func-
tional traits. This pattern across agro-ecosystems has 
also appeared in two fine-scale microcosm systems. 
Our findings will benefit new policies and strategies of 
resource application for the sustainable intensification of 
agriculture.
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