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Abstract 

Background  In aquatic ecosystems, the health and performance of fish depend greatly on the dynamics of microbial 
community structure in the background environment. Nonetheless, finding microbes with profound impacts on fish’s 
performance out of thousands of candidate species remains a major challenge.

Methods  We examined whether time-series analyses of microbial population dynamics could illuminate core com-
ponents and structure of fish-associated microbiomes in the background (environmental) water. By targeting eel-
aquaculture-tank microbiomes as model systems, we reconstructed the population dynamics of the 9605 bacterial 
and 303 archaeal species/strains across 128 days.

Results  Due to the remarkable increase/decrease of constituent microbial population densities, the taxonomic 
compositions of the microbiome changed drastically through time. We then found that some specific microbial taxa 
showed a positive relationship with eels’ activity levels even after excluding confounding effects of environmental 
parameters (pH and dissolved oxygen level) on population dynamics. In particular, a vitamin-B12-producing bacteria, 
Cetobacterium somerae, consistently showed strong positive associations with eels’ activity levels across the replicate 
time series of the five aquaculture tanks analyzed. Network theoretical and metabolic modeling analyses further sug-
gested that the highlighted bacterium and some other closely-associated bacteria formed “core microbiomes” with 
potentially positive impacts on eels.

Conclusions  Overall, these results suggest that the integration of microbiology, ecological theory, and network 
science allows us to explore core species and interactions embedded within complex dynamics of fish-associated 
microbiomes. 

Keywords  Alternative stable states, Biodiversity, Biological communities, Community collapse, Community stability, 
Edwardsiella, Dysbiosis, Keystone species, Microbiome dynamics, Nonlinear dynamics

Background
Microbial communities are essential factors of the life of 
vertebrates [1–4], playing key roles in the development 
and homeostasis of their hosts [5–7]. Gut microbiomes, 

for example, play key roles in the nutrition and disease 
prevention of human and other mammal species [8, 9]. 
Such physiological and ecological effects of gut microbes 
on hosts have been reported as well for fish [6, 10, 11]. 
Meanwhile, because fish are continuously exposed 
to numerous pathogenic and non-pathogenic micro-
bial species in the water, their performance (or fitness) 
depends not only on gut-associated microbes [6, 10] 
but also on the microbiomes of the background envi-
ronment [12–14]. Therefore, finding key microbiome 
components whose dynamics determine fish’s health or 
performance is of interdisciplinary interest spanning 
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from microbiology to zoology and environmental sci-
ence. However, due to the tremendous diversity of bacte-
ria and archaea in aquatic ecosystems [15, 16], exploring 
such core microbial species associated with fish health 
remains a challenge.

A starting point for finding fish-health-associated 
microbes in aquatic ecosystems is to track the dynamics 
of microbial community compositions [17]. Nonetheless, 
we still have limited knowledge of the extent to which 
the structure of fish-associated microbiomes changes 
through time (but see [18]). Although time-series data 
of microbiomes have become available in large-scale 
projects of human-associated microbes [19, 20], few 
attempts have been made to monitor microbiomes 
associated with other animals over tens of time points. 
Moreover, continuous sampling of fecal or body-part 
samples of targeted vertebrate individuals is generally 
much harder in aquatic environments than in terrestrial 
environments. Thus, developing model systems for time-
series analyses of microbe–fish ecological interactions is 
a demanding but essential step for exploring core bacte-
ria and/or archaea out of thousands of candidate species 
in microbial communities.

Despite the hardship in gaining time-series micro-
biome samples at the individual level, fish-associated 
microbiome dynamics can be monitored at the popu-
lation or community level by sampling environmental 
water samples [21–23]. Because excrements of fish are 
released to water, the samples of background water are 
expected to reflect the gut microbiomes of fish popula-
tions or communities. Furthermore, as individual fish are 
continuously exposed to the background microbiomes, 
analyses of water samples provide essential insights into 
surrounding environmental conditions, decomposition 
processes of non-ingested feed, and potential sources 
of gut microbiomes [12–14]. In this respect, time-series 
analyses of aquaculture or aquarium systems offer an 
ideal opportunity for investigating the relationship 
between microbial community structure, core microbial 
species, and vertebrate health.

By targeting a recirculating aquaculture system of the 
Japanese eel (Anguilla japonica), we herein integrate 
microbiology, community ecology, and network science 
for detecting key species and structures within fish-rear-
ing-water microbiomes. Based on the DNA metabarcod-
ing of prokaryote (bacterial and archaeal) communities 
for the 128-day time series, we revealed to what extent 
the compositions of aquaculture microbiomes fluctu-
ate through time. We then reconstructed the population 
dynamics (i.e., increase/decrease) of the 9908 microbial 
amplicon sequencing variants (ASVs) constituting the 
aquaculture microbiomes, screening bacteria or archaea 
whose abundance was tightly linked with the health 

condition of eels. We then found that several microbial 
ASVs showed positive associations with eel health con-
sistently across the five replicate aquaculture tanks exam-
ined, even after controlling the effects of these microbes’ 
environmental preference (e.g., preference to pH and 
dissolved oxygen level). With the approaches of network 
science and metabolic modeling, we further examined 
potential interactions between the core microbes, uncov-
ering the structure of “core microbiomes” potentially 
determining fish health/performance. Overall, this study 
illustrates how core species and interactions are detected 
based on time series datasets of microbiome dynamics.

Results
Microbiome dynamics
Monitoring of microbiome dynamics was conducted by 
targeting the five water tanks of an aquaculture farm of 
the Japanese eel. In each water tank (diameter = 5 m; 
height = 1 m; volume = 20 m3), 1400–4300 eel individu-
als (average weight = 80–130 g) had been kept. The pH 
and dissolved oxygen (DO) concentrations were recorded 
for each tank every day. In addition, as a measure of eco-
system-level functions of microbiomes, the health condi-
tion of eels was evaluated based on eight criteria, yielding 
eel activity scores on a scale of 0 to 40 (see the “Meth-
ods” section). For the analyses of microbiome dynamics, 
water was sampled from each aquaculture tank every 24 
h during 128 days. By applying a quantitative amplicon 
sequencing approach for estimating 16S ribosomal RNA 
gene (16S rRNA gene) copy concentrations of respective 
microbes [24], we obtained time-series datasets repre-
senting the increase/decrease of 9605 bacterial and 303 
archaeal ASVs representing 618 genera and 325 fami-
lies (Fig. 1a). Thus, our data offered a novel opportunity 
to test synchronizations among microbial population 
dynamics, environmental factors (pH and DO), and ver-
tebrate performance (eel activity level).

At the community level, drastic taxonomic turnover 
was observed in the time series of each aquaculture tank 
(Fig. 1; Additional file 1: Fig. S1, Additional file 2: Fig. S2, 
Additional file 3: Fig. S3). In Tanks 1 and 2, for example, 
the community structure characterized by the predomi-
nance of Fusobacteriaceae and Microbacteriaceae was 
suddenly altered by a Flavobacteriaceae-dominated state 
around day 45 (Fig. 1). Meanwhile, microbiomes of Tanks 
3–5 displayed more complex dynamics represented by 
frequent shifts between Flavobacteriaceae-dominated 
and Chitinophagaceae-dominated states, although a clear 
classification of community states was difficult (Fig. 1).

A multivariate analysis of the prokaryote community 
structure suggested that the community state character-
ized by the dominance of Fusobacteriaceae and Micro-
bacteriaceae was potentially associated with high eels’ 



Page 3 of 15Yajima et al. Microbiome           (2023) 11:53 	

activity (Fig. 2). In contrast, the Flavobacteriaceae-dom-
inated and Chitinophagaceae-dominated states, which 
were observed in high-pH conditions, were associated 
with low eels’ activity (Fig.  2). At the genus level, the 
high-eel-activity-related state of dominance by Fuso-
bacteriaceae and Microbacteriaceae was characterized 
by the high relative abundance of Cetobacterium, which 
includes species potentially contribute to fish physiologi-
cal homeostasis [25]. On the other hand, the Flavobac-
teriaceae-dominated and Chitinophagaceae-dominated 
states associated with low eels’ activity were represented 
by Flavobacterium and Edaphobaculum, respectively 
(Additional file  4: Fig. S4). Among the genera, Flavo-
bacterium includes fish pathogens [26], while Edapho-
baculum [27] has been poorly investigated in terms of 
their effects on fish physiology. These results suggest the 
potential impacts of environmental microbiome dynam-
ics on fish health/behavior in aquaculture systems.

Exploring microbes with key roles
To reveal the relationship between microbiome structure 
and eels’ activity level, we next evaluated how the popu-
lation dynamics of each microbial ASV were associated 
with environmental variables and eels’ activity level. Spe-
cifically, we examined how the population size (absolute 

abundance) of each ASV varied with pH, DO, and eels’ 
activity level (Fig. 3a) based on correlation analyses with 
twin-surrogate permutations [28] (Fig.  3b-c). The ASVs 
varied in their environmental preference for pH and 
DO conditions as well as in their associations with eels’ 
activity levels (Additional file 5: Fig. S5). We also found 
that ASVs’ relationship with eels’ activity level displayed 
tank-dependent complex associations with pH or DO 
preference (Fig. 3d–e). Thus, for each microbial ASV in 
each aquaculture tank, we calculated a partial correla-
tion between absolute abundance and eels’ activity scores 
through the time series by controlling the effects of pH or 
DO. Because partial correlation coefficients were consist-
ent between the pH-controlled and DO-controlled cal-
culations (Fig.  3f ), the pH-controlled partial correlation 
coefficients were used in the following analyses.

The partial correlation coefficients with eels’ activ-
ity levels varied greatly depending on prokaryote taxa 
(Fig. 2e). Nonetheless, ASVs belonging to some bacterial 
genera showed a consistently positive correlation with 
eels’ activity scores across the five tanks (Fig.  2g; Addi-
tional file  5: Fig. S5). The list of those ASVs included 
bacteria belonging to the genera Cetobacterium (Fuso-
bacteriaceae; Fusobacteriia; ASV ID = X_0002), Ple-
siomonas (Enterobacteriaceae; Gammaproteobacteria; 

Fig. 1  Microbiome dynamics in the eel aquaculture system. a Dynamics of absolute abundance. For each water sample of each aquaculture 
tank, the absolute abundance of prokaryotes was inferred as 16S rRNA gene copy concentration based on the quantitative amplicon sequencing 
approach with standard DNA gradients. b Dynamics of relative abundance. The time series of the family-level taxonomic compositions are shown 
for each aquaculture tank. See Extended Data Figures 1–3 for phylum-, order-, and genus-level taxonomic compositions
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X_0020), Turicibacter (Erysipelotrichaceae; Bacilli; 
X_0041), Paraclostridium (Clostridiaceae; Clostridia; 
X_0014), Romboutsia (Peptostreptococcaceae; Clostridia; 
X_0028), Edwardsiella (Hafniaceae; Gammaproteobac-
teria; X_0027), Clostridium (Clostridiaceae; Clostridia; 
X_0029), and an ASV belonging to Barnesiellaceae (Bac-
teroidia; X_0064) (Fig. 3g; Additional file 5: Fig. S5d).

An additional database search of the 16S rRNA 
sequences suggested that some of the ASVs with positive 
associations with eels’ activity levels belonged to bacte-
rial species with potential physiological impacts on fish. 
For example, the Cetobacterium ASV, which showed the 
strongest positive partial correlation with eels’ activity 
level, was represented by the 16S rRNA sequences com-
pletely matching that of Cetobacterium somerae (for-
merly recognized as “Bacteroides type A”) in the NCBI 
nucleotide database. This Cetobacterium species has 
been known to produce high concentrations of vitamin 
B12, and hence, their potential contributions to fish’s 
physiology have been anticipated [25]. Meanwhile, the 
Edwardsiella ASV listed above was allied to the notorious 
fish pathogen E. tarda [29], illuminating paradoxical rela-
tionships with eels’ health. However, our supplementary 
phylogenetic analysis based on the sodB gene marker [30] 
indicated that 95.1 % of Edwardsiella bacteria detected 
in the focal eel aquaculture system belonged to non-
pathogenic clades [30, 31] within the genus Edwardsiella 
(Additional file 6: Fig. S6).

In terms of negative impacts on eels’ activity level, bac-
teria in the genera Aeromonas (Aeromonadaceae; Gam-
maproteobacteria), Methylobacterium (alternatively, 
Methylorubrum; Beijerinckiaceae; Alphaproteobacteria), 
and Acinetobactor (Moraxellaceae; Gammaproteobacte-
ria) were highlighted (Fig. 3g). Among them, Aeromonas 
and Acinetobactor have been known to include fish path-
ogens [32, 33]. At the ASV level, an ASV allied to the 
cvE6 clade within the order Chlamydiales (Chlamydiae; 
Verrucomicrobiota) showed the strongest negative cor-
relation with eels’ activity scores (Additional file  5: Fig. 
S5d).

Although the above analysis controlling environmental 
preferences of respective bacteria allows high-through-
put screening for species with potential positive/negative 
impacts on target biological functions, the simple statisti-
cal approach with partial correlation analyses precludes 
insights into the direction of causality. Specifically, it is 
important to consider the possibility that the high/low 
abundance of an ASV is a consequence but not a cause 
of eels’ high/low activity. Therefore, we performed an 
additional analysis introducing time lags into eels’ activ-
ity scores throughout the time series. We then found that 
the abundance of the Cetobacterium ASV was positively 
correlated with eels’ activity scores of the next day, while 
correlations between Cetobacterium abundance and past 
eels’ activity scores were much lower than those with 
no time lags (Fig.  3h). Meanwhile, the high correlation 

Fig. 2  Multivariate analysis of community structure. a Community state space. Community compositions of the samples are plotted on the 
two-dimensional surface defined with non-metric multidimensional scaling (NMDS). The NMDS was performed based on the Bray-Curtis β-diversity 
of family-level taxonomic compositions. The projections of the data points onto the vectors have a maximum correlation with the variables 
examined (pH, DO, and eels’ activity level). See Extended Data Figure 4 for an additional analysis based on genus-level taxonomic compositions. b 
Examples of community structure in the NMDS surface. For several points within the NMDS surface (panel a), family-level taxonomic compositions 
are shown. The example points are ordered along the vector representing high eels’ activity level
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Fig. 3  Microbes associated with eels’ activity. a Time series of pH, dissolved oxygen (DO) level, and eels’ activity score are shown for each 
aquaculture tank. b Example of the correlation analysis. For each variable shown in panel b, Spearman’s correlation with the absolute abundance of 
each ASV in each aquaculture tank was examined. c Randomization analysis of correlation. The significance of correlation coefficients was examined 
based on a twin-surrogate randomization analysis of time-series data (100,000 permutations). Coefficients less than −0.3 and those larger than 
0.3 roughly represent significant negative and positive correlations, respectively. d Each ASV’s correlation with pH and eels’ activity level. e Each 
ASV’s correlation with DO and eels’ activity level. f Partial correlation with eels’ activity level. To control the effects of pH or DO, a partial correlation 
between absolute abundance and eels’ activity scores was calculated for each ASV in each tank. g Taxonomic comparison of relationship with eels’ 
activity level. A partial correlation with eels’ activity level is shown for the genera that appeared in all the aquaculture tanks (shown in the decreasing 
order of mean values). h Time-lag analysis of correlations. In calculating the partial correlation between eels’ activity level and the absolute 
abundance of the Cetobacterium ASV (X_0002), a defined time-lag was introduced to the eels’ activity variable
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between 5-day-ago eels’ activity level and present-day 
Cetobacterium abundance was observed in some tanks 
(Tanks 1 and 4; Fig.  3h), illuminating the importance 
of carefully interpreting the results of the time series 
analysis.

Networks of interactions
We then reconstructed webs of potential microbe-to-
microbe interactions to illuminate microbial groups or 
interactions positively associated with eels’ health. We 

first applied the Meinshausen-Bühlmann (MB) method, 
which was designed to evaluate patterns of coexistence 
realized by the effects of microbe–microbe interactions 
as well as those of niche sharing between microbes. For 
each aquaculture tank, the reconstructed network of 
microbe–microbe coexistence (Additional file 7: Fig. S7, 
Additional file 8: Fig. S8; Additional file 9: Table S1) was 
compartmentalized into several modules, which differed 
in mean partial correlations with eels’ activity scores 
(Fig.  4). We then found that each of the five networks 

Fig. 4  Microbe-to-microbe coexistence networks. For each aquaculture tank, patterns of coexistence were analyzed based on the sparse inverse 
covariance estimation for ecological associations with the Meinshausen-Bühlmann (MB) model. Only the ASVs that appeared in 30 or more samples 
were targeted in the analysis of each tank. Within the networks, pairs of microbial ASVs that may interact with each other in facilitative ways and/or 
those potentially sharing environmental preferences are linked with each other. Network modules, which represent groups of densely linked ASVs, 
are shown for each network. The color of nodes indicates a partial correlation between ASV abundance and eels’ activity level (controlled variable = 
pH). The inferred network modules are shown by colors for each tank in a box. The ASVs that consistently displayed positive or negative correlation 
with eels’ activity level (Additional file 5: Fig. S5) are highlighted with the defined symbols. See Additional files 7–9 for additional information of the 
nodes (ASVs) and modules within the network. ASVs included in minor sub-networks (number of nodes < 5) are not shown
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included a module constituted by the abovementioned 
Cetobacterium ASV and several other ASVs with con-
sistently positive associations with eels’ activity level 
(Fig. 4; Additional file 10: Fig. S9). The bacteria consist-
ently formed network modules of coexistence with the 
Cetobacterium ASV were Plesiomonas (X_0020), Turici-
bacter (X_0041), Paraclostridium (X_0014), Rombout-
sia (X_0028), Edwardsiella (X_0027), and Clostridium 
(X_0029) (Fig. 4).

To infer the presence/absence of direct interactions 
between these bacteria with a positive relationship with 
eels’ activity level, we conducted an additional network 
analysis based on the sparse and low-rank (SLR) decom-
position method, which allowed us to remove latent 
effects of environmental conditions. In the networks 
reconstructed with the SLR method (Fig.  5), the poten-
tial effects of niche sharing were controlled and hence the 
links between bacterial ASVs were expected to represent 
potential positive interactions. The estimated interaction 
coefficients were highly correlated between the MB and 

SLR methods (Additional file 11: Fig. S10). Meanwhile, in 
the SLR-based network, removing the effects of poten-
tial niche sharing (sharing of environmental preference) 
resulted in the simplification of network structure, in 
which estimated direct interactions between microbes 
were focused (Fig. 5). Despite the considerable difference 
between MB- and SLR-based network topology, the Ceto-
bacterium ASV with the strongest associations with eels’ 
activity level was, again, linked with the Plesiomonas, 
Turicibacter, Paraclostridium, Romboutsia, Edwardsiella, 
and Clostridium ASVs within the SLR network (Fig.  5), 
suggesting positive interactions with these bacteria.

Potential metabolic interactions
To estimate functional interactions between microbes, 
we focused on the genomic compositions of respective 
microbes within the aquaculture microbiomes. After 
retrieving the information of genomic compositions 
from reference databases, we analyzed the inferred 
gene repertoires (KEGG metabolic pathway/process 

Fig. 5  Inferred direct interactions between microbes. Based on the “sparse and low-rank” (SLR) model, direct interactions between microbial ASVs 
were inferred by controlling the effects of shared environmental preference. Only the ASVs that appeared in 30 or more samples were targeted in 
the analysis of each tank. The links between nodes represent potentially positive interactions between ASVs. The color of nodes indicates a partial 
correlation between ASV abundance and eels’ activity level (controlled variable = pH). ASVs included in minor sub-networks (number of nodes < 5) 
are not shown
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profiles) of the microbial ASVs based on multivariate 
analysis. Along the principal component axes, Ceto-
bacterium, which showed consistent correlations with 
eels’ activity (Fig.  3g; Additional file  5: Fig. S5d), was 
located distantly from Edwardsiella, Plesiomonas, and 
Turicibacter (Fig.  6a). In contrast, Romboutsia, Para-
clostridium, and Clostridium displayed similar meta-
bolic gene repertories with Cetobacterium (Fig. 6a).

We next evaluated potential competitive and facili-
tative interactions between microbes based on a 
genome-scale metabolic modeling approach. In the 
analysis, reference genomic information was used 
to infer competition for available resources and 
exchanges of metabolites, yielding metabolic resource 
overlap and metabolic interaction potential scores for 
each pair of microbial ASVs. We then found that the 
Romboutsia, Edwardsiella, and Plesiomonas ASVs had 
relatively low metabolic resource overlap and rela-
tively high metabolic interaction potential with the 
Cetobacterium ASV among the prokaryotes examined 
(Fig. 6b).

Discussion
Through the 128-day monitoring of thousands of microbial 
species/strains, we here found that aquatic microbiomes 
associated with fish could show drastic shifts of commu-
nity structure through time. Such the dynamical nature of 
community processes has been intensively investigated in 
human-associated microbiomes in light of the potential 
influence on host status [19, 20]. In particular, shifts (col-
lapse) of microbial community structure to disease-related 
states (i.e., dysbiosis) have been considered as essential 
mechanisms determining human health [34, 35]. Given the 
growing literature on microbiome dynamics in medical sci-
ence, knowledge of shifts between alternative states of fish-
related microbiomes [14] is expected to shed new light on 
the physiological and ecological processes of vertebrates.

The aquaculture microbiome dynamics were described as 
shifts among Fusobacteriaceae-abundant states, Flavobacte-
riaceae-dominated states, and Chitinophagaceae-dominated 
states, although intermediate states existed through the time 
series (Fig.  1). Among them, Fusobacteriaceae-abundant 
states, which were characterized by high abundance of 

Fig. 6  Metabolic interactions between microbes. a Metagenomic niche space. Microbial ASVs are plotted on a two-dimensional surface of PCoA 
based on their KEGG metabolic pathway/process profiles inferred with a phylogenetic prediction of genomes. Microbial ASVs plotted closely 
within the surface are expected to have similar gene repertoires. The ASVs highlighted in Figs. 4 and 5 are shown with large symbols. b Potential 
competitive and facilitative interactions. Based on the NCBI RefSeq genome information, potential metabolic interactions between each pair of 
ASVs were inferred in terms of metabolic resource overlap (MRO) and metabolic interaction potential (MIP). Histograms of MRO and MIP are shown 
on the horizontal and vertical axes, respectively. ASV pairs including the Cetobacterium ASV, whose abundance was positively associated with eels’ 
activity level in all the five water tanks (Fig. 3g; Additional file 5: Fig. S5), are shown in pink. Relationships between the Cetobacterium ASV and the 
ASVs highlighted in Figs. 4 and 5 are indicated as well
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Cetobacterium, were designated as microbiome composi-
tions positively associated with eels’ activity level (Fig.  2; 
Additional file 4: Fig. S4). In fact, among the 9,908 micro-
bial ASVs examined, the ASV representing Cetobacterium 
somerae showed the strongest associations with eel’s activ-
ity level through the time series even after controlling the 
effects of environmental preference (Fig. 3; Additional file 5: 
Fig. S5). This Cetobacterium species has been reported 
from a broad taxonomic range of freshwater fish [36–39], 
especially from the intestines of species that do not require 
dietary vitamin B12 [25]. Although vitamin B12 (cobalamin) 
plays essential roles in animal physiology (e.g., normal func-
tioning of nervous systems and the maturation of red blood 
cells), they can be synthesized only by specific clades of bac-
teria and archaea [40, 41]. Genomic studies have shown that 
C. somerae has a series of genes for anaerobic vitamin B12 
biosynthesis [42]. Indeed, the bacterium produces the high-
est concentrations of vitamin B12 compared to other cultur-
able bacteria within freshwater fish-associated microbiomes 
[25, 43]. Given the prevalence of Cetobacterium in freshwa-
ter fish species [36–38], our results suggest that maintaining 
microbiomes at Cetobacterium-abundant states is the 
key to build general platforms for stably keeping fresh-
water aquaculture/aquarium systems.

Further analyses based on network theory and meta-
bolic modeling indicated the possibility that the Cetobac-
terium species form facilitative interactions with some 
other microbial species/ASVs (Figs.  4, 5 and 6). Among 
the bacteria for which interactions with Cetobacterium 
were inferred from multiple analyses, Edwardsiella 
tarda has been known to include notorious pathogens 
of broad taxonomic groups of fish including eels [29, 30, 
44]. However, we found that the E. tarda population of 
the investigated aquaculture system was dominated by 
non-pathogenic strains [30, 31] of the species (Additional 
file  6: Fig. S6). Thus, the presence of microbial species/
strains belonging to well-known taxa of pathogens do not 
necessarily result in negative impacts on fish. Rather, our 
analyses suggested that “seemingly pathogenic” microbes 
could be involved in core microbiome components (net-
work modules) constituted by microbes contributing 
to the maintenance of fish health. Further studies are 
awaited to explore potential mechanisms such as the 
competitive exclusion of pathogenic strains by non-path-
ogenic strains [45, 46] or indirect negative impacts on 
pathogenic strains through the activation of fish immune 
systems [6, 47] by non-pathogenic strains. In contrast 
to E. tarda, Romboutsia, and Plesiomonas, which were 
inferred as microbes with facilitative interactions with  
C. somerae, too (Figs. 4, 5 and 6), have been poorly inves-
tigated in terms of their functions. Their potential roles 
in the competitive exclusion of pathogens or activation of 
host immune systems deserve further investigations.

While the time series dataset allowed us to highlight 
core species and interactions within microbial commu-
nities, more sophisticated statistical platforms beyond 
simple correlational approaches are necessary for con-
firming causative relationships between microbiome 
dynamics and vertebrate health/performance. In this 
respect, methods based on information theory or nonlin-
ear mechanics, such as transfer entropy [48] and empiri-
cal dynamic modeling [49, 50], are expected to help us 
infer causative interactions among microbial population 
dynamics, environmental factors, and vertebrate perfor-
mance. Albeit promising, these methods require sub-
stantial computational resources when we try to analyze 
microbiomes consisting of thousands of ASVs. Further 
methodological advances will deepen our understanding 
of the mechanisms by which microbiome dynamics and 
vertebrate performance are linked with each other.

Conclusions
We showed that the structure of fish-associated microbi-
omes could drastically change through time as has been 
reported in studies on dysbiosis of human gut microbi-
omes. As analyses of microbiome dynamics are extended 
from medical science to researches targeting other ver-
tebrates, we will be more and more aware of overlooked 
roles of microbes in both terrestrial and aquatic ecosys-
tems. Feedback between intestine and environmental 
microbiomes, for example, deserves future intensive 
research in terms of potential great impacts on animal 
population/community dynamics. In particular, given 
that aquatic vertebrates are continuously exposed to 
the excrements of other individuals or species, their gut 
microbiome dynamics (and related health conditions) 
may be more likely to be synchronized at the population 
or community levels than those of terrestrial vertebrates. 
Therefore, simultaneous monitoring of the intestine and 
background environmental microbiomes will provide 
platforms for uncovering such feedback and synchroni-
zation processes. Further insights into fish-associated 
microbiome dynamics will reorganize our basic under-
standing of aquatic ecosystem dynamics, advancing tech-
nologies for sustainable food production through stable 
aquaculture systems [17, 51–53].

Methods
Sampling
Monitoring of microbiome dynamics was conducted by 
targeting the five water tanks of the indoor eel-aqua-
culture system of A-Zero Inc. (Nishiawakura, Okay-
ama Prefecture, Japan). In each water tank (diameter 
= 5 m; height = 1 m; volume = 20 m3), 1400–4300 
eel individuals (average weight = 80–130 g) had been 
kept. In the eel aquaculture system, the introduction 
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of purchased young fish and shipment of a fraction of 
grown fish occur irregularly. The benefit of targeting 
such a commercial aquaculture system rather than fully 
controlled experimental systems is that we can ana-
lyze complex temporal dynamics of real aquaculture 
systems and thereby explore diverse microbial species 
potentially having great impacts on fish health. The eels 
were fed mainly with fishmeal, cereals, pollack oil, and 
krill. The amount of the feed had been manually opti-
mized for each tank everyday by an expert keeper. The 
rearing water had been kept stirred with the rigorous 
swimming of eels and water flow from the filtration sys-
tem, and the water temperature in the tanks was kept 
at around 30 °C. About 10 % of tank water was replaced 
with warmed fresh well water every day. The drain-
age from the five tanks was mixed and processed in a 
series of filtration equipment. The filtered drainage was 
returned to each tank after being processed in another 
filtration equipment adjacent to each tank. The eels 
were fed with a mixture of commercial artificial diets. 
The pH, dissolved oxygen (DO), and eels’ activity levels 
were recorded for each tank every day. The eels’ activity 
level was evaluated based on the sum of the scores of 
the following eight criteria: initial responses to feeders, 
the proportion of eels responding to feeders, sharpness 
of movement, the proportion of eels eating the artificial 
diet, the level of splashes, the amount of scattered diet, 
the time to consume the diet, and the proportion of 
foraging eels at the end of feeding. For each of the cri-
teria, scoring was done on a five-point scale (maximum 
point = 5) by an expert of eel aquaculture maintenance: 
thus, 40 (5 × 8 criteria) is the maximum point of the 
eels’ activity score. Albeit subjective, the criteria evalu-
ated continuously by a professional provide inferences 
of eel’s health conditions throughout the time series. 
The water in the tanks was continuously mixed by the 
movement of eels.

From each aquaculture tank (Tanks 1–5), ca. 1.5 mL 
of water was sampled in the morning every day dur-
ing the 128 days from March 25 to July 30, 2020, except 
for 9 days (days 102, 103, 120, 121, 122, 123, 124, 125, 
and 126), i.e., the samples of 119 days were available. 
In Tank 4, the samples were unavailable on addi-
tional 3 days (days 67–69) due to the cleaning and the 
entire replacement of water. Note that such mainte-
nance events do not necessarily result in the complete 
replacement of rearing water microbiomes because 
the five tanks in the aquaculture system share filtra-
tion equipment as mentioned above. Consequently, 
the number of collected samples was 592 (119 days × 5 
tanks–3 days in Tank 4). Water sample was collected in 
a 2.0-mL microtube, and they were immediately stored 
at −20 °C in a freezer until DNA extraction.

Quantitative 16S rRNA sequencing
To extract DNA from each sample, 250 μL of the col-
lected water was mixed with 400 μL lysis buffer (0.0025 
% SDS, 20 mM Tris (pH 8.0), 2.5 mM EDTA, and 0.4 M 
NaCl) and 250 μL 0.5 mm zirconium beads in a 2.0 mL 
microtube. The microtubes were then shaken at 25 Hz 
for 5 min using TissueLyser II (Qiagen, Venlo). After 
centrifugation, the aliquot was mixed with proteinase K 
solution (×1/100 of the total volume) within a sterilized 
laminar-flow cabinet, being incubated at 40 °C for 60 min 
followed by 95 °C for 5 min.

We then performed PCR by applying a quantitative 
amplicon sequencing method [24, 54]. Although most 
existing microbiome studies were designed to infer a 
“relative” abundance of microbial amplicon sequence 
variants (ASVs) or operational taxonomic units (OTUs), 
information of “absolute” abundance provides addi-
tional insights into microbiome dynamics, i.e., insights 
into increase/decrease of the population size of each 
prokaryote ASV/OTU within a microbiome throughout 
a time series [24]. The quantitative amplicon sequencing 
approach is based on the addition of artificial (standard) 
DNA sequences with defined concentrations into PCR 
master solutions. Therefore, even if compositions or con-
centrations of PCR inhibitor molecules in DNA extracts 
vary among time-series samples, potential bias caused by 
such inhibitors can be corrected based on the use of the 
internal standards (i.e., standard DNAs within PCR mas-
ter solutions).

The V4 hypervariable region of the prokaryote 16S 
rRNA gene was PCR-amplified with the forward primer 
515f [55] fused with 3–6-mer Ns for improved Illumina 
sequencing quality and the forward Illumina sequenc-
ing primer (5′-TCG TCG GCA GCG TCA GAT GTG 
TAT AAG AGA CAG- [3–6-mer Ns] – [515f ]-3′) and 
the reverse primer 806rB [56] fused with 3–6-mer Ns 
for improved Illumina sequencing quality [57] and the 
reverse sequencing primer (5′- GTC TCG TGG GCT 
CGG AGA TGT GTA TAA GAG ACA G [3–6-mer 
Ns] - [806rB] -3′) (0.4 μM each). To apply the quantita-
tive amplicon sequencing, five standard DNA sequence 
variants with different concentrations of artificial 16S 
rRNA sequences (0.1, 0.05, 0.02, 0.01, and 0.005 nM) 
were added to the PCR master mix solution [24], which 
was based on the buffer and polymerase system of KOD 
One (Toyobo). To prevent contamination of external 
DNA, the PCR master mix solution was automatically 
dispensed with Mantis liquid dispenser (Formulatrix) in 
a sterilized laminar-flow cabinet. The temperature profile 
of the PCR was set as to 35 cycles at 98 °C for 10 s, 55 °C 
for 30 s, and 68 °C for 30 s: the ramp rate through the 
thermal cycles was set to 1 °C/s to prevent the generation 
of chimeric sequences [58]. Illumina sequencing adaptors 
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were then added to respective samples in the supplemen-
tal PCR using the forward fusion primers consisting of 
the P5 Illumina adaptor, 8-mer indexes for sample iden-
tification [59], and a partial sequence of the sequencing 
primer (5′-AAT GAT ACG GCG ACC ACC GAG ATC 
TAC AC - [8-mer index] - TCG TCG GCA GCG TC-3′) 
and the reverse fusion primers consisting of the P7 adap-
tor, 8-mer indexes, and a partial sequence of the sequenc-
ing primer (5′-CAA GCA GAA GAC GGC ATA CGA 
GAT - [8-mer index] - GTC TCG TGG GCT CGG-3′). 
KOD One was used with a temperature profile: followed 
by 8 cycles at 98 °C for 10 s, 55 °C for 5 s, and 68 °C for 
30 s (ramp rate = 1°C/s). PCR-negative control samples 
were introduced into the above reactions to check the 
effectiveness of the sterilized experimental environment.

The PCR amplicons of the samples were then pooled 
after a purification/equalization process with the AMPu-
reXP Kit (Beckman Coulter). Primer dimers, which were 
shorter than 200 bp, were removed from the pooled 
library by supplemental purification with AMpureXP: 
the ratio of AMPureXP reagent to the pooled library 
was set to 0.6 (v/v) in this process. Because the qual-
ity of forward sequences is generally higher than that 
of reverse sequences in Illumina sequencing, we opti-
mized the MiSeq run setting in order to use only forward 
sequences. Specifically, the run length was set at 271 for-
ward (R1) and 31 reverse (R4) cycles to enhance forward 
sequencing data: the reverse sequences were used only 
for screening 16S rRNA sequences in the following bio-
informatic pipeline.

Bioinformatics
In total, 16,298,203 sequencing reads were obtained in 
the Illumina sequencing. The raw sequencing data were 
converted into FASTQ files using the program bcl2fastq 
1.8.4 distributed by Illumina. The output FASTQ files 
were demultiplexed using Claident v0.2. 2018.05.29 [60]. 
The removal of low-quality sequences and ASV infer-
ences was done using DADA2 [61] v.1.22.0 of R 4.1.2 
[62]. Singletons and possibly chimeric sequences were 
excluded from the dataset within the DADA2 pipeline. 
The taxonomy of the output ASVs was inferred based on 
the naive Bayesian classifier method [63] using the SILVA 
v.138 database [64]. The number of ASVs recached pla-
teaus with an increasing number of sequencing reads in 
each sample (Additional file  11: Fig. S10). On average, 
15,308 reads (SD = 8990) were obtained per sample. 
Based on the calibration with the concentration gradi-
ents of the five standard DNAs [24, 50], concentrations 
of respective ASVs were obtained for each sample (16S 
rRNA gene copy numbers per unit volume of tank water 
samples; copies/μL). As the number of 16S rRNA gene 
copies per genome generally varies among prokaryotic 

taxa [65], 16S rRNA gene copy concentration is not 
directly the optimal proxy of cell or biomass concentra-
tion. Meanwhile, in this study, estimates of 16S rRNA 
gene copy concentrations were used to observe increase/
decrease of abundance (i.e., population dynamics) within 
the time series of respective microbial ASVs. Thus, varia-
tion in the number 16S rRNA gene copy numbers among 
microbial taxa had no qualitative effects on the subse-
quent population- and community-ecological analyses. 
The samples in which Pearson’s coefficients of correla-
tions between sequencing read numbers and standard 
DNA copy numbers (i.e., correlation coefficients rep-
resenting calibration curves) were less than 0.8 were 
removed as those with unreliable estimates. Samples 
with less than 1000 reads were discarded as well. In total, 
microbiome data were successfully obtained from 577 
out of 592 samples. For each aquaculture tank, we then 
obtained a sample × ASV matrix, in which a cell entry 
depicted the concentration of 16S rRNA gene copies of 
an ASV in a sample.

Community structure
For each aquaculture tank, Bray-Curtis β-diversity was 
calculated for all pairs of time points based on the matrix 
describing the relative abundance of prokaryote families 
using the vegan 2.6.2 package [66] of R. Based on the 
β-diversity estimates, the community structure of all the 
samples across the five water tanks were visualized on the 
surface of non-metric multidimensional scaling (NMDS). 
The vectors representing the environmental variables 
(pH and DO) and eels’ activity level were calculated 
with the “envfit” function of R, and they were shown on 
the NMDS surface. The analysis was conducted as well 
based on the matrix describing the relative abundance of 
genera.

Within the dataset, we explored the presence of bacte-
rial ASVs belonging to potentially fish-pathogenic taxa. 
The ASVs belonging to the genera including notorious 
fish pathogens were screened in light of review papers 
of fish pathogenic prokaryotes [67–70]. The total abso-
lute abundance (16S rRNA gene copy concentrations) of 
bacteria belonging to the genera Aeromonas, Edwards-
iella, Flavobacterium, Mycobacterium, Pseudomonas, 
and Renibacterium was then displayed through the time 
series to roughly inspect the microbiome dynamics 
(Additional file 13: Fig. S12).

Environmental preference of ASVs
To evaluate the environmental preference of each micro-
bial ASV, Spearman’s correlation between absolute abun-
dance (in the metric of DNA copy numbers of the 16S 
rRNA gene) and pH was calculated. For each tank, the 
ASVs that appeared in 30 or more samples were subjected 
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to the analysis. For each ASV in each water tank, the sta-
tistical significance of the obtained correlation coefficient 
was examined with a randomization analysis obtained 
based on a twin-surrogate method for time-series data 
[28] (100,000 permutations). Correlation coefficients 
less than −0.3 and those larger than 0.3 tended to show 
statistically significant negative and positive correlations 
with pH, respectively, after Benjamini-Hochberg adjust-
ment of P values in multiple testing [i.e., false discovery 
rate (FDR)]. Likewise, Pearson’s correlation coefficients 
between respective ASVs’ absolute abundance and DO 
concentrations were calculated.

ASV abundance and eel’s activity
We explored microbial ASVs that potentially have pro-
found impacts on eels’ health. For each water tank, 
Spearman’s correlation between absolute abundance 
and eels’ activity score was calculated for the ASVs that 
appeared in 30 or more samples. However, because ASV 
abundance could be affected by pH or DO concentration, 
the use of such simple correlation coefficients might be 
misleading. Therefore, we controlled potential effects by 
environmental factors/conditions based on a partial cor-
relation approach as follows:

where rxy, rxz, and ryz were a correlation between ASV 
abundance and eels’ activity level, that between ASV 
abundance and an environmental factor (pH or dissolved 
oxygen concentration), and that between eels’ activity 
level and an environmental factor, respectively. For each 
ASV, a randomization analysis was performed with the 
twin-surrogate method (100,000 permutations).

Time‑lag analysis
We extended the analysis of the partial correlation 
between microbial abundance and eels’ activity level by 
introducing time lags between the two variables. Specifi-
cally, a partial correlation between an ASV’s abundance 
on Day x and eels’ activity score on Day x + l was calcu-
lated. The time lag l ranged from −5 to 5 in the analysis (l 
= 0 means no delay introduced to eels’ activity level).

Pathogenic and non‑pathogenic Edwardsiella
We performed an additional analysis to infer the pro-
portion of opportunistically pathogenic and potentially 
non-pathogenic clades [30, 31] of Edwardsiella bacteria 
in the aquaculture system. In a previous phylogenetic 
study based on an internal fragment of iron-cofactored 
superoxide dismutase gene (sodB), Edwardsiella species 
and strains have been classified into two major clades, 

rxy•z =
rxy − rxzryz

1− r2xz 1− r2yz

,

which differ in the presence of pathogenicity to fish [30] 
(hereafter, “pathogenic” and “non-pathogenic” clades). 
Therefore, we characterized Edwardsiella bacteria in 
the aquaculture tanks based on the illumina sequencing 
of the Edwardsiella sodB gene sequences. The fragment 
of the sodB region was PCR-amplified with the forward 
primer E1F [30] fused with 3–6-mer Ns for improved 
Illumina sequencing quality and the forward Illumina 
sequencing primer (5′-TCG TCG GCA GCG TCA GAT 
GTG TAT AAG AGA CAG- [3–6-mer Ns] – [E1F]-3′) 
and the reverse primer 497R [30] fused with 3–6-mer 
Ns for improved Illumina sequencing quality [57] and 
the reverse sequencing primer (5′-GTC TCG TGG GCT 
CGG AGA TGT GTA TAA GAG ACA G [3–6-mer Ns] 
- [497R]-3′) (0.2 μM each). The buffer and polymerase 
system of KOD One (Toyobo) was used with the tem-
perature profile of 35 cycles at 98 °C for 10 s, 55 °C for 
5 s, and 68 °C for 30 s (ramp rate = 1°C/s). The sequenc-
ing adaptors and sample identifier indexed were added 
to the amplicons, and the purification of the library and 
sequencing was performed as detailed above.

The output sequencing data were demultiplexed and 
processed with DADA2. The ASVs that were not aligned 
to the sodB sequences of Edwardsiella [30] were dis-
carded. The remaining ASVs and previously reported 
Edwardsiella sequences [30] were aligned using mafft 
v.7.475 [71]. A neighbor-joining tree was reconstructed 
based on the maximum composite likelihood method 
with a bootstrap test using MEGA v.11 [72] (1000 permu-
tations). The ASVs belonging to the pathogenic clade and 
those belonging to the non-pathogenic clade of Edwards-
iella were distinguished within the phylogeny.

Microbe–microbe interactions
Potential positive/negative interactions between micro-
bial ASVs were inferred based on the framework of 
sparse inverse covariance estimation for ecological asso-
ciations (SPIEC-EASI [73]). For each water tank, patterns 
in the coexistence (co-occurrence) were examined with 
the Meinshausen-Bühlmann (MB) method as imple-
mented in the SpiecEasi package [73] of R. The network 
inference based on coexistence patterns allowed us to 
detect pairs of microbial ASVs that potentially interact 
with each other in facilitative ways and/or those poten-
tially sharing environmental preferences. Because the 
estimation of coexistence patterns was not feasible for 
rare nodes, the microbial ASVs that appeared in less than 
30 samples were excluded from the input matrices of the 
network analysis. Network modules, within which closely 
associated ASVs were interlinked with each other, were 
identified with the algorithm based on edge between-
ness using the igraph package [74] of R. For each network 
module in each water tank, mean partial correlation with 



Page 13 of 15Yajima et al. Microbiome           (2023) 11:53 	

eels’ activity level was calculated across ASVs constitut-
ing the module.

In addition to the networks representing whole coex-
istence patterns, we reconstructed networks depicting 
direct interactions between microbial ASVs. To separate 
the effects of direct microbe–microbe interactions from 
those of shared environmental preferences between 
microbes (i.e., shared niches), 10 latent components 
(latent variables) were included in the analysis based on 
the “sparse and low-rank” (SLR) model [75].

KEGG pathway/process profiles
To infer metabolic interactions between microbial ASVs, 
we performed a series of analyses based on reference 
genome information. We performed phylogenetic predic-
tion of gene repertoires using PICRUSt2 v2.3.0-b [76] in 
order to gain the overview of the niche space defined with 
metagenomic information [77, 78]. ASVs that appeared 
in 30 or more samples across the five tanks were sub-
jected to the analysis. Based on the inferred KEGG meta-
bolic pathway/process profiles [79], microbial ASVs were 
plotted on a two-dimensional surface of a principal coor-
dinate analysis (PCoA) based on Bray-Curtis β-diversity 
of KEGG metabolic pathway/process profiles.

Metabolic modeling
To infer potential metabolic interactions between microbes, 
we performed the species metabolic interaction analysis 
[80]. For the ASVs that appeared in 30 or more samples (day) 
in at least one aquaculture tank, we explored NCBI RefSeq 
genome sequences (https://​www.​ncbi.​nlm.​nih.​gov/​refseq/) 
whose 16S rRNA sequences matched those of query ASVs 
with ≥ 99 % identity. In the database exploration, reference 
genome information was available for 181 out of 417 ASVs 
examined. The reference genome information was subjected 
to genome-scale metabolic modeling as implemented in 
CarveMe [81] 1.5.0. Metabolic resource overlap (MRO) 
and metabolic interaction potential (MIP) were then esti-
mated for each pair of microbial ASVs as implemented in 
SMETANA [80] 1.0.0.
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