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Abstract 

Background:  Metagenomic data can be used to profile high-importance genes within microbiomes. However, 
current metagenomic workflows produce data that suffer from low sensitivity and an inability to accurately recon-
struct partial or full genomes, particularly those in low abundance. These limitations preclude colocalization analysis, 
i.e., characterizing the genomic context of genes and functions within a metagenomic sample. Genomic context is 
especially crucial for functions associated with horizontal gene transfer (HGT) via mobile genetic elements (MGEs), for 
example antimicrobial resistance (AMR). To overcome this current limitation of metagenomics, we present a method 
for comprehensive and accurate reconstruction of antimicrobial resistance genes (ARGs) and MGEs from metagen-
omic DNA, termed target-enriched long-read sequencing (TELSeq).

Results:  Using technical replicates of diverse sample types, we compared TELSeq performance to that of non-
enriched PacBio and short-read Illumina sequencing. TELSeq achieved much higher ARG recovery (>1,000-fold) and 
sensitivity than the other methods across diverse metagenomes, revealing an extensive resistome profile compris-
ing many low-abundance ARGs, including some with public health importance. Using the long reads generated by 
TELSeq, we identified numerous MGEs and cargo genes flanking the low-abundance ARGs, indicating that these ARGs 
could be transferred across bacterial taxa via HGT.

Conclusions:  TELSeq can provide a nuanced view of the genomic context of microbial resistomes and thus has 
wide-ranging applications in public, animal, and human health, as well as environmental surveillance and monitoring 
of AMR. Thus, this technique represents a fundamental advancement for microbiome research and application.
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Introduction
Metagenomic sequencing offers comprehensive access 
to the genetic material of microbial ecosystems, pro-
viding critical insight into the functioning of diverse 
microbe-dependent environments such as the human gut 
[1], plant rhizospheres [2], and the ocean [3]. However, 
metagenomic sequencing suffers from relatively low sen-
sitivity, especially for genomes and genes that have low 
abundance within a microbial community [4–6]. This low 
sensitivity manifests in several ways, including inability 
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to reconstruct low-abundance genomes [7] and failure to 
detect low-abundance genes and genomes that are known 
to be present within a sample [8]. This latter limitation 
is especially relevant for genes such as antibiotic resist-
ance genes (ARGs), mobile genetic elements (MGEs), 
and pathogen cargo genes which often comprise <1% of 
metagenomic DNA [4–6]. Furthermore, ARGs with the 
highest public health and clinical importance tend to 
comprise the low-abundance ARGs within resistomes 
[8, 9], which limits the utility of metagenomics for health 
applications related to antimicrobial resistance.

Several techniques can be used to correct for the low 
sensitivity of the metagenomic approach. Many of them 
have focused on detecting viruses, which tend to com-
prise a low proportion of metagenomic data [10]. In 
this context, tiling multiplex PCR has been successful in 
enriching for specific viruses in samples with low titers 
[11] but this method is only capable of enriching a small 
number of genomes in parallel. Probe-based capture 
techniques can overcome this limitation by supporting 
non-PCR-based parallel enrichment of hundreds of tar-
gets, and this approach has been used successfully for 
highly sensitive virome analysis [12, 13] as well as for 
highly sensitive detection of ARGs from diverse sam-
ples [8, 9]. More specifically, probe-based enrichment 
increased the proportion of sequenced reads originat-
ing from ARGs by more than three orders of magnitude, 
which doubled the detectable resistome richness and 
revealed numerous critical yet low-abundance ARGs 
that had gone undetected in non-enriched metagenomic 
sequence data [8, 9].

However, all previous capture enrichment studies used 
short-read sequencing platforms such as the Illumina 
HiSeq or NovaSeq [14–16]. Short-read metagenomic 
data are known to produce highly fragmented assemblies 
with extreme coverage variability [17–19]. This limita-
tion is especially relevant for ARGs, which often contain 
phenotypically meaningful variants, and which are com-
monly located near MGEs. Colocalization with MGEs 
facilitates ARG lability within and across genomes, ena-
bling emergence and rapid dissemination of pathogens 
with highly resistant ARG variants that threaten the effi-
cacy of last-resort antibiotics [20–22]. The limitations of 
short-read data to identify ARG variants and their imme-
diate genomic context greatly diminish the applied rel-
evance of metagenomics [23, 24].

Several methods exist to provide improved variant 
detection and genomic contextualization of metagen-
omic data but they all have critical shortcomings. For 
example, guided ligation-based sequencing improves 
variant profiling [25], but has not been used to enrich 
microbial DNA or resolve numerous flanking targets 
within microbiomes. Proximity ligation (Hi-C) [26] 

and microfluidic sequencing [27] can be used to recon-
struct the genomic context of targets such as ARGs, but 
these methods do not include target-specific enrich-
ment steps, and therefore can only reconstruct the 
more abundant components of a metagenomic sam-
ple. Linked-read sequencing has been used to improve 
short-read metagenomic assemblies but the assem-
bly quality (i.e., genome completeness and presence 
of contamination in the assembly) does not rival that 
of long-read sequences [19]. Functional metagenom-
ics has been used to discover novel ARGs and charac-
terize their immediate genomic context [28], but this 
method relies on the creation of massive culture-based 
functional libraries, which is very laborious and only 
semi-quantitative.

While long-read sequencing could fill the current void 
in producing highly informative raw sequence data, the 
relatively low throughput of long-read sequencers makes 
for even lower sensitivity to detect rare metagenomic tar-
gets [29]. Theoretically, Nanopore-based real-time adap-
tive sequencing could be used to enrich on-target DNA 
[30, 31]. This method rejects off-target DNA, thus only 
allowing on-target DNA to be sequenced. However, the 
current approach does not extend well to ARGs within 
metagenomic data for two main reasons: first, the off-
target DNA is difficult to characterize (i.e., all non-ARG 
bacterial, fungal, viral, protozoal and host(s) DNA), and 
second, the genomic plasticity of ARGs makes it difficult 
to predict whether the sequence in the pore will even-
tually contain an ARG [30, 32]. Thus, despite intensive 
activity in this area, a critical need remains for highly 
sensitive sequencing of metagenomic targets that can 
support robust characterization of variants and their 
immediate flanking regions.

In this work, we demonstrate that cRNA biotinylated 
probes can be used to capture relatively long fragments of 
DNA, generating enriched long-read sequence data with 
high information value. We term this approach TELSeq 
(target-enriched long-read sequencing) and evaluate its 
performance using replicates from diverse and challeng-
ing sample matrices, as well as a control mock commu-
nity (Fig.  1). We illustrate that TELSeq achieves highly 
sensitive detection of very low-abundance ARGs from 
complex matrices, while also providing robust colocaliza-
tion of ARGs with nearby MGEs. Using this high-value 
information, we observe numerous novel and previously 
confirmed ARG-MGE colocalizations, indicating the util-
ity of TELSeq to inform risk assessment using metagen-
omic data and to support further understanding of the 
extent and diversity of ARG-MGE associations within 
and across different bacteria. In consequence, we show 
that TELSeq supports novel discovery and improved 
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understanding of microbiome-wide processes across a 
wide range of biological applications.

Results
Combining target enrichment with long‑read sequencing 
improved ARG detection in samples with low ARG 
abundance
We benchmarked TELSeq performance using techni-
cal replicates of three sample types presumed to have 

a relatively low abundance of target (i.e., ARG) DNA: 
human feces donated for fecal microbiome transplant 
material (“FMT”); fecal material from a cow that did not 
receive antibiotics (“−Abx”); and soil from an unused 
prairie easement surrounded by farmland (“SOIL”). Three 
technical replicates of each low-ARG sample type were 
each subjected to three sequencing approaches: ARG 
target-enriched long-read CCS sequencing using PacBio 
(TELSeq), non-enriched long-read CCS sequencing on 

Fig. 1  TELSeq workflow overview. Utilizing replicates of diverse sample types, gDNA was extracted (1), and sheared, fragmented, size selected, 
A-tailed and adapter ligated (2). Then, custom-designed biotinylated 120-mer probes (3) were used to capture ARGs with streptavidin-coated 
magnetic beads (4). Captured fragments were amplified and purified (5) and submitted for PacBio CCS (6). Resulting TELSeq reads were 
deduplicated to correct for amplification bias (7). Finally, reads were aligned to numerous reference databases to identify and annotate ARGs, MGEs, 
and cargo genes (8)
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the PacBio (“PB”), and Illumina short-read sequencing on 
the NovaSeq 6000 (“SR”). Resulting sequence data were 
analyzed for ARG abundance and diversity to compare 
resistome profiles within and across replicates, sample 
types, and sequencing platforms.

Use of TELSeq increased the proportion of reads con-
taining targeted ARGs, i.e., “on-target” reads, from ~1% 
in the PB replicates to 14–49% in the TELSeq replicates 
(Supp Table  1). The increase in on-target proportion 
differed by sample type, with SOIL technical replicates 
exhibiting the largest increase from 0.2% in PB data to 
>25% in TELSeq data. Increases in the −Abx and FMT 
technical replicates were more modest, from ~1% in PB 
data to >14% in TELSeq data; however, even with this 
modest increase in on-target rate, TELSeq still identi-
fied many ARGs that were not detected via PB and SR 
sequencing (i.e., 60 and 37 unique ARGs in the −Abx and 
FMT replicates, respectively, Fig. 2). There was variability 
in TELSeq on-target proportion between technical repli-
cates within the same sample, ranging from 14 to 19% for 
FMT, 17 to 33% for −Abx, and 26 to 49% for SOIL (Supp 
Table  1). These on-target proportions were significantly 
correlated with overall sequencing depth, with more 
deeply sequenced technical replicates attaining higher 
on-target proportions (Type III ANOVA P < 0.005).

In addition to higher on-target sequencing efficiency, 
the use of TELSeq enabled more complete detection of 
the full ARG profile (i.e., the resistome richness) within 
each sample (Fig.  2), despite significantly lower read 
depth than the SR datasets and comparable read depth to 
the PB datasets, based on ANOVA results. At the ARG 
group level, the detected richness in TELSeq data was at 
least double that in PB and SR data, and in some cases 
nearly 10 times greater (Fig. 2, Supp Table 2). Even at the 
class level, which has low resolution based on ARG clas-
sification hierarchy, TELSeq data consistently contained 
higher richness than PB and SR data, across all samples 
and replicates (Supp Table 2). For the FMT and SOIL rep-
licates, the PB platform yielded the lowest resistome rich-
ness, while the SR platform yielded the lowest richness 
for the −Abx replicates. As with on-target rate, there was 
variability in the number of unique ARG classes detected 
between technical replicates within each sample type; 
replicates with a higher number of reads had significantly 

higher class-level ARG richness, although this associa-
tion was not statistically significant at the predefined cut-
off (Type III ANOVA P = 0.055).

The expanded resistome richness uncovered by TEL-
Seq occurred largely due to detection of additional 
ARG groups not detected using PB and SR platforms. 
For FMT and −Abx replicates, use of TELSeq resulted 
in successful recovery of nearly all of the ARG groups 
detected using PB and SR platforms, plus an addi-
tional 37 and 60, respectively, not detected with the 
other platforms (Fig.  2). For SOIL, TELSeq identified 
176 ARG groups not detected by PB and SR, although 
24 ARG groups contained in the SR datasets were not 
detected in TELSeq data.

TELSeq enabled recovery of very rare ARGs
The additional ARGs detected by TELSeq comprised 
the low-abundance ARGs within each sample (Fig.  2). 
The inclusion of these low-abundance ARGs signifi-
cantly changed the resistome profile (ANOSIM P< 
0.001; PERMANOVA R2 = 0.08, P= 0.01), demonstrat-
ing that the ARG profile detected by TELSeq differed 
significantly from that of PB and SR (Supp Figure  1). 
The variability by sequencing platform, however, was 
much smaller than the variability between sample 
type (PERMANOVA R2 = 0.08 and 0.55, P= 0.001 and 
0.01, respectively), again indicating that the additional 
ARGs detected by TELSeq comprised the “tail” of the 
resistome distribution for each sample (Fig. 2). In con-
trast, high-abundance ARGs were consistently detected 
by all three sequencing platforms (Fig.  2). These high-
abundance ARGs differed between the samples. FMT 
and −Abx replicates were dominated by ARGs that 
confer resistance to tetracycline and macrolide-lin-
cosamide-streptogramin B (MLS) antibiotics, while the 
SOIL replicates were dominated by a more diverse ARG 
repertoire, including ARGs that confer resistance to 
antibiotics less commonly used in animals and humans, 
including cationic antimicrobial peptides, oxazolidi-
nones, and rifampin (Figs. 2 and 3). TELSeq’s detection 
of the low-abundance portion of the resistome also 
created a detectable shift in the observed ARG distri-
bution, with TELSeq libraries exhibiting a much wider 

Fig. 2  ARG abundance and richness. Stacked bar plots depict the relative abundance (y-axis) of unique ARG groups across technical replicates 
of each sample type (x-axis), with each ARG group count normalized for sequencing depth and expressed on a 106 read basis generated by 
each sequencing platform (TELSeq= light blue, PacBio= purple; Illumina= yellow; GridION= gray; PromethION= magenta). Final relative 
abundances are scaled using a log10 transformation. Rug colors on the x-axis of each plot indicate the MEGARes class to which each ARG belongs. 
The “Other” classification refers to drug classes present in <15 % of ARG hits by alignment, including aminocoumarins, bacitracin, biocides, 
elfamycin, fosfomycin, glycopeptides, nucleosides, oxazolidinone, pleuromutilin, quaternary ammonium compounds, trimethoprim / sulfas, and 
Mycobacterium tuberculosis drugs. Inset Venn diagrams indicate ARG group-level richness and composition, compared between sequencing 
platforms

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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Fig. 3  Resistome distribution and composition. a Violin plots showing resistome distribution as the log10 relative abundance of ARG groups (y-axis), 
normalized for gene length and sequencing depth, by sample type and sequencing platform. b Binary heatmap of resistome composition at the 
ARG mechanism level, for metals and biocides (left) and antibiotic drugs (right), by sample type and sequencing platform
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distribution of ARG relative abundances compared to 
PB and SR libraries (Fig. 3).

TELSeq revealed ARG context, including colocalization 
with MGEs
In addition to evaluating TELSeq’s ability to capture and 
enrich ARG targets, we also evaluated whether biologi-
cally relevant information could be obtained from the 
ARG-flanking regions of the generated long-read data. To 
do this, we analyzed both TELSeq and PB data by anno-
tating the flanking regions of ARG-containing reads for 
the presence of MGEs and cargo genes. In the SOIL and 
FMT replicates, TELSeq data contained numerous such 
colocalizations, whereas the PB data contained only one 
colocalization in the FMT sample, and none in the SOIL 
(Table 1 and Fig. 4). No colocalizations were identified in 
either the TELSeq or the PB replicates from the −Abx 
sample.

In the TELSeq FMT replicates, ARGs conferring 
resistance to aminoglycoside, betalactam, macrolide-
lincosamide-streptogramin B (MLS), and tetracycline 
antibiotics were colocalized with plasmids, while the 
TELSeq SOIL data contained a betalactam ARG colocal-
ized with a poorly characterized hypothetical plasmid 
protein associated with blaOXA (Table 1). These antibiot-
ics have received the World Health Organization’s high-
est rating for their importance to human medicine (i.e., 
“critically important” classification), with the exception of 
tetracycline which is classified in the second-highest tier, 
i.e., “highly important” (Table 1) [33]. Most of the ARG-
associated MGEs within the TELSeq data have been 
documented, although many are poorly characterized as 
evidenced by a very small number of relevant references 
(Table 1).

The three sample types used to analyze the perfor-
mance of TELSeq (i.e., SOIL, FMT, and −Abx) were all 
purposively selected based on a presumed very low ARG 
abundance, in order to evaluate the ability of TELSeq to 
capture rare targets. Therefore, to investigate TELSeq’s 
ability to identify mobilized ARGs within a more clini-
cally relevant sample, we performed TELSeq and colocal-
ization analysis on technical replicates of a fecal sample 
obtained from a cow that had recently received inten-
sive systemic antibiotic treatments (“+Abx” sample). 
As expected, this sample contained more ARGs (Fig.  3) 
and colocalizations (Table 1 and Fig. 4) than the −Abx, 
FMT, and SOIL samples. Specifically, 30 unique colocali-
zations were identified in the +Abx sample compared to 
none in the −Abx sample, 8 in the FMT sample, and 4 
in the SOIL sample (Table  1). In addition to mobilized 
ARGs that confer resistance to aminoglycosides, beta-
lactams, MLS, and tetracyclines, we also detected colo-
calized ARGs that confer resistance to glycopeptides 

and phenicols, which are classified as “critically impor-
tant” and “highly important,” respectively. Unlike the 
low-abundance ARG samples, the +Abx sample colo-
calizations included diverse MGEs such as plasmids, 
transposable elements (TE), insertional sequences (IS), 
and prophages (Table  1). Nearly half of the colocaliza-
tions in the +Abx sample included sequences that form 
the foundation of conjugative transfer, including plasmid 
replication sites, mating pair formation genes (e.g., VirD4 
for type IV secretion systems), and integrase systems. 
Some ARGs were colocalized with multiple different 
MGEs within the +Abx sample, which was not observed 
in the other sample types (Table  1). While most of the 
colocalization-containing TELSeq reads were <5000bp, 
we also recovered several reads >10,000bp (Fig. 4).

The ability of TELSeq to identify MGEs was further 
evaluated by comparing the mobilome of TELSeq data 
to that of PB and SR. MGEs were considered positively 
identified in the dataset if they obtained at least 50% gene 
fraction within one replicate. Based on this analysis, the 
SR data contained higher richness of MGEs as compared 
to the TELSeq and PB methods (Supp Figure  2). How-
ever, the relative abundance of MGE-containing reads 
was higher for the PB and TELSeq methods as compared 
to SR (Supp Figure 2). In addition, TELSeq data for the 
−Abx and SOIL replicates contained a higher richness of 
MGE subtypes compared to the PB datasets, even though 
the TELSeq probes were not designed to capture and 
enrich MGEs. In the −Abx replicates, both TELSeq and 
PB identified a comparable set of plasmid and prophage 
accessions; however, only TELSeq detected a large num-
ber of IS accessions. In the SOIL replicates, both TELSeq 
and PB recovered a similar set of plasmids, prophages, 
IS, and virulence accessions, but only TELSeq data con-
tained an additional fraction of ICE, which were missed 
by the PB approach (Supp Figure 2).

TELSeq’s performance was robust for targets with relative 
abundance greater than 10−4

To robustly and systematically evaluate TELSeq’s sen-
sitivity, specificity, and coverage depth, we performed 
TELSeq on three replicates of the ZymoBIOMICS log-
abundance mock community (“MOCK”), fragmented to 
median lengths of 2, 5, and 8 kb. To estimate TELSeq’s 
limit of detection, we identified ARGs in the reference 
genomes for each organism in the commercial mock 
community, and used these as a ground truth ARG set 
against which to compare the ARGs recovered by TEL-
Seq. No ARGs were identified in the genomes of L. fer-
mentum, Cryptococcus neoformans, and Saccharomyces 
cerevisiae, and thus these organisms were not included in 
limit of detection analysis. TELSeq recovered >90% of the 
ground truth ARGs for L. monocytogenes, B. subtilis, E. 
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Table 1  ARG-MGE colocalization details. Each row indicates a unique ARG-MGE colocalization, grouped by antibiotic class, 
sequencing platform, and sample type

a Color of ARG groups indicate the World Health Organization’s (WHO) classification status. Light green: Highest priority, critically important; Medium green: High 
priority, critically important; Dark green: Highly important; Blue: Metal or biocide resistance, not classified by WHO
b Indicates whether the colocalized MGE has been identified in a reference MGE that also contains at least one architectural MGE gene responsible for functional 
integration, replication, or housekeeping
c Number of references identified using PubMed, with the following specifications: primary literature as the subject of experimental or clinical research results, or used 
as support of research findings. Only publications that directly referenced the accession, locus name, or GenBankID for the relevant MGE were considered
d “-” indicates that the information is unknown
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coli, and S. enterica across all 3 replicates (Supp Table 3). 
The results for P. aeruginosa were lower and more vari-
able, ranging from 43 to 67%, even though this organism 
was present at 8.9% relative abundance in the commer-
cial mock community. TELSeq’s performance for the 
two lowest-abundance organisms (i.e., E. faecalis and S. 
aureus) was poorest, at 33% and 1–20% of ARGs recov-
ered, respectively. Fragment length was not systemati-
cally associated with differences in ARG recoverability 
(Supp Table 3).

To evaluate the probe-level sensitivity and specificity 
of TELSeq, we compared MOCK results to previously 
published high-depth (GridION) and ultra high-depth 
(PromethION) long-read sequencing experiments of 
the same mock community [34]. Each dataset (TELSeq 
replicates, GridION, and PromethION) and the 120-
mers of the ARG probe set were aligned to the reference 
genome of each of the 10 organisms comprising the mock 
community, and coverage profiles were generated and 
analyzed.

The majority of probes aligned to homologous regions 
of Escherichia coli, Salmonella enterica, and Pseu-
domonas aeruginosa, which in total accounted for 84.5% 
of the probe set (Supp Table  3). The remaining fraction 
of bases covered by probes included all of the Gram 
positive species: Staphylococcus aureus (6.40 %), Ente-
rococcus faecalis (4.90 %), Bacillus subtilis (2.98%), and 
Listeria monocytogenes (1.21%). No probes aligned to 
the genomes of Lactobacillus fermentum or the two 
eukaryotes Cryptococcus neoformans and Saccharomyces 
cerevisiae, as expected given the lack of ARGs in these 
organisms (Supp Figure 3).

To evaluate TELSeq’s probe-level sensitivity, we calcu-
lated the proportion of targeted bases covered by at least 
one TELSeq read. TELSeq achieved 100% sensitivity for 
E. coli, S. enterica, B. subtilis, and L. monocytogenes across 
all three fragment lengths; 65–86% for P. aeruginosa; 
73–79% for E. faecalis; and 30–45% for S. aureus (Supp 
Table  3). L. fermentum and the two eukaryote genomes 
did not have any probe-targeted loci in their genomes, 
and therefore we could not evaluate probe-level sensitiv-
ity for these organisms. There was no consistent relation-
ship between probe sensitivity and the relative abundance 
of each organism in the sample, although S. aureus was 
the least abundant organism and also achieved the low-
est sensitivity (Supp Figure  3). To evaluate the specific-
ity of TELSeq probes, we calculated the proportion of 
non-probe-targeted bases in each genome that did not 

receive any TELSeq reads (Supp Table 3). Based on this 
analysis, specificity was highest for S. aureus (98%), and 
lowest for L. monocytogenes (26–27%), which reflects a 
positive relationship between genome relative abundance 
and the likelihood that probes bound to off-target DNA 
(Fig. 5a), independent of shearing size (Type III ANOVA 
P= 0.002). The specificity results for P. aeruginosa did not 
follow this trend, and the sensitivity results were similarly 
aberrant. TELseq generated 17,922, 1242, and 571 reads 
which mapped to the reference genomes of Lactobacillus 
fermentum, Cryptococcus neoformans, and Saccharomy-
ces cerevisiae, respectively, despite the fact that no probes 
aligned to these three genomes. Thus, these sparse TEL-
Seq read alignments are likely the result of off-target 
probe binding, which is further supported by the fact 
that none of the reads aligned to ARGs in the MEGARes 
reference database. Interestingly, all of the alignments 
to Cryptococcus neoformans were clustered at a specific 
locus within the genome, which was also the only locus 
within this genome that received sequencing coverage in 
the GridION and PromethION data (Supp Figure 3).

Single-locus ARG variants can cause clinically impor-
tant outcomes in AMR infections, and therefore, it is 
important to call ARG SNPs with high confidence. TEL-
Seq represents an advantage in this regard, because 
unlike PCR and other targeted approaches, TELSeq 
probes can tolerate a high probe-to-target sequence 
mismatch rate, and still bind to their targets. This gives 
TELSeq the ability to capture novel ARG variants which 
might have biological significance, provided that TELSeq 
can generate sufficient coverage for robust variant calling. 
Therefore, we evaluated the ability of TELSeq to generate 
deep coverage of ARG targets by comparing TELSeq read 
depth to that of GridION and PromethION from the 
same mock community [34]. Specifically, we calculated 
the proportion of total targeted bases for which TEL-
Seq coverage exceeded that of deep long-read sequenc-
ing. Despite much lower data output (Supp Table 1), the 
TELSeq libraries exceeded the coverage of GridION deep 
sequencing in 99 and 96% of targeted bases in the E. coli 
and S. enterica genomes, respectively, regardless of frag-
ment size (Fig. 5b, Supp Table 3). TELSeq coverage sur-
passed that of GridION sequencing in an average of 78%, 
50%, 24%, 21%, and 15% of targeted bases in B. subtilis, 
E. faecalis, P. aeruginosa, S. aureus, and L. monocytogenes 
genomes, respectively. The percent of bases with excess 
TELSeq coverage was expectedly lower when comparing 
to the PromethION ultra-deep data (Fig. 5b), with 81%, 

Fig. 4  ARG-MGE colocalizations in TELSeq reads. Individual TELSeq reads (black horizontal dashed lines, length on x-axis) containing both ARGs 
(green and blue) and MGEs (yellow), as well as cargo genes (red), separated by sample type (y-axis). Color of ARG groups indicates the World Health 
Organization’s (WHO) classification status. Light green: highest priority, critically important. Medium green: high priority, critically important. Dark 
green: highly important. The −Abx sample did not contain any ARG-MGE colocalizations

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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77%, 46%, 45%, and 27% of targeted bases in S. enterica, 
E. coli, E. faecalis, B. subtilis, and S. aureus receiving more 
TELSeq reads than PromethION reads (Supp Table  3). 
The genome of P. aeruginosa had 32% of targeted bases 
covered by an excess of TELSeq versus PromethION 
reads, which was actually higher than the 24% as com-
pared to GridION reads. Finally, none of the targeted 
bases in the L. monocytogenes genome had an excess of 
TELSeq versus PromethION coverage (Supp Table 3). In 
regions where TELSeq read depth did not exceed that of 
GridION and/or PromethION, the depth tended to be 
equivalent (Fig. 6), demonstrating that TELSeq generally 
produced equivalent or superior coverage as compared 
to deep and ultra-deep long-read sequencing, despite 
much lower sequencing output (Supp Table 1). Variabil-
ity in sensitivity, specificity, and coverage depth by frag-
ment length (i.e., 2kb, 5kb, 8kb) was not consistent across 
microbial genomes.

Discussion
TELSeq enables improved assessment of ARG risk 
in metagenomic samples
In this work, we demonstrated that low-abundance ARGs 
within complex metagenomic samples can be detected 
with high sensitivity using bait enrichment combined 
with long-read sequencing. While the benefits of bioti-
nylated probes for metagenomic ARG enrichment have 
been previously reported [8, 9, 16], the use of short-read 
sequencing prevented robust assessment of the ARGs’ 
genomic context [17]. By combining target enrichment 
with long-read sequencing, we discovered that numer-
ous ARGs were colocalized with MGEs known to trans-
fer between pathogens (Table  1, Fig.  4). This additional 
information is critical for risk assessment of metagen-
omic samples, particularly for clinical uses such as FMT 
[35, 36], which has previously resulted in fatal AMR 
infections in compromised recipients [37]. We identified 
several unique MGE-associated ARGs in fecal material 
from an FMT donor, despite the use of highly regulated 
screening standards [38] to prevent the introduction of 
multidrug-resistant organisms (MDROs) and other pri-
ority pathogens. The presence of ARGs and MGEs in 
FMT (Figs.  2 and 3, Supp Figure  2) is consistent with a 
recent analysis of ARG risks in FMT metagenomes [39] 

and suggests that TELSeq could be implemented as a 
microbiome-wide screen for the mobilizable ARG pro-
file of FMT material. Indeed, the historical inability to 
confidently link ARGs with MGEs and host bacteria 
has been identified as a critical barrier to applied use of 
metagenomic data [39]. From this vantage point, TELSeq 
could represent an important advancement in the field of 
metagenomics, although further validation and standard-
ization of the workflow is warranted for specific use cases 
such as this.

In performing colocalization analysis, we observed dif-
ferences in the MGE-ARG profile of replicates obtained 
from SOIL as compared to replicates obtained from 
fecal material (Fig.  3, Supp Figure  1), even though the 
fecal material was obtained from hosts that had not been 
recently exposed to antibiotics (i.e., FMT and −Abx). For 
the latter sample types, most of the colocalized ARGs 
confer resistance to antibiotic drugs, and the colocal-
ized MGEs have been predominantly characterized in 
ESKAPEE pathogens (Table 1), which are known for their 
capacity to mobilize multidrug resistance in clinical con-
texts. For this reason, the ESKAPEE pathogens have been 
listed as critical-priority bacteria by the World Health 
Organization [40]. Conversely, the SOIL replicates were 
predominated by metal and biocide ARGs colocalized 
with MGEs reported primarily in bacteria that are ubiq-
uitous within environmental samples (e.g., soil, sediment, 
and water), including Legionella, Klebsiella, and Serattia 
(Table 1). Linkages between environmental and human-
associated resistomes have been previously observed 
[41], although the limitations of short-read data were 
later found to be significantly confounding these results 
[42].

It is very difficult to robustly reconstruct MGEs and 
their colocalized cargo from metagenomic data, and 
this difficulty has been identified as a critical barrier 
to improved understanding of bacterial evolution [43, 
44]. Bioinformatic reconstruction of MGEs via short-
read metagenomic assembly often results in misas-
sembly and unresolvable sequence loci, largely due to 
the modular and mobile nature of MGEs, which result 
in frequent rearrangements, deletions, insertions, and 
repeats [45–48]. Many metagenomic bioinformat-
ics tools were developed for the purposes of genome 

(See figure on next page.)
Fig. 5  a Proportion of probe-covered bases that received TELSeq read coverage of at least 1× (on-target, green line), versus proportion of 
non-probe-covered bases that received TELSeq read coverage of at least 1× (off-target, black line). b Proportion of probe-covered bases for which 
high-depth GridION (gray line) and ultra high-depth PromethION (purple line) read coverage exceeded that of TELSeq coverage. Parentheses in 
figure legend indicate the relative sequencing throughput difference of GridION and PromethION platforms relative to TELSeq, i.e., 5× and 15×. 
Organisms in MOCK are listed in order of ascending relative abundance, from left to right on the x-axis. L. fermentum, C. neoformans, and S. cerevisiae 
did not have any known ARGs and did not receive any probe-specific coverage; therefore, the on-target rates by TELSeq (a) and Nanopore are not 
calculable. L. fermentum, C. neoformans, and S. cerevisiae received 17,922, 1242, and 571 alignments by TELSeq respectively, which can be considered 
off-target alignments. However, none of these off-target reads aligned to any MEGARes accessions (i.e., false positive ARGs) across any of the MOCK 
replicates
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classification and taxonomic resolution and have 
not been validated for MGE reconstruction [49, 50]. 
Though not a primary aim of this study, our results 
demonstrate that TELSeq could be used to selectively 
capture, enrich, and characterize MGEs and related 
genomic detail. Coupled with recent advances in long-
read assemblers [51], TELSeq may help to improve 
inference of bacterial phylogenies and potential HGT 
events within and across host and environmental 
metagenomes.

Recent antibiotic exposures may increase MGE‑colocalized 
ARGs
Our primary experimental approach focused on sam-
ples with presumed low ARG density as a means to 
stress test the ability of TELSeq to recover targets with 
very low abundance, which it was able to do. We then 
applied TELSeq to a sample obtained from a context 
of recent therapeutic antibiotic exposure, under the 
hypothesis that this sample may have more ARG-MGE 
colocalizations [52, 53]. Indeed, within this ARG-
dense sample, we not only observed a higher propor-
tion of on-target reads and ARG richness than the 
low-density ARG samples (Fig. 3), but also many more 
ARGs flanked by diverse MGEs (Fig.  4 and Table  1). 
These results suggest that recent antibiotic exposures 
may create detectable ARG-MGE signals in metagen-
omic data. For example, the highest-priority, critically 
important extended-spectrum β-lactamase (ESBL) 
blaCTX-M gene was flanked by YfdP phage integra-
tion maintenance proteins, plasmid-associated Tn3 
resolvases, and enterobacterial IS1 family ISs (Table 1 
and Fig. 4). The rapid and worldwide dissemination of 
blaCTX-M has been termed a pandemic driven by the 
transfer of this ARG from commensal to pathogenic 
bacteria via MGEs [21, 54]. While plasmids have fueled 
the extensive dissemination of blaCTX-M ARGs across 
distant taxa, TEs, ISs, and phage elements are most 
critical in the maintenance of mobility and expression 
of resistance [55]. Our ability to detect and robustly 
contextualize the mobility profile of the low-abun-
dance blaCTX-M from a complex metagenomic sample 
demonstrates the fundamental advancement offered 
by TELSeq over existing metagenomic approaches. 
This advancement may also allow improved detection 

of recent ARG transfer events from commensals to 
pathogens, which has been a major methodological 
gap in the field of microbial ecology.

The efficiency of TELSeq depends on the diversity 
and abundance of target DNA
Without enrichment, we observed that <1% of the 
metagenomic data comprised ARG sequences (Supp 
Table  1), which corresponds well with previous esti-
mates of 0.1% and 0.001% for soil and fecal metagenomes, 
respectively [56, 57]. Despite the fact that the probes were 
designed for use with short-read library preparation proto-
cols, we found that TELSeq achieved on-target rates simi-
lar to those achieved by enriched short-read approaches [8, 
9, 16], suggesting that the probes can successfully enrich 
longer fragments of DNA. The upper limit of capturable 
fragment length is unknown, although our TELSeq data 
included very long ARG-containing reads (>40,000bp), 
indicating that the probes can capture very long pieces of 
DNA. This was observed, despite the fact that the SureSe-
lect system is commercialized with the intent to produce 
paired-end libraries for short-read (~150 bp) Illumina 
sequencing. However, most TELSeq reads were within 
the range of 1–5kbp, perhaps indicating that successful 
probe binding events tend to occur with DNA fragments 
of this length. Alternatively, the read length distribution 
in our dataset could be a function of the in situ DNA frag-
ment lengths in the samples themselves, as previous non-
enriched long-read metagenomic datasets obtained from 
feces reported similar read length distributions [58–60]. 
Further work should attempt to more closely quantify the 
probe binding and amplification capacity for different frag-
ment lengths, with the goal of optimizing capture efficiency 
and read length, i.e., information value.

As with previous reports, we found a large difference in 
the proportion of on-target sequence data across sample 
types, and less so between replicates within each sample 
(Supp Table  1). While the between-replicate variability 
was significantly associated with differences in sequenc-
ing depth (Type III ANOVA P = 0.005), the much larger 
between-sample variability suggests that the ARG com-
position of the original sample likely exerts a large influ-
ence over the final efficiency of TELSeq. Previous studies 
employing short-read sequencing demonstrate a simi-
lar positive relationship between sequencing depth and 
resistome richness [5, 61]. However, the relationship 

Fig. 6  Sequencing coverage of genomes in MOCK. Genomes are arranged on the y-axis in descending order of relative abundance (a–h), with the 
log10 relative abundance of each genome in MOCK displayed beneath the genome name. Coverage depth ranging from 100 to 104 is displayed on 
the y-axis and genome position (Mbp) on the x-axis for each genome. Areas of probe coverage are colored pink. Sequencing coverage achieved 
by deep GridION sequencing is indicated in gray, while TELSeq coverage is indicated in tan (2 kb library), blue (5 kb library), and green (8 kb library). 
Zoomed-in subsets from select loci of each genome are included for visualization purposes. Plots for the two eukaryotic genomes in MOCK can be 
found in Supp Table 3

(See figure on next page.)
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between depth of sequencing and additive information 
gain for resistome profiles obtained by TELSeq requires 
systematic evaluation. Our early findings for samples with 
lower sequencing depth motivates further refinement of 
the requisite depth parameters to saturate the full range of 
ARG representation in an unbiased manner using target-
enriched sequencing methods. Based on comparisons of 
SOIL with FMT and −Abx, we expect that samples pos-
sessing a diverse resistome with many low-abundance 
ARGs are likely to experience the biggest performance 
gains, in terms of both on-target rate (Fig. 3, Supp Table 1) 
and increases in detectable resistome richness and diver-
sity (Fig.  2, Supp Table  2). This may be due to the ability 
of TELSeq to capture and amplify very low-abundance tar-
gets. Other factors could also be driving the performance 
differences between the sample types, including intrinsic 
microbiome-level differences such as biomass and under-
lying taxonomic composition, as well as extrinsic variables 
such as the biophysical characteristics of the sample matrix 
including presence of inhibitors [62]. These same physico-
chemical properties may also have caused the wide range 
of sequencing depth that we observed in this study, despite 
our attempts to achieve relatively even sequencing cover-
age for each replicate. Future work should investigate the 
relationship between sample properties and technical (i.e., 
workflow) factors, and how these influence both sequenc-
ing depth and on-target performance.

The relative proportion of on‑ and off‑target DNA 
influences TELSeq performance
Analysis of mock community sequence data revealed that 
TELSeq performance varied non-monotonically with 
the relative abundance of each organism in the sample 
(Fig. 6 and Supp Table 3). For example, L. monocytogenes 
was the most abundant genome in the mock community 
at 98 % of total gDNA, but because this genome did not 
contain many ARGs, it received a relatively small propor-
tion of probes (Fig. 6). Given this, we would expect very 
low coverage of the L. monocytogenes genome by TEL-
Seq reads overall, but relatively high coverage in the tar-
geted regions. While we did observe 100% sensitivity for 
L. monocytogenes, we also observed a high proportion of 
off-target coverage of the L. monocytogenes genome by 
TELSeq reads, resulting in relatively low specificity (Fig. 5 
and Supp Table 3). This discrepancy was likely caused by 
the very high abundance of L. monocytogenes DNA in the 
mock community and subsequent stoichiometric probe 
binding to non-target regions of the genome. This expla-
nation was also supported by the fact that L. monocy-
togenes was the only genome for which TELSeq produced 
contiguous sequence coverage across the entire genome 
length (Fig. 6). Conversely, genomes with very low abun-
dance in the mock community exhibited relatively high 

specificity but low sensitivity, as was the case with S. 
aureus, the lowest-abundance genome in the mock com-
munity at 89 × 10−6 % of total gDNA. The results for 
S. aureus reflect an estimate of the limit of detection of 
TELSeq given the sequencing depth used in this study. 
It is noteworthy that ultra-deep non-enriched long-read 
sequencing also failed to achieve robust coverage of S. 
aureus, as reported in [34] and demonstrated in Fig.  6. 
Taken together, TELSeq’s performance on a well-defined 
mock community suggests the existence of a limit to both 
sequencing sensitivity (i.e., as seen for low-abundance 
organisms such as S. aureus), as well as sequencing speci-
ficity (i.e., as seen for high-abundance organisms such as 
L. monocytogenes).

Overall, TELSeq achieved the most optimal balance 
of sensitivity and specificity for organisms with moder-
ate abundance and a high proportion of probe coverage, 
as seen for S. enterica and E. coli (Figs.  5a, 6 and Supp 
Table 3). Future work should include thorough evaluation 
of the interaction between target relative abundance and 
on- and off-target binding rates for TELSeq probes.

TELSeq’s ability to recover ARGs was generally robust 
down to the relative abundance represented by E. faecalis 
and S. aureus, i.e., 8.9 × 10−4 and 8.9 × 10−5, respectively 
(Supp Table  3). The exception to this was the perfor-
mance results for P. aeruginosa, which deviated substan-
tially from the overall trend of high sensitivity and deep 
coverage for moderate- and high-abundance organisms 
(Supp Table 3 and Fig. 5a). P. aeruginosa is known for its 
recalcitrance to DNA extraction protocols [63] and very 
high G+C content, with a genome-wide mean of 67% 
[64]. These two factors likely led to the aberrant TEL-
Seq performance results for P. aeruginosa, and future 
studies that utilize TELSeq should consider some of the 
more recent developments in extraction protocols for 
metagenomic samples, such as the three-peak protocol 
[34] or modified commercial protocols [65].

Conclusion
TELSeq fills a critical gap in the field of microbial ecology 
by enabling highly sensitive detection of low-abundance 
genes from metagenomic samples, including detailed 
information about their immediate genomic context. 
This capability is particularly germane to advancing sci-
entific understanding of HGT and AMR, which to-date 
has relied on in vitro donor-recipient conjugation experi-
ments or in silico bioinformatic and statistical inference 
of historical HGT events. TELSeq offers a new approach 
by allowing us to observe MGE-ARG pairings across the 
entire metagenome, without the need for statistical infer-
ence. While we demonstrated TELSeq’s benefits using 
ARGs as probe targets, we note that the TELSeq work-
flow could easily be adapted for use with other targets, 
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including MGEs, virulence factors, viruses, and patho-
gens. The potential applications of TELSeq are thus 
extensive, with likely uses in clinical decision-making, 
diagnostics, public health and food safety surveillance, 
and mining of metagenomes for novel functions. Fur-
ther work is needed to support reproducible, consistent, 
and highly validated TELSeq-based workflows, includ-
ing appropriate quantitative approaches to draw micro-
biome-level inferences from enriched sequence data, and 
more fine-tuned control of enrichment efficiency and 
sequencing depth variability across technical replicates 
and diverse sample types.

Materials and methods
Probe design
The probe set used in this work has been previously 
described [8]. Briefly, the MEGARes v1.0, BacMet, and 
Virulence Factor databases were combined to generate a 
non-redundant list of 5557 ARGs and associated nucle-
otide sequences known to confer resistance to antibiot-
ics, metals, and biocides. Each sequence in this list was 
tiled at 1× coverage with a 120-nt window to generate 
100% gene fraction coverage for every accession. The 
final probe set contained 31,250 unique probes (Agilent 
Technologies, ELID number 0792071), which was the set 
used in this work. Probes were manufactured by Agilent 
(Santa Clara, CA, USA).

Sample collection and storage
A fresh fecal sample was collected from a healthy human 
donor to the Fecal Microbiota Transplant (FMT) pro-
gram at the University of Minnesota School of Medi-
cine (“FMT” sample). Enrollment of the donor was done 
according to strict inclusion and exclusion criteria pre-
viously described [66], and following the Investigational 
New Drug Application 15071. Exclusion criteria consti-
tuted factors identified on medical record history and 
physical exam, including metabolic, autoimmune, and 
chronic pain disorders, history of gastrointestinal dis-
ease or surgery, allergies, neurologic or psychiatric dis-
orders, or use of antimicrobial therapy. Previous stool 
samples collected from this donor had tested negative 
for viral, parasitic (including Giardia and Cryptosporid-
ium), and specific culturable vancomycin-resistant Ente-
rococci, methicillin-resistant Staphylococcus aureus, 
carbapenem-resistant Enterobacteriaceae, Escherichia 
coli O157:H7, Salmonella spp., Shigella spp., and Yers-
inia spp pathogens. The fecal sample used in the cur-
rent study was collected in a single-use toilet hat and was 
allotted into multiple 50-mL conical polypropylene tubes 
and immediately transferred to a −80 °C freezer for stor-
age after 30 min of initial collection. All donor-specific 

activities were approved by the University of Minnesota 
Institutional Review Board.

To obtain a sample from an animal with recent antibi-
otic exposure, approximately 250 g of fresh fecal material 
was collected per rectum from a periparturient Holstein 
Friesian dairy cow during follow-up medical examination 
for metritis (“+Abx” sample). One week prior to fecal 
collection, the animal received a two-course, 72-h treat-
ment with 6.6 mg/kg of injectable ceftiofur crystalline-
free acid, a third-generation cephalosporin antibiotic, 
following label instructions. Additionally, on the same 
day, approximately 250 g of fresh fecal material was col-
lected per rectum from another periparturient Holstein 
Friesian dairy cow deemed systemically healthy during a 
routine medical check of herd-level metritis and meta-
bolic disorders (“−Abx” sample). While this healthy cow 
was part of the same herd as the cow with metritis, she 
was kept in a different freestall and had not been previ-
ously exposed to systemic antibiotics. Aside from these 
specific differences, both cows were subject to the same 
management and farm conditions. Each fecal sample 
(+Abx and −Abx) was placed in a 50-mL conical tube 
and immediately placed on ice. Samples were transferred 
to a −80 °C freezer for storage within 2 h of collection. 
All cattle handling procedures and sample collection 
were performed by veterinarians in accordance with the 
University of Minnesota Institutional Animal Care and 
Use Committee (IACUC).

The soil sample (“SOIL”) was collected from a strip 
of un-utilized prairie with perennial grasses and forbs 
in Mower County, Minnesota, USA, at a depth of 0–20 
in. into the soil column. Samples were composited from 
three points within 10 m and stored at 4 °C during physi-
cal and chemical characterization, and a subsample was 
transferred to −80 °C prior to gDNA extraction.

Commercial mock community standard
For purposes of method validation, a ZymoBIOMICSTM 
microbial community standard (CSII) was obtained 
(Zymo Research Corporation, Irvine, CA, USA. Product 
D6310, Lot#: ZRC190842), containing ~1.5 × 109 cells / 
mL of 10 microbial species (8 bacterial and 2 fungi), in 
log-distributed abundance ranging from 89.1% (Listeria 
monocytogenes) to 89 × 10−6 % (Staphylococcus aureus) 
(“MOCK” sample). Cells were suspended in DNA/RNA 
Shield reagent by manufacturer and were stored frozen 
upon arrival (−80 °C).

gDNA extraction
Prior to extraction, 50 g portions of the +Abx, −Abx, 
and FMT fecal samples and a 250-g portion of the soil 
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matrix were thawed at room temperature. Following a 
5-min manual homogenization, the samples was dis-
bursed in 0.25-g aliquots into PowerBead Pro tubes 
containing zirconium beads and 800 μl lysis buffer 
for extraction using the Qiagen DNEasy Powersoil 
Pro kit (Qiagen, Hilden, Germany, Lot# 163044275). 
Molecular-grade sterile water was placed into 4 ran-
domly selected tubes to serve as negative controls 
(extraction blanks). After 6 s of vortexer-mediated 
homogenization, samples were placed on a 115-V Mini-
Beadbeater-96 (BioSpec Products, Bartlesville, OK, 
USA) for mechanical lysis. Sample bead beating pro-
ceeded at 2400 rpm for 30 s for a total of 3 rounds with 
a 2-min pause on ice between each round, to prevent 
overheating. The remainder of the extraction procedure 
followed the PowerSoil Pro recommendations with 
inhibitor removal steps, and the final 50 μl of eluted 
gDNA was stored at −20 °C.

For the ZymoBIOMICS mock community, all extrac-
tion procedures including additional pre-extraction 
steps to ensure that the final gDNA maintained optimal 
fragment length and species representation after isola-
tion from the native DNA/RNA shield storage solution, 
were followed according to the methods outlined by 
Nicholls et  al. [34]. The standard was divided into ten 
75-μl aliquots, each centrifuged at 8000×g for 3.5 min 
before removing and retaining the supernatant, which 
contained lysed Gram-negative species in the DNA/
RNA Shield storage solution. The pellets were resus-
pended in 700 μl lysis buffer and were transferred to 
zirconium-containing PowerBead Pro tubes of the Qia-
gen DNEasy Powersoil Pro kit (Qiagen, Hilden, Ger-
many, Lot# 163044275). Molecular-grade sterile water 
was added to 4 randomly selected tubes to serve as neg-
ative controls (extraction blanks). After 6 s of vortexer-
mediated homogenization, samples were placed on a 
115-V Mini-Beadbeater-96 (BioSpec Products, Bar-
tlesville, OK, USA) for mechanical lysis. Sample bead 
beating proceeded at 2400 rpm for 5 min for a total of 4 
rounds with a 5-min pause on ice between each round. 
The resulting ~500μl of supernatant was retained and 
recombined with the supernatant retained earlier, and 
the samples were subjected to the remaining recom-
mended procedures of the PowerSoil Pro kit, including 
inhibitor removal steps. The final 50μl of eluted gDNA 
was stored at −20 °C.

Quantitation of all isolated gDNA was performed 
using the Qubit 4 Fluorometer (Invitrogen, Carlsbad, 
CA, USA) using the dsDNA high-sensitivity assay kit. 
Electrophoretic assessment of DNA quality was per-
formed using a genomic screen tape and reagents on a 
4200 TapeStation (Agilent, Santa Clara, CA, USA). All 
extraction blanks contained no quantifiable gDNA and 

therefore were not carried forward into library prepa-
ration, targeted enrichment, and sequencing. All sam-
ple processing occurred in a Class II Biological Safety 
Cabinet and was performed by a single laboratory tech-
nician following standard decontamination practices 
using 70% ethanol and irradiation.

TELSeq library preparation and enrichment
DNA fragmentation and size selection
The SureSelectXT V1 system incorporates library prepa-
ration and targeted enrichment procedures and is opti-
mized for 200 ng–3 μg of gDNA input to generate 
150–200-bp insert fragments for Illumina sequencing 
(100–500 bp read length). In this study, we scaled the 
SureSelectXT V1 system to produce enriched libraries 
for PacBio sequencing (>50kb read length) which require 
comparably longer gDNA inserts (>1000bp). Generating 
libraries with longer insert ranges is partially depend-
ent on sample DNA content [67]. To determine whether 
gDNA fragment size impacted the enrichment dynam-
ics of TELSeq, we initially tested a range of insert sizes 
using the +Abx and MOCK samples. Technical triplicate 
libraries for +Abx and MOCK were created as follows: 
3μg gDNA to achieve a ~2-kb insert range; 4μg gDNA 
from two equimolar pools to achieve a ~5 kb insert range; 
and 6μg gDNA from three equimolar pools to achieve an 
~8 kb insert range. For the 2 or 5 kb replicates, the req-
uisite input gDNA was resuspended in 1× TE buffer (pH 
8.0) to a final volume of 200μl in COVARIS miniTUBEs 
(COVARIS Inc, Woburn, MA, USA) and mechanically 
fragmented using an M220 COVARIS focused ultrasoni-
cator (COVARIS Inc, Woburn, MA, USA) with the fol-
lowing settings: for 2 kb replicates, peak power-6W, duty 
factor-20%, cycles/burst-900, 800 s, 4 °C; for 5 kb repli-
cates, Peak power 6W, duty factor 20%, cycles/burst 900, 
500 s, 4 °C. For 8-kb replicates, the appropriate gDNA 
was resuspended in 1× TE buffer (pH 8.0) to a final vol-
ume of 150μl in a COVARIS g-TUBE (COVARIS Inc, 
Woburn, MA, USA). g-TUBEs were centrifuged at 7200 
rpm for 1 min on an Eppendorf 5424 rotor (Eppendorf 
AG, Hamburg, Germany).

For all other samples (i.e., −Abx, FMT and SOIL), tech-
nical triplicate libraries were prepared using two equi-
molar gDNA pools of each sample type to achieve 4μg 
gDNA input for a ~5-kb insert range. Fragmentation 
parameters for these libraries followed as described for 
the 5 kb protocol above. After fragmentation, all librar-
ies were then subjected to 0.8 (vol/vol) AMPure XP bead 
purification (Agencourt Biosciences Corp., Beverly, MA, 
USA) and electrophoretic verification using an Agilent 
TapeStation 4200 (Agilent, Santa Clara, CA, USA), see 
Additional file  1 for gDNA quality results of individual 
pre-pooled aliquots for all sample types.
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Sheared and purified test libraries were all subjected 
to insert size selection to achieve either 2, 5, or 8–10 kb 
for +Abx and MOCK, or >5 kb insert size for replicates 
of −Abx, FMT and SOIL, using a 0.75% agarose gel DF 
cassette (cat no. BLF7510) with S1 marker (Sage Science 
Inc., Beverly, MA, USA) on a BluePippin pulse-field elec-
trophoretic size selector (Sage Science Inc., Beverly, MA, 
USA). All library samples were eluted using 10μl of sup-
plied elution buffer for a given runtime, to obtain a final 
volume of 40μl.

Targeted hybridization and capture
Following fragmentation, the SureSelectXT V1 protocol 
for 200ng of input was used, with numerous modifica-
tions, as follows. The entire gDNA content of each sam-
ple (diluted in 40μl) was used beginning with the DNA 
end-repair step. Upon completion of end-repair and dA-
tailing procedures, AMPure XP bead purification using 
a 0.8 (vol/vol) bead:sample mixture was performed. In 
preparation for adapter ligation, an adapter oligonucleo-
tide mixture was first prepared at a 1:4 ratio, and this was 
added to the master mix immediately before aliquoting 
into each sample. Pre-capture PCR amplification in all 
samples was performed on the entirety of each library 
with a modified thermocycler program: 2 min at 96 °C, 
11 cycles of the following: 20 s at 96 °C, 30 s at 65 °C 
and 2 min/5 min/6 min at 72 °C for the 2 kb, 5kb, and 
8kb +Abx and MOCK samples, respectively. For the −
Abx, FMT, and SOIL samples, the 5-min hold time was 
performed at 72 °C. Samples were then maintained an 
additional 10 min at 72 °C, and ramped down to 4°C. Pre-
capture amplified libraries were subjected to 0.8 (vol/vol) 
AMPure XP bead purification (Agencourt Biosciences 
Corp., Beverly, MA, USA) and electrophoretic verifica-
tion using an Agilent TapeStation 4200 (Agilent, Santa 
Clara, CA, USA).

Following lyophilization and addition of hybridiza-
tion buffers and reagents, hybridization was performed 
on ~600 ng of amplified gDNA libraries with the addi-
tion of equimolar quantities of custom-designed bioti-
nylated probes to each library, along with 10% RNase 
block solution. Incubation proceeded for 16 h at 65 °C 
with the heated lid set to 75 °C to minimize evaporation 
and maintain the integrity of longer fragments. Subse-
quent capture steps were performed using per-protocol 
conditioned MyONE streptavidin T1 beads (Invitrogen 
Co, Waltham, MA, USA). Hybridization was facilitated 
by placing samples on a plate mixer (1200rpm) for 5 
min at room temperature. The mixer was paused and 
incubation proceeded for an additional 55 min at room 
temperature, while manually mixing (i.e., pipetting up 
and down 10 times) every 7 min in order to maintain 

capture and amplification of larger fragments for long-
read library preparation. Following hybridization steps, 
we performed capture steps using per-protocol reagents 
and sample-to-reagent ratios, as well as temperatures and 
durations. We performed three additional bead washing 
cycles to optimize the retention of probe-mediated cap-
tured DNA fragments.

For post-capture indexing and amplification steps, the 
entire volume of each sample was used, rather than half 
as recommended by the manufacturer’s protocol. After 
combining samples with the appropriate volume of each 
indexing and amplification reagent, the following modi-
fied thermocycler program was used: 2-min hold at 96 °C 
followed by 18 cycles of ramping between 96 °C (20 s), 65 
°C (30 s), and 72 °C (2 kb: 2 min; 5 kb: 5 min; or 8 kb: 6 
min). For the −Abx, FMT, and SOIL samples, the 5-min 
hold time at 72 °C was used. Samples were held for an 
additional 72 °C for 10 min. Indexed and amplified cap-
tured libraries were subjected to 0.8 (vol/vol) AMPure XP 
bead purification (Agencourt Biosciences Corp., Beverly, 
MA, USA) and electrophoretic verification using an Agi-
lent TapeStation 4200 (Agilent, Santa Clara, CA, USA).

Subsequent to enrichment steps, purity of all library 
gDNA was measured using a NanoDrop spectropho-
tometer (Thermo Fisher Scientific, Waltham, MA, USA). 
Samples having absorbance ratios at 260/280 nm and 
260/230 nm of >1.8 were selected for sequencer-specific 
library preparation. TELSeq and PacBio samples were 
subjected to multiplexed CCS library creation, using the 
Pacific Biosciences template preparation protocol for 
metagenomic samples without additional shearing and 
amplification. Briefly, the PacBio SMRTbell Express Tem-
plate Preparation Kit (v 2.0) was used to perform damage 
repair, end-repair, and 5′ phosphorylation. After ligation 
of PacBio hairpin loop adapters with overhang barcod-
ing (8A Barcoded Overhang Adapter Kit: 101-628-400) 
to repaired and end-phosphorylated fragments in each 
sample, the resulting SMRTbell templates were cleaned 
using nuclease treatment followed by clean-up with 
0.45× AMPure PB beads. For short-read (SR) metagen-
omic sequencing, Illumina’s Nextera DNA Flex Library 
Preparation Kit was used, following the manufacturer’s 
protocols (Illumina Inc., San Diego, CA, USA).

Circular Consensus Sequencing (CCS)
All prepared SMRTbell template TELSEq and un-tar-
geted long-read (i.e., PB) libraries were evenly pooled 
and sequenced using two serial runs of equal sequenc-
ing depth on a Pacific Biosciences Sequel 6.0 system 
(Pacific Biosciences, Menlo Park, CA, USA) using two 
Sequel SMRT cells (1M with 3.0 chemistry). A 20-h 
movie runtime was used for each cell. PacBio CCS reads 
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(minPassess= 3; MinAccuracy= 90%) were generated 
using SMRT Link v 7.0.

Short‑read (SR) metagenomic sequencing
Replicates of −Abx, FMT, and SOIL samples were 
subjected to paired-end short-read sequencing (2 × 
150bp) using a single S4 flow cell lane on an Illumina 
NovaSeq6000 platform (Illumina Inc., San Diego, CA, 
USA).

Previously generated MOCK community data
The ZymoBIOMICSTM log-distributed microbial com-
munity standard (CSII) was previously subjected to 
metagenomic sequencing using deep and ultra-deep 
long-read Oxford Nanopore sequencing on the GridION 
and PromethION platforms, respectively [34]. The mock 
community reads were generated from 50-ng and 400-ng 
aliquots of the same lot used in the current study (lot# 
ZRC198042) on each of the two flow cells of the Oxford 
Nanopore Technologies (Oxford Science Park, Oxford, 
UK) GridION (FASTQ accession: ERR3152366) and Pro-
methION (FASTQ accession: ERR3152367) sequencers. 
Reads were produced with an expected 5-fold throughput 
difference per flow cell (GridION: 3.67 M reads vs Pro-
methION: 34.5 M reads). Additional metadata describ-
ing species-level genome references, relative distribution, 
sequencing yield, and coverage are described in Supp 
Table 4 and in [34]. These libraries served as benchmarks 
for the MOCK replicates generated using TELSeq.

Bioinformatic analysis
Quality filtering and deduplication
The target enrichment protocol deploys PCR for ampli-
fying DNA during adaptor-ligation and targeted site 
capture, potentially resulting in duplicated reads in the 
downstream sequence data at levels above what would 
be expected from non-enriched metagenomic data [68]. 
Therefore, CCS reads [69] for both the TELSeq and PB 
libraries for all sample types were subjected to a dedu-
plication procedure using a similarity-based approach as 
follows. First, CCS reads were clustered based on length 
using sklearn.cluster.KMeans class using 200 clusters. 
Next, all CCS reads in one cluster were pairwise aligned 
with Blast-Like Alignment Tool (BLAT) [70]. Reads were 
considered duplicates if the span of all the hit/query 
high-scoring segment pairs (HSPs) were greater than or 
equal to 90% of the total hit/query length. Sets of dupli-
cate reads were accumulated, and deduplicated FASTQ 
files were generated by randomly retaining a single read 
for each duplicated set from the original library FASTQ. 
For these analyses, the pysam Python module was used 
to parse SAM files, and the SeqIO and SearchIO modules 
from Biopython were used to parse FASTA/FASTQ files 

and PSL files, respectively. We found that it was impracti-
cal to apply a similar deduplication procedure to MOCK 
libraries generated by Oxford Nanopore sequencing of 
Nicholls et al. [34] in a reasonable timeframe, due to limi-
tations in computing resources necessary to process the 
ultra-deep read depth (i.e., >14 CPU days were needed to 
process <1% of the PromethION data on a machine with 
1TB of memory). Additionally, the CCS duplication rate 
in the PB libraries was minimal (i.e., <0.1%), which was 
expected given that no PCR-based amplification proce-
dures were used in PB library creation. Since no ampli-
fication procedures were likewise used to generate the 
Nanopore libraries [34], we determined that it was not 
necessary to deduplicate the MOCK libraries generated 
on the GridION and PromethION. We note that this 
decision results in a more conservative comparison of 
TELSeq to the GridION and PromethION datasets. Dif-
ferences in deduplicated read depth between sequenc-
ing platforms were evaluated using repeated-measures 
analysis of variance (ANOVA), with use of Levene’s test 
to evaluate heteroscedasticity and an alpha of 0.05 as the 
predetermined level of statistical significance.

Resistome and mobilome analysis
In order to identify ARGs from the TELSeq and PB 
approaches for all +Abx, −Abx, FMT, SOIL, and 
MOCK libraries, the deduplicated data were aligned to 
MEGARes v2.1 [71] for detection of the resisome and 
ACLAME v0.4 [72], ICEberg v2.0 [73], and Plasmid-
Finder v2.1 [74] for detection of the mobilome, using 
Minimap 2 [75] with the -ax flag set to map-pb. The 
GridION and PromethION mock community datasets 
were divided into several FASTQ files using fastqsplit-
ter (https://​kirill-​kryuk​ov.​com/​study/​tools/​fastq-​split​
ter/, v0.1.2) and then aligned to MEGARes v2.1 using 
minimap2 with the -ax flag set to map-ont. The Sequence 
Alignment Map (SAM) files that resulted from align-
ment to the MEGARes and MGE databases were used 
to characterize the resistomes and mobilomes in CCS-
type reads. Custom Python scripts were used to count 
the number of unique MEGARes classes, mechanisms, 
groups, and genes in each library. Next, the same script 
was used to count the number of unique MGE acces-
sions by type, i.e., plasmids, integrative conjugative ele-
ments (ICE), prophages, and virulence factors. Note that 
regions of the reads that aligned to the MEGARes data-
base were not considered during this step. Additionally, 
ISfinder [76], and ISbrowser [77] were used to parse hits 
for plasmid, prophage, and virulence accessions, to iden-
tify insertional sequence (IS) families and other trans-
posable elements (TEs), using BLASTN (E-value = 1 
× 10−10, minimal identity 80% over >80% of the query 
length). To reduce false positive detection of ARG and 

https://kirill-kryukov.com/study/tools/fastq-splitter/
https://kirill-kryukov.com/study/tools/fastq-splitter/
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MGE accessions, we used a gene fraction cutoff (defined 
as the proportion of nucleotides within a given reference 
accession that are aligned by at least one sequenced read) 
of 80% and 50% for resistome and mobilome accessions, 
respectively, based on cut-offs established in previous 
work that reported resistome-mobilome colocalization 
analysis on metagenomic data [17, 78]. The counts of 
unique features and alignments per feature were used to 
describe the richness and diversity of the resistome and 
mobilome in each library. We evaluated the correlation 
between the predictor sequencing depth (i.e., number of 
raw TELSeq reads per replicate) and the dependent vari-
able on-target rate (i.e., proportion of reads that aligned 
to ARGs out of all sequenced reads) and class-level ARG 
richness (i.e., number of unique ARG classes detected per 
replicate) using a linear mixed-effects model as imple-
mented in the lmer function of lme4 [79]. For both corre-
lation analyses, sample type was specified as the random 
effect to account for non-independence of the technical 
replicates, and the number of sequence reads was log-
transformed to meet model assumptions. Statistical sig-
nificance using an alpha of 0.05 was evaluated via a Type 
III analysis of variance with Satterthwaite approximation, 
as implemented in the anova function in lme4. Ordina-
tion of the resistome and microbiome count matrices was 
performed using non-metric multidimensional scaling of 
Hellinger-transformed counts, with subsequent testing of 
significant differences between sample type and sequenc-
ing platform using analysis of similarities (ANOSIM) and 
permutational multivariate analysis of variance (PER-
MANOVA), with an alpha of 0.05 as the predetermined 
level of statistical significance.

De-multiplexed metagenomic libraries obtained via the 
short-read sequencing approach were analyzed using the 
AMRPlusPlus [71]. After read trimming and quality fil-
tering using TRIMMOMATIC [80], AmrPlusPlus identi-
fies reads that align to the relevant host genome (+Abx 
and −Abx samples: Bos taurus [UMD3.1] reference 
genome; FMT, SOIL, and MOCK samples: Homo sapi-
ens [hg19] reference genome) using Burrows-Wheeler 
Aligner (BWA) software [81], and filters host-aligned 
reads via SamTools [82] to create a set of non-host reads 
for subsequent characterization of the resistome and 
mobilome.

Identification of ARG‑MGE colocalizations and cargo genes
To identify high-confidence colocalizations, we imple-
mented a strict definition in which a single read had to 
contain both an ARG and an MGE at 80 and 50% gene 
fraction, respectively, again based on previously used 
cut-offs [17, 78]. We applied convergence restrictions as 
well as a regional 250 bp buffer zone around all identified 
ARGs to remove the potential for multiple alignments 

to both the ARG and MGEs within the same start:stop 
position on the read. This was done due to extensive 
sequence homology between multiple accessions in the 
ARG and MGE reference databases. In order to identify 
potential cargo genes on the reads that contained at least 
one ARG and MGE (i.e., colocalizations), we aligned each 
such read to the KEGG [83] gene database for prokary-
otic organisms. For MOCK replicates, we used a subset 
of the KEGG database containing only the 10 organ-
isms contained in the mock community. A cargo gene 
was considered present if the length of the alignment on 
the reference gene in KEGG covered at least 50% of the 
length of the entire gene.

The MEGARes alignment file, the three MGE data-
base alignment files and the KEGG alignment file were 
parsed with a custom Python script to generate a CSV 
file in which each row contained the following colocali-
zation information: read identifier, MEGARes accession, 
MGE database accession, and the KEGG accession, along 
with the position of the genes on the read. We note that 
each possible combination of ARG, MGE, and KEGG 
gene was considered and stored in the CSV file. Next, we 
defined colocalization distance as the distance between 
the end of the ARG alignment on the read and the start of 
the MGE alignment on the read, or vice versa. Two colo-
calizations were defined to be non-unique if their ARGs 
belonged to the same MEGARes group, if their MGEs 
had the same database accession, and if their colocaliza-
tion distances were within 250 bp of each other. A cus-
tom Python script was used to group colocalizations into 
250-bp intervals based on the order in which they were 
encountered going through the CSV of colocalizations. 
For example, if three colocalizations with the same MEG-
ARes group and MGE accession were encountered with 
colocalization distances of 50, 150, and 350 bp, in that 
order, the first two colocalizations would be considered 
non-unique and the third would be considered unique. 
Additionally, analysis of colocalizations was restricted to 
only those colocalized ARGs that did not require addi-
tional confirmation of single-nucleotide polymorphisms 
(SNPs).

Benchmarking TELSeq using mock community genome 
coverage analysis
Each TELSeq and non-targeted mock community 
library was aligned to the reference genomes of all 10 
microbes within the mock community using minimap2. 
For the TELSeq mock community libraries, a custom 
Python script was used to parse the resulting SAM file 
to determine the percentage of reads that aligned to 
each genome and to find the longest alignment from a 
TELSeq read to each genome. Another Python script 
was used to compare the coverage along each genome 
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between the three TELSeq mock community librar-
ies and the two non-targeted mock community librar-
ies sequenced by high-depth (GridION) and ultra 
high-depth (PromethION) Nanopore libraries. For all 
TELSeq MOCK libraries, probe sensitivity (i.e., “on-tar-
get” rate) was quantified as the proportion of all probe-
targeted bases present in each genome that received at 
least 1× TELSeq read coverage. L. fermentum, C. neo-
formans, and S. cerevisiae did not have any known ARGs 
in their genome and did not receive any probe-specific 
coverage; therefore, the on-target rates by TELSeq for 
these organisms were not calculable. Probe specificity of 
TELSeq (i.e., “off-target” rate) was quantified as the pro-
portion of non-targeted bases that did not receive TEL-
Seq read coverage. TELSeq sensitivity and the inverse 
specificity (土 95% CI) across all genomes was plotted 
against log-normalized genome relative abundance in 
the mock community using LOESS regression specifica-
tion with minimum spanning of 0.2. We independently 
evaluated the correlation between the genome relative 
abundance and the dependent variables of either on-
target or off-target rates using a linear mixed-effects 
model as implemented in the lmer function of lme4 [79]. 
For both correlation analyses, genome type was specified 
as the random effect while shearing size among techni-
cal replicates was specified as a fixed effect. Statistical 
significance using an alpha of 0.05 was evaluated via a 
Type III analysis of variance with Satterthwaite approxi-
mation, as implemented in the anova function in lme4. 
We further explored off-target sequencing in TELSeq 
by profiling reads generated for L. fermentum, C. neo-
formans, and S. cerevisiae, all of which do not have any 
probe-aligned ARGs in their genomes and can therefore 
be considered as entirely off-target sequences. Resistome 
analysis of these off-target reads was conducted as previ-
ously described using the same pipeline parameters and 
defaults, specifying MEGARes v1.0 as the reference, as 
this version formed the basis for TELSeq probe design. 
Alignments were parsed to remove any ARG hits that 
required additional confirmation of single-nucleotide 
polymorphisms (SNPs).
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Additional file 1. Agilent TapeStation 4200 gDNA gel and electrophero-
gram results. Output of gDNA size distribution (bp) on genomic tape runs 
of technical replicates used as input for TELSeq, PB, and Illumina library 
generation for either: (a) +Abx, Bovine fecal sample retrieved from a 
Holstein-Fresian dairy cow with recent antimicrobial drug exposure; (b) −
Abx, Bovine fecal sample retrieved from a Holstein-Fresian dairy cow with 
no recent history of antimicrobial drug exposure reared under the same 
husbandry conditions as +Abx cow; (c) FMT, Fecal microbiota transplant 
sample submitted from a healthy U.S. human donor; (d) SOIL, Composite 
prairie soil sample collected from an undeveloped easement in Mower 
County, MN, USA ; and (e) MOCK, ZymoBIOMICSTM microbial community 
standard composed of 8 prokaryotic and 2 eukaryotic microorganisms in 
logarithmic distribution (CSII) obtained from Zymo Research Corporation, 
Irvine, CA, USA, Product D6310, Lot#: ZRC190842.

Additional file 2: Supplementary Figure 1. Resistome beta-diversity. 
Non-metric multidimensional scaling ordination plots used to identify 
differences in resistome beta-diversity at the group level of ARG ontology, 
across sample types (a): +Abx (black), −Abx (red), FMT (green), and SOIL 
(blue), as well as according to sample type and sequencing approach 
(b): −Abx using TELSeq (green); −Abx using PacBio (pink); −Abx using 
Illumina (black); FMT using TELSeq (magenta); FMT using PacBio (cyan); 
FMT using Illumina (blue); SOIL using TELSeq (orange); SOIL using PacBio 
(gray); SOIL using Illumina (yellow). Ordinations were based on Euclidean 
distances derived from Hellinger-transformed alignments counts.

Additional file 3: Supplementary Figure 2. Mobilome abundance, by 
MGE type. Kernel density (y-axis) plots depicting the log10 relative abun-
dance (x-axis) of sequence depth-normalized MGE accessions detected in 
−Abx, FMT, and SOIL samples by TELSeq, PacBio, and Illumina sequenc-
ing platforms. Mobile element data are shown for specific mobilome 
classes: ICE (purple); IS (chartreuse); plasmid (blue); prophage (green); TE 
(magenta); Virus (sky blue).

Additional file 4: Supplementary Figure 3. Sequencing coverage for 
two eukaryotic constituents of MOCK. Sequencing coverage achieved by 
GridION is indicated in gray, while TELSeq coverage is indicated in tan (2kb 
library), blue (5kb library) and green (8 kb library). Zoomed-in subsets from 
select loci of each genome are included for visualization purposes. Log10 
relative abundance of each genome in MOCK is displayed beneath the 
genome name.

Additional file 5: Supplementary Table 1. Sequencing and on-target 
statistics by sample type and platform.

Additional file 6: Supplementary Table 2. Summary of ARG and MGE 
relative composition and richness identified by TELSeq, PacBio, and Illu-
mina reads generated from +Abx, −Abx, FMT, SOIL and MOCK replicates.

Additional file 7: Supplementary Table 3. TELSeq sequencing sensitiv-
ity, sequencing specificity, and excess read depth, by genome and MOCK 
replicate (2kb, 5kb and 8kb).

Additional file 8 Supplementary Table 4. Summary of species distribu-
tion and previously generated sequencing results for the ZymoBIOMICSTM 
mock microbial community standard (CSII) in logarithmic abundance.
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