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Abstract 

Background:  Microbial communities in both natural and applied settings reliably carry out myriads of functions, 
yet how stable these taxonomically diverse assemblages can be and what causes them to transition between states 
remains poorly understood. We studied monthly activated sludge (AS) samples collected over 9 years from a full-scale 
wastewater treatment plant to answer how complex AS communities evolve in the long term and how the commu-
nity functions change when there is a disturbance in operational parameters.

Results:  Here, we show that a microbial community in activated sludge (AS) system fluctuated around a stable 
average for 3 years but was then abruptly pushed into an alternative stable state by a simple transient disturbance 
(bleaching). While the taxonomic composition rapidly turned into a new state following the disturbance, the meta-
bolic profile of the community and system performance remained remarkably stable. A total of 920 metagenome-
assembled genomes (MAGs), representing approximately 70% of the community in the studied AS ecosystem, were 
recovered from the 97 monthly AS metagenomes. Comparative genomic analysis revealed an increased ability to 
aggregate in the cohorts of MAGs with correlated dynamics that are dominant after the bleaching event. Fine-scale 
analysis of dynamics also revealed cohorts that dominated during different periods and showed successional dynam-
ics on seasonal and longer time scales due to temperature fluctuation and gradual changes in mean residence time in 
the reactor, respectively.

Conclusions:  Our work highlights that communities can assume different stable states under highly similar environ-
mental conditions and that a specific disturbance threshold may lead to a rapid shift in community composition.

Keywords:  Microbial community, Alternative stable states, Time-series, Activated sludge, Disturbance, Stability, 
Resilience
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Introduction
Because humans rely on myriads of services provided 
by complex microbial communities in both natural and 
applied settings, an important question is how environ-
mental change affects community structure and function. 

The classical view from macroecology is that communi-
ties display resilience toward perturbation until a tipping 
point is reached after which the system may enter a new 
state. Such alternative states can be stable and have dif-
ferent properties from the original [1]. For microbial 
systems, recent work has suggested that communities 
of different taxonomic composition can encode much 
of the same metabolic pathways, and hence be func-
tionally highly similar [2, 3]. However, it remains poorly 
understood how stable these taxonomically diverse 
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assemblages can be and what causes them to transition 
between states.

Activated sludge (AS) is a prime example of complex 
microbial communities mediating important engineered 
functions. These communities self-assemble according 
to the operational parameters of wastewater treatment 
plants (WWTPs) [4] and affect the removal of pollutants, 
including organic carbon, nitrogen, and phosphorus, 
from wastewater [5, 6] and prevent the spread of waste-
water-borne diseases [7, 8]. A key question thus is how 
reliably these processes occur under regular variation of 
WWTP operational parameters as well as under more 
irregular disturbances. While high throughput ampli-
con sequencing of the 16S rRNA gene has been widely 
applied to resolve the complex microbial community 
structure in AS at different temporal and spatial scales 
[9–17], the relationship between community dynamics 
and metabolic functions cannot be unraveled by taxo-
nomic surveys alone. Some statistical analyses have sug-
gested deterministic community assembly mediated by 
environmental filtering and biological interactions in 
AS [18–22], but it remains unknown how complex AS 
communities evolve in the long term, and how the com-
munity function changes when there is a disturbance in 
operational parameters.

With advances in sequencing technology and comput-
ing resources, numerous bacterial and archaeal metage-
nome-assembled genomes (MAGs) recovered from AS 
metagenomes have greatly expanded our understanding 
of conserved and shared functional guilds in full-scale 
AS systems [23, 24]. Despite the large-scale spatial stud-
ies that can be used to construct the genome catalog of 
microorganisms in AS systems, single or limited sam-
pling points cannot unravel ecological insights on com-
munity dynamics and response to disturbance [25]. Here, 
we apply metagenomic sequencing to 97 monthly AS 
samples over 9 years (June 2007 to December 2015) from 
the same aeration tank of Shatin WWTP (Hong Kong 
SAR, China). To characterize the community composi-
tion and temporal dynamics, we recover non-redundant 
bacterial and archaeal MAGs that represent the majority 
of the community in the AS ecosystem. We show that one 
transient and simple disturbance can abruptly change the 
taxonomic composition to an alternative state. Using the 
reconstructed gene catalog of the AS system, we deter-
mine the impact of microbial community turnover on 
the changes of metabolic functions relating to the perfor-
mance of WWTP. We also use network inference to link 
the microbial cohorts with correlated dynamic patterns 
to the regular seasonal variation and the onset of gradual 
operational changes of the WWTP. We further conduct 
comparative genomic analyses and reveal the metabolic 
differentiation of microbial cohorts in response to the 

changes in operational parameters. Overall, our work 
suggests that under highly similar conditions, alternative 
stable community states may exist and be characterized 
by different taxonomic composition but similar func-
tional capabilities.

Methods
AS sampling and environmental data
AS samples were collected monthly from June 2007 to 
December 2015 (Supplementary Table  S1) at the same 
sampling point in Shatin WWTP (22.406 N, 114.213 E), 
which is the largest secondary WWTP treating saline 
sewage in Hong Kong. As approximately 80% of the 
residents are supplied with seawater for toilet flushing, 
the sewage treated by Shatin WWTP is saline wastewa-
ter comprising ∼30% of seawater. Samples were diluted 
with absolute ethanol at a volume ratio of 1:1 for bio-
mass fixation and then stored in a refrigerator at −20 °C. 
Operational parameters were collected from the Drain-
age Services Department, Hong Kong. As the stud-
ied WWTP encountered a seasonal foaming problem, 
engineers started small trial experiments at the end of 
December 2009 and full trial experiments (1–3 g Cl2/kg 
MLSS/day) since February 2010 by adding bleach solu-
tion (sodium hypochlorite). The bleach solution was 
continuously added to the aeration tanks from 1 January 
2011 to 31 May 2011, while batch addition was adopted 
in other months with bleaching events. The addition 
of bleach solution effectively alleviated the biological 
foaming and stopped in 2014. Other detailed informa-
tion regarding sewage treatment performance, physico-
chemical conditions are summarized in Supplementary 
Table S2.

DNA extraction and metagenomic sequencing
A 1  mL aliquot of each diluted sample was centri-
fuged to obtain a pellet of ~ 200  mg, which was sub-
ject to DNA extraction with the FastDNA Spin Kit for 
Soil (MP Biomedicals). The extracted DNA samples 
were then sequenced on an Illumina HiSeq 4000 plat-
form (150  bp paired-end reads, 350  bp insert size) by 
the Beijing Genomics Institute (BGI), generating a total 
of 97 metagenome datasets with sequencing amounts 
5.6 ± 0.76 Gb. A total of 539.9 Gb metagenomic sequenc-
ing data were generated from the time series AS samples. 
We have previously shed light on the dynamics of virome 
[26] and antibiotic resistance genes (ARGs) [27].

Gene catalog and MAGs recovery
Quality controlled reads were de novo assembled using 
CLC Genomic Workbench (version 6.04, QIAGEN Bio-
informatics, Denmark) and MEGAHIT [28]. Different 
assembly strategies, including single dataset assembly 



Page 3 of 15Wang et al. Microbiome           (2021) 9:199 	

and multiple samples co-assembly, were used in the pre-
sent study. Briefly, metagenomic sequences from AS sam-
ples were independently assembled and co-assembled 
(yearly samples) using CLC Genomic Workbench with a 
k-mer of 35, automatic bubble size, and scaffolding. The 
assembled scaffolds with length > 1 kb were retained for 
downstream analysis (Supplementary Table  S1). Also, 
metagenomic sequences of all AS samples were co-
assembled using MEGAHIT with default parameters to 
recover the contigs that were not assembled due to lim-
ited sequencing depth. The open reading frames (ORFs) 
on all the assembled contigs were predicted using Prodi-
gal (-meta mode) (v2.6.3) [29] and clustered using CD-
HIT (v4.6.8) [30] at a cutoff of 95% sequence identity and 
90% alignment coverage of the shorter sequence [31]. 
We obtained a gene catalog comprising 12,588,406 non-
redundant genes. Rarefaction curve of detected genes 
in given number of AS samples was summarized using 
a python script (Supplementary S1, script 1). To taxo-
nomically annotate the recovered gene catalog, the non-
redundant genes were searched against NCBI nr database 
(release March 24, 2019) using DIAMOND v0.9.22.123 
[32] with E value ≤ 1e − 5. Reference protein ids of best 
hits were used to parse the taxonomic affiliation.

The co-assembly results of each year were imported 
to MetaWRAP to recover bacterial and archaeal MAGs. 
Both the bin_refinement and reassembly_bins modules 
from MetaWRAP were performed to refine the recov-
ered MAGs and improve completion and N50 of the 
newly recovered MAGs, respectively. The completeness 
and contamination of the newly recovered MAGs were 
estimated using CheckM (v1.0.18) [33] with lineage-
specific marker genes with default parameters (Supple-
mentary Table S3). Only MAGs with completeness ≥ 50% 
and contamination ≤ 10% were retained for downstream 
analysis. The recovered MAGs from different years’ sam-
ples were dereplicated using dRep (v2.3.2) [34] at the 
thresholds of 90% Mash similarity for the primary clus-
tering and 99% ANI for the secondary clustering (default 
parameter), ≥ 50% completeness, and ≤ 10% contamina-
tion to remove the replicated MAGs.

Phylogenomic tree
Sets of 122 archaeal and 120 bacterial marker genes from 
the newly recovered MAGs and the selected reference 
genomes close to the newly recovered MAGs (NCBI Ref-
Seq database) were classified using the ‘identify’ mod-
ule of GTDB-Tk (v0.2.1) [35, 36]. The identified marker 
genes were then aligned and concatenated using the align 
module of GTDB-Tk [36]. FastTree (v2.1.10) [37] was 
then used to infer a genome tree based on the concat-
enated alignment of the identified markers genes under 

the WAG + GAMMA model [36]. The genome tree was 
imported into iTOL [38] for further refinements.

Genome annotation
Genes in the newly recovered MAGs were predicted 
using Prodigal (v2.6.3) [29] and initially annotated using 
Prokka (version 1.11) [39]. The genes in each MAG were 
also searched against the KEGG prokaryotes database 
(release 80.1) using DIAMOND (v0.9.22.123) [32], taking 
the best hit with an E value < 1e − 10 to assign the pre-
dicted genes to KEGG orthology (KO) groups. Metabolic 
pathways in MAGs were then reconstructed using KEGG 
Mapper (v4.1) [40]. The MAGs that need further inves-
tigations were annotated using online platforms Ghost-
KOALA [41] and IMG/MER [42]. All protein sequences 
from each MAG were searched against dbCAN HMMs 
V7 [43, 44] using HMMSCAN [45]. The hmmer3 out-
puts were parsed by the hmmscan-parser.sh script. The 
diversity and abundance of CAZy modules identified 
in each MAG were summarized using an online script 
(https://​github.​com/​yuboer/​genome-​centr​ic-​portr​ait-​of-​
cellu​lose-​hydro​lysis). The potential transporter genes of 
studied MAGs were performed using the Transporter 
Automatic Annotation Pipeline (TransAAP) (membran-
etransport.org).

Dynamics of microbial community and functional structure
Metagenomic sequences and MAGs based microbial 
community dynamics were conducted in this study. 
Metagenomic sequences from each sample were assigned 
to taxonomic labels using three different approaches: 
Kraken (v2.0.7) [46], mOTUs2 (v2.1.0) [47], and Sin-
gleM (v0.12.0, https://​github.​com/​wwood/​singl​em). For 
Kraken and mOTUs2, the default parameters were used 
to profile the community structure. For SingleM, the rela-
tive abundance of community structure was estimated 
based on the sequence count of ribosomal protein  L2. 
The relative abundance of the dereplicated MAGs was 
also calculated using CoverM (v0.2.0, https://​github.​
com/​wwood/​CoverM), which mapped metagenomic 
sequences to the MAGs with default parameters. The 
microbial community composition was summarized 
based on the taxonomic assignment at phylum level. The 
community dynamics of sequences were compared to 
MAGs-based results.

Vegan [48] was used to calculate the alpha- and beta-
diversity based on the microbial community composition 
results of SingleM and MAGs-based analyses. Principal 
coordinates analysis (PCoA) of microbial community 
composition was conducted based on the Bray–Curtis 
distance. Distance-based redundancy analysis (dbRDA) 
[49] was used to find the environmental variables that 
best explained the patterns of community dynamics over 

https://github.com/yuboer/genome-centric-portrait-of-cellulose-hydrolysis
https://github.com/yuboer/genome-centric-portrait-of-cellulose-hydrolysis
https://github.com/wwood/singlem
https://github.com/wwood/CoverM
https://github.com/wwood/CoverM
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time. Significant variables were determined with a mul-
tivariate non-parametric ANOVA (Benjamini–Hochberg 
adj. P < 0.01). Additionally, a time-decay dissimilarity 
analysis between AS samples was conducted to explore 
the recurrence of the AS microbial communities (Supple-
mentary S1, script 2).

To profile the dynamics of functional structure of the 
microbial community, the non-redundant gene catalog 
was annotated to KOs following the method mentioned 
above. The coverage of functional genes in each sample 
was calculated using CoverM at a cutoff of 95% sequence 
identity and 50% alignment coverage of the mapped 
metagenomic sequences. For each functional pathway, 
the abundance was calculated as the sum of marker KOs’ 
coverage normalized by the number of KOs. For the com-
parative analyses between AS samples, the abundance of 
a given functional pathway was normalized by the sums 
of all studied pathways’ abundance.

Network analysis and microbial community clustering
To investigate the time-dependent correlations between 
microbial members and environmental variables, the 
extended local similarity analysis (ELSA, v1.0.6) [50] 
was used for network analysis. The P value estimation 
was calculated with theoretical approximation (-p theo). 
Dynamics of bacterial and archaeal members that have 
been identified as relatively abundant populations (rela-
tive abundance > 0.5%) in at least one AS sample were 
integrated with environmental variables for network 
analysis. The strong (local similarity (LS) score ≥ 0.6 
or ≤  − 0.6) and statistically significant (P value ≤ 0.05; 
False-discovery rate, that is Q value, ≤ 0.01) correla-
tions were retained from the eLSA analysis results. 
Synchronous associations and time-shifted (1  month) 
correlations between microbes and between microbe and 
environmental factors were visualized using Cytoscape 
v3.7.1 [51]. Statistical and topological characteristics of 
the network were determined for undirected networks 
using Network Analyzer [52]. Microbial community 
clustering was performed using the Markov CLustering 
Algorithm (MCL) in the Cytoscape plugin clusterMaker 
[53] based on the values of LS, which generated five clus-
ters (C1-C5). Besides, the relative abundance values of 
MAGs used for network analysis were normalized by Z 
score. The normalized matrix is then used to perform 
partitional clustering based on the K-medoids algorithm 
(pam function from R package ‘cluster’). The number of 
clusters (k) for K-medoids analysis was determined by 
the Davies-Bouldin index [54].

Statistics for metabolic traits of microbial community
EnrichM v0.5.0 (https://​github.​com/​geron​imp/​enric​hM) 
was used to identify the statistically enriched KEGG 

modules between classified microbial cohorts. Briefly, 
all functional genes in MAGs from different microbial 
cohorts were annotated with KO. The obtained KO fre-
quency matrix for annotated MAGs was used to perform 
statistical tests for the enrichments of KEGG modules 
between any two identified microbial cohorts. Pairwise 
Mann–Whitney U test was applied to the number of sig-
nificantly enriched steps (i.e., reactions) present between 
MAGs from microbial cohorts [55]. Only enriched mod-
ules with > 60% completeness (enriched steps/all steps 
for a metabolic module) were discussed in the present 
microbial cohorts pairwise comparison.

Results
Gene and genome catalog of activated sludge microbiome
From our longitudinal sampling of AS microbiota over 
9 years, we recovered 539.9 Gb DNA sequence data from 
97 samples with an average (± standard deviation) data 
size of 5.6 (± 0.76) Gb (Supplementary Table  S1). To 
better explore the genetic diversity, we first constructed 
a reference gene catalog for the AS system by predict-
ing ORFs from assembled contigs, recovering 12.6  M 
(million) non-redundant genes from bacteria (73.2%), 
eukaryotes (1.4%), archaea (0.6%), viruses (0.2%), and 
unclassified taxa (24.6%). This gene catalog recruited an 
average of 82.4% (± 5.0) of metagenomic sequence reads 
from the samples (Supplementary Table S4). Rarefaction 
analysis showed asymptotic behavior, suggesting that the 
major genes were nearly completely sampled when the 
sample number was more than 55 and sequencing depth 
more than ~ 300 Gb (Supplementary Figure S1).

We further recovered 2178 MAGs with complete-
ness ≥ 50% and contamination ≤ 10% from the co-assem-
bled metagenomes. After dereplication at an average 
nucleotide identity (ANI) cutoff of 99% [55], 920 MAGs 
were retained and used for further genome-centric anal-
ysis (Supplementary Tables S4). These MAG clusters 
recruited an average of 69.7% (± 2.6) of the metagen-
omic reads from different AS samples (Supplemen-
tary Table S5). Based on the phylogenomic tree (Fig. 1), 
most of these MAGs were affiliated with the bacterial 
phyla Proteobacteria (257 MAGs), Bacteroidota (127), 
Planctomycetota (89), Chloroflexota (82), Patescibacte-
ria (80), Actinobacteriota (69), Verrucomicrobiota (37), 
Myxococcota (36), and Bdellovibrionota (31). There were 
also MAGs from the candidate phyla Calditrichota (12 
MAGs), OLB16 (7), Nanoarchaeota (6), UBP1 (3), UBP7 
(3), AABM5 (2), Delongbacteria (2), Eremiobacterota (2), 
KSB1 (2), SAR324 (1), and UBP3 (1). Notably, approxi-
mately 60% of the recovered MAGs were novel and 
affiliated with unclassified genera based on the Genome 
Taxonomy Database [36, 56] (Supplementary Table  S3), 
indicating that the saline activated sludge under study is a 

https://github.com/geronimp/enrichM
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reservoir of yet-to-be-cultured and functionally unchar-
acterized populations.

Simple disturbance induced alternative stable state
The community in the AS system displayed remarkably 
high temporal stability that was, however, pushed to 
an alternative stable state by a single disturbance after 

3 years (Fig. 2a and b). The disturbance was caused by 
the addition of bleach solution (NaOCl) at the end of 
2009 to control biological foaming (Supplementary 
Table  S2). This intervention led to a major commu-
nity shift from an Actinobacteriota to a Proteobacteria 
dominated community both of which were stable over 
many months, hence, the designation as an alternative 

Fig. 1  Phylogenetic distribution of the 920 dereplicated MAGs recovered in the present study and selected reference genomes. The phylogenetic 
tree was inferred from 120 bacterial and 122 archaeal proteins. The identification and alignment of the conserved proteins were performed using 
the GTDB-Tk [56]. The completeness of these MAGs was estimated using CheckM [33]. The branches of MAGs that significantly enriched in the 
first 3 years’ sample and the following 6 years are colored in orange and green. The numbers in brackets represent the recovered MAGs and MAGs 
cannot be assigned into reported genera

Fig. 2  Dynamics of microbial community and microbial diversity. a Phylum-level taxonomic variability shows the relative abundance based on the 
ratio of recruited reads of the dereplicated MAGs. Bleaching events are marked with red lines on the x-axis. b Principal coordinate analysis (PCoA) 
of studied AS samples based on Bray–Curtis distances of MAG clusters-based community structure. c Time lag between samples (first 3 years and 
following 6 years) versus Bray–Curtis dissimilarity. Only MAGs represented in at least 20% of samples are used for establishing community dynamics

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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stable state [57]. Specifically, 50.7% of bacteria within 
the phylum Actinobacteriota (35 MAGs) and 57.3% 
of bacteria within the class Gammaproteobacteria (71 
MAGs) were significantly (adj. P < 0.05) enriched in the 
samples before and after the end of 2009, respectively 
(Fig.  1 and Supplementary Table  S3). A recent study 
reported the global AS communities found that most 
of the core bacterial members belonged to Proteo-
bacteria [17], which was consistent with the observed 
dominance of proteobacterial organisms after bleach-
ing event. While the AS community dominated by taxa 
within the phylum Actinobacteriota was not observed 
in that global AS sampling campaign [17]. Moreover, 
the decline of bacteria was accompanied by emergence 
of new bacteria with distinct phylogenomic affilia-
tions after the end of 2009 (Supplementary Figure S2), 
demonstrating the change of taxonomic composition 
after the bleaching event. This sharp change in micro-
bial community composition was further confirmed 
by read-based diversity analysis (Supplementary Fig-
ures S3, S4 and Table S6). Despite the fact that bleach 
solution was also used in the Spring of 2011 to 2013, 
this did not lead to a similarly dramatic change in 
microbial community composition, indicating that the 
community had changed to a stable state that was more 
resilient to this periodic stressor.

Although the two community states before and after 
the primary bleaching event appeared stable, the MAG-
based community profiles showed some changes in 
Bray–Curtis similarity that consisted of (i) seasonal 
fluctuations with a periodicity of ~ 12  months, and (ii) 
a moderate decay over time (Fig.  2c). While the sea-
sonal fluctuations might be driven by seasonal tem-
perature variation, community changes over longer 
periods showed a close relationship with the increase 
in mean cell residence time (MCRT). Distance-based 
redundancy analysis (Supplementary Figure S5 and 
Table  S7) revealed that these two factors together 
explained 22.5% of the compositional variation, while 
MCRT showed a relatively strong correlation with 
PC1 (R2 = 0.45; Supplementary Figure S6). The MCRT 
increased after the middle of 2010 and was associ-
ated with a gradual increase in richness of microbial 
communities (Supplementary Figure S7). Moreover, 
warmer temperature appeared to be associated with 
higher diversity since one-way ANOVA of Pielou even-
ness and Shannon index revealed a seasonal trend with 
the highest (Mann–Whitney, P < 0.05) alpha-diversity 
being identified in summer. These analyses thus sug-
gested that increase in MCRT led to gradually increas-
ing diversity in the community state post disturbance, 
while the seasonal fluctuations in diversity persisted 
across the disturbance.

Succession of microbial cohorts underpins taxonomic 
turnover
Further analysis of the observed seasonal and longer 
term community turnover revealed that changes in taxo-
nomic richness are due to successions of defined cohorts 
(clusters of correlated MAGs). We analyzed MAGs that 
showed a relative abundance > 0.5% at least once in the 
time series to investigate whether they shifted in a cor-
related manner within the overall community [58]. Based 
on this analysis, these more abundant organisms were 
grouped into five distinct cohorts (C1-C5) based on 
local similarities calculated by extended Local Similar-
ity Analysis (eLSA) [50] (Fig.  3a). Four of these cohorts 
were confirmed by K-medoids-based partitioning clus-
tering analysis based on the Davies-Bouldin index (DBI) 
(Supplementary Figure S8). Most of the MAGs within 
C1 (96.7%), C2 (82.1%), C4 (84.8%), and C5 (91.8%) were 
consistent among the two methods, while taxa within C3 
were not resolved by K-medoids-based analysis due to 
the prespecified number of clusters (K).

The cohorts showed cohesive dynamics over different 
time periods suggesting that their members respond dif-
ferently to seasonal and operational factors of the treat-
ment plant. Cohort 1 (C1) dominated in the first 3 years 
(2007–2009) prior to the disturbance and increase in 
MCRT, accounting for an average of 41.6% of the total 
metagenomic sequence reads. After the primary bleach-
ing event, successional dynamics occurred with 3 cohorts 
partially replacing each other after a few years. Cohort 
C3 dominated in the 2  years after the bleaching event 
(2010–2011), followed by cohorts C4 (2012–2013) and 
C5 (2014–215), respectively (Fig.  3b). Interestingly, as 
C4 decreased, C3 rose again in abundance, indicat-
ing that members of C3 and C5 can coexist to a larger 
extent with each other than with members of cohort C4, 
respectively. Cohort C2, on the other hand, was present 
throughout the entire observation period and showed 
seasonal dynamics with peaks in abundance in the spring 
(Fig.  3b). Overall, these dynamics show that seasonal 
variation as well as decrease in community similarity 
over time is driven by successional changes in defined 
subcommunities.

Among the measured factors, the dynamics of micro-
bial cohorts were strongly linked to MCRT, dissolved 
oxygen (DO), pH, temperature, and mixed liquor sus-
pended solids (MLSS), as shown in the dbRDA analysis 
(ANOVA P < 0.001, Supplementary Figure S9). The suc-
cessional patterns among cohorts C3, C4, and C5 were 
mostly influenced by the increase in MCRT, overall 
explaining 33.9% of the total variation. Temperature, pH, 
and DO collectively explained 13.2% of the total variation 
and could be further linked to the differentiation of C2, 
C3, C4, and C5. For instance, high DO concentration in 
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Fig. 3  Identification of microbial cohorts. a Environment-MAGs network uncovered local and potentially time-delayed co-occurrence and 
association patterns between bacteria and environmental variables in activated sludge. Only statistically significant (P value ≤ 0.05, Q value ≤ 0.01) 
and strong (local similarity score ≥ 0.6 or ≤  − 0.6) correlations are shown in this figure. The line thickness is proportional to the absolute value of 
local similarity, and dash line indicates a 1-month shift/delay in the correlation. Node size and color represent the degree and identified clusters 
using Markov CLustering Algorithm (MCL). b Ridge plot shows the temporal dynamics of identified microbial cohorts. The numbers in the ridge plot 
are the maximum relative abundance of microbial cohorts
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the aeration tank correlated with the bloom of C2, while 
higher temperatures and pH may have enriched cohort 
C5.

Functional stability persists while taxonomic composition 
changes
In spite of the strong shift in taxonomic composition 
associated with the disturbance at the end of 2009, meta-
bolic profiles proved remarkably stable throughout the 
entire 9-year sampling period (Fig. 4a and Supplementary 
Table S8). Key metabolic functions, such as amino acid, 

carbohydrate, lipid metabolisms, and energy generation 
remained nearly invariant before and after the bleaching 
event at the end of 2009. Taking energy metabolism as an 
example (Supplementary Figure S10), even level-3 path-
ways were highly invariant as evidenced by gene abun-
dance of carbon fixation in photosynthetic organisms. 
This function only slightly increased from an average 
of 1.6% (2007–2009) to 1.7% (2010–2015) even though 
there was taxonomic turnover.

Consistent with the community-wide pattern, the two 
dominant bacterial phyla prior and after the disturbance 

Fig. 4  Microbial diversity contributes to the relatively stable functional distribution. a Functional profile of Kyoto Encyclopedia of Genes and 
Genomes (KEGG) standard categories. For each functional pathway, the relative abundance was calculated as the sum of marker KOs’ coverage 
normalized by the number of KOs. Relative abundance of a given functional pathway was normalized by the sums of all studied pathways’ 
abundance. Details of amino acid, carbohydrate, and lipid metabolisms are expanded. b Ridge plot shows the most abundant bacteria that were 
affiliated with the phyla Actinobacteriota and Proteobacteria. The numbers in the ridge plot are the maximum relative abundance of bacteria
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also displayed high functional similarity. Principal coor-
dinate analysis based on the KEGG metabolic modules 
of the key metabolic pathways revealed high overlap 
between Actinobacteriota and Proteobacteria, which 
dominated in the first and second community states, 
respectively (Supplementary Figure S11). Detailed analy-
sis of the most abundant MAG clusters further confirmed 
the functional redundancy among taxonomically distinct 
microorganisms (Supplementary Figure S12). Metabolic 
modules involved in lipid, amino acid, and carbohydrate 
metabolisms that may affect the wastewater treatment 
process displayed high redundancy in the most abun-
dant organisms prior (ACTI_48 and ACTI_50) and after 
(PROT_156, PROT_162, and PROT_164) the bleaching 
event. The overall functional stability in terms of carbon 
metabolisms was also confirmed by the relatively stable 
COD removal from the wastewater over 9 years (Supple-
mentary Figure S13).

Interestingly, within the phyla Actinobacteriota and 
Proteobacteria, many of the most abundant MAG clus-
ters showed repeated cycles of non-overlapping occur-
rence (Fig.  4b), suggesting that in addition to positive 
correlations analyzed above, more fine-scale succession 
and/or competitive exclusion also occur. Although these 
dynamics point to ecological differentiation among these 
very closely related MAGs, metabolic analysis confirms 
their high functional similarity. This pattern is consist-
ent with recent findings that ecological differentiation of 
populations may involve few genes and may thus not be 
reflected in the relatively coarse-grained metabolic analy-
sis (e.g., reconstruction of high-level metabolic pathways) 
that is usually used to judge functional similarity [59, 60]. 
Taken together, although the stability of key functions 
transcended the major shift in microbial community 
composition induced by the bleach addition in 2009, fine-
scale dynamics show that there may be important differ-
ences that influence the dynamics of the community.

Variation in function differentiates cohort populations
Considering the successional dynamics among micro-
bial cohorts, we further asked what kind of functions 
might be variable over time amidst the overall stability. 
This analysis suggested that functional variation could 
be differentiated into continuously changing and 
cohort enriched pathways. Examples for continuous 
change are total gene abundances of cell motility, which 

increased from an average of 2.7% (2007–2009) to 4.3% 
(2010–2015) (Supplementary Figure S14). The increased 
prevalence of chemotaxis and flagellar assembly genes 
coincided with increasing MCRT and MLSS in the aera-
tion tank after the end of 2010 (Supplementary Table S2). 
In addition, total genes indicative of nitrification continu-
ously increased even though the KEGG nitrogen metab-
olism was highly stable. This change in nitrification was 
accompanied by increasing MCRT (Supplementary Fig-
ure S10) and was consistent with the more stable ammo-
nia removal performance (Supplementary Figure S15), 
suggesting that the low growth rate organisms, such as 
ammonia oxidizers and nitrite oxidizers, were favored by 
the longer MCRT.

Five putative polyphosphate accumulating organ-
isms (PAOs), three Candidatus Accumulibacter MAGs 
(PROT_157, PROT_158, and PROT_159) and two Tetras-
phaera elongate MAGs (ACTI_29 and ACTI_30), were 
identified from the AS metagenomes. ACTI_29 affiliat-
ing with cohort C2 was identified as seasonal prevalent 
PAO with relative abundance up to 10.9% (December 
15, 2008) (Fig. 4b). Controlling phosphorous discharged 
from Shatin WWTP is not a key factor in preventing 
eutrophication of seawater. Therefore, the system was 
not deliberately operated to achieve biological removal of 
phosphorous, which may explain the observed weak cor-
relations between ACTI_29 and phosphorous removal 
(Spearman’s ρ = 0.37, adj. P < 0.001). Additionally, a Gor-
donia bacterium (ACTI_34) affiliating with cohort C2 
known to cause foaming was significantly inhibited after 
the end of 2009 (Fig. 4b), which was in line with the miti-
gation of sludge foaming after the bleach addition.

Although cohorts were highly similar in central car-
bon and energy metabolisms, individual microorganisms 
from different cohorts did indeed show significant dif-
ferentiation in a few metabolic as well as environmental 
information processing modules, classified as membrane 
transport, cell motility, and cellular community (e.g., 
quorum sensing and biofilm formation). These signifi-
cantly enriched (adj. P value cutoff of 0.05) KEGG mod-
ules were identified by pairwise comparison of all cohorts 
based on the annotation results (KO matrix) of micro-
bial MAG clusters (Fig.  5a, Supplementary Table  S9). 
Accordingly, MAGs from cohort C1 showed significant 
(adj. P < 0.05) enrichment of the dipeptide, branched-
chain amino acids, polar amino acid, thiamine, simple 

(See figure on next page.)
Fig. 5  Comparative genomic analysis. a Pairwise comparison of enriched metabolic modules between two microbial cohorts. Each circle node 
represents > 60% steps/reactions of a specific metabolic module that are significantly enriched in given microbial cohort. Node color represents 
different standard KEGG categories. The solid line and dash line represent metabolic modules enriched in which cohort when conducting pairwise 
comparison. Details of enriched modules can be found in Supplementary Table S9. b Schematic overview of microbial dynamics and morphological 
changes over time. Microorganisms from different cohorts are represented with different colors. The morphological change of sludge over time was 
predicted based on comparative genomic analysis
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Fig. 5  (See legend on previous page.)
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sugar transportation systems, suggesting higher reliance 
on peptides and amino acids as carbon sources. Given 
the unique saline sewage of the studied WWTP, enrich-
ment of osmolarity response modules (e.g., betaine bio-
synthesis, osmotic stress response, and acidity sensing) in 
individual organisms of C1 was consistent with the more 
intensive fluctuation and higher maximum concentration 
of salinity in the first 5 years (2007–2011) than in the fol-
lowing years (Supplementary Figure S16).

Enrichment of KEGG modules also suggested increased 
importance of biofilm formation in the microorganisms 
affiliating with the successional cohorts C3-C5. For exam-
ple, type IV fimbriae synthesis was significantly enriched 
(P < 0.05) in the individual members of these cohorts (i.e., 
C3-C5), indicating more widespread ability to attach to 
surfaces. Additionally, MAGs within C3 and C4 harbored 
significantly more genes for quorum sensing, which 
are important for communication in biofilms at high 
cell density [61]. Several functional modules, including 
swarming activity, biofilm formation, lipopolysaccharide 
export, and alginate production, were more prevalent 
(P < 0.05) in C3 compared to C1, revealing an increased 
ability to aggregate in the cohort that was dominant after 
the bleaching event (Fig. 5b). Finally, increasing biomass 
concentration in the AS system coincided with a higher 
relative gene copy number of glycoside hydrolases (GH) 
in C4 and C5 differentiating them from the cohorts 
dominating in the first 5  years (Supplementary Figure 
S17). Specifically, genes encoding endoglucanase (GH74) 
exhibited at much higher frequency in C4 and C5, and 
genes for cellulose binding were twofold more abundant 
in the other cohorts. Thus, along with increased ability 
to attach, a shift from reliance on simple sugar to poly-
meric resources (i.e., solid), may have occurred within 
the second community state under increasing MCRT and 
increased ability to aggregate (Fig. 5b).

Discussion
How taxonomic structure relates to functional perfor-
mance of microbial communities is a key question in 
microbial ecology. Our long-term longitudinal sam-
pling of self-assembled communities in a WWTP sug-
gests that the highly similar environmental conditions 
can support divergent communities that remain rela-
tively stable over time and perform the same essential 
cellular functions. A simple, short-term disturbance 
induced the shift between these alternative stable states 
where the chlorination event appears to have affected 
the originally dominant Actinobacteriota dispropor-
tionately, leading to their replacement of functionally 
highly equivalent Proteobacteria. Moreover, the abrupt 
shift of taxonomic composition after the end of 2009 
could explain our previously observed viral dynamics 

pattern that only a few of the viral populations recov-
ered from samples taken in 2016 were detected before 
2010 [26]. This dynamic is also a rare example of the 
original concept proposed by Lewontin that communi-
ties can exist in different stable states under fixed envi-
ronmental conditions and that disturbances specifically 
affecting some populations can induce transitions 
between these states [62]. Similar dynamics have been 
observed in gut microbiomes where disturbances such 
as major diarrheal events can induce taxonomically dis-
tinct communities although the functional components 
remain less explored [63]. More common, however, is 
the observation that changes in environmental param-
eters can induce shifts to communities that are also 
functionally different [1].

Despite the observed abrupt shifts in microbial com-
munity compositions, key metabolic functions remained 
remarkably stable over time. Such functional redundancy 
has been reported from other systems, including water 
collecting in Bromeliads [2], spatially separate ocean 
samples [64], subseafloor aquifer [65], and human micro-
biomes [66]. However, in most cases, the environmental 
conditions significantly varied across spatially distinct 
samples and it remains unclear whether more subtle, 
unmeasured factors induce assembly of alternative com-
munities under a fixed condition. In other words, would 
different community states be stable under the observed 
spatial and/or temporal manifestations of the habi-
tat type? Here, longitudinal sampling was applied to an 
aeration tank of a full-scale WWTP that remained under 
highly similar operational conditions in the first 4 years 
(2007–2010), i.e., transcending disturbance-induced 
community shift at the end of 2009. This strongly sug-
gests that the overall communities are truly functionally 
equivalent and can stably replace each other. The data 
indicate that functions were highly preserved in this 
period, even if some traits may be distributed in different 
combinations across taxa. Indeed, while the dominant 
MAGs that replaced each other displayed high similarity, 
there were differences in genetic endowment suggesting 
that some functions might be encoded in other com-
munity members. Such differential distribution of traits 
among members of different communities may create 
different ecological dependencies, for example, via com-
munity-specific patterns of cross-feeding. Specificity of 
interactions may provide cohesion to communities and 
prevent members from functionally equivalent commu-
nities from invading, ensuring stability of the community. 
It should be noted that the functional profile estimated 
based on gene and MAGs relative abundance cannot be 
directly linked to metabolic activities, but comparative 
metatranscriptomics is beyond the scope of the present 
study.
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In support of the notion that biological interactions 
may stabilize communities, our analysis of the dynam-
ics also revealed correlated cohorts of MAGs that dis-
play successional dynamics on both seasonal and longer 
time scales. Such dynamics can be deduced from longi-
tudinal sampling allowing interpretation of community 
responses in light of changes in environmental factors 
[58, 67, 68]. That the cohorts in the latter observation 
period (after 2010) when operating conditions changed 
gradually also transitioned in rather abrupt fashion sug-
gests that communities were resilient toward disturbance 
[69, 70], i.e., they did not change markedly until a thresh-
old was reached. In the case of the WWTP, the dominant 
factor was most likely the increase in MCRT, which also 
led to the most pronounced shift in functional properties 
in the communities. Later cohorts displayed more poten-
tial to aggregate, form biofilms and digest polymers, 
while the earliest cohort was enriched in genes sugges-
tive of metabolism of labile compounds. This shift is con-
sistent with the increased importance of solid resources 
induced by the higher residence time in the aeration 
tank. Moreover, the increased ability to aggregate in 
later cohorts may contribute to community tolerance or 
resistance of subsequent bleaching events after the end of 
2009 [71, 72]. Seasonal disturbances, on the other hand, 
led to the regular expansion of one cohort but the com-
munity essentially fluctuated around an average, mean-
ing it displayed resilience toward seasonal factors such as 
shifts in temperature. Finally, resilience also suggests that 
changes in operational parameters might be titrated to 
determine the tipping point of community change, espe-
cially if one community state proves superior to another 
in performance.

Conclusions
Alternative stable states in communities are key con-
cepts in environmental management and engineer-
ing [73]. Our long-term longitudinal sampling and 
metagenome analysis of AS from a full-scale WWTP 
confirmed that the highly similar environmental condi-
tions can support divergent communities that remain 
relatively stable over time and perform the same essen-
tial cellular functions. The identification of abrupt 
shifts in microbial community compositions induced 
by a simple, short-term disturbance may also help 
manage applied microbial systems such as WWTPs 
that are currently primarily monitored by taxonomic 
surveys. As the studied AS system is a unique saline 
ecosystem, important questions going forward will be 
how similar stable state communities identified in one 
system are to another. Resilience of communities may 
provide a window of conditions under which highly 

similar communities assemble. How narrow or wide 
such conditions may be, remains an open question but 
the remarkable scope of microbial diversity in nearly 
all environments [58, 74] suggests that microbes finely 
partition this environmental niche space.
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