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Abstract

The gut microbiome plays a key role in animal health and metabolism through the intricate functional
interconnection between the feed, gut microbes, and the host. Unfortunately, in aquaculture, the links between gut
microbes and fish genetics and production phenotypes are not well understood.
In this study, we investigate the associations between gut microbial communities, fish feed conversion, and fish

genetics in the domestic Atlantic salmon. Microbial community composition was determined for 230 juvenile fish
from 23 full-sib families and was then regressed on growth, carbon and nitrogen metabolism, and feed efficiency.
We only found weak associations between host genetics and microbial composition. However, we did identify
significant (p < 0.05) associations between the abundance of three microbial operational taxonomical units (OTUs)
and fish metabolism phenotypes. Two OTUs were associated with both carbon metabolism in adipose tissue and
feed efficiency, while a third OTU was associated with weight gain.
In conclusion, this study demonstrates an intriguing association between host lipid metabolism and the gut
microbiota composition in Atlantic salmon.
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Background
Efficient and environmentally sustainable animal pro-
duction systems are urgently required to ensure long-
term food security, especially as global aquaculture con-
sumption is projected to double by 2050 (www.fao.org).
One important aspect of improving sustainability is to
improve feed conversion and growth. In humans and
other vertebrate systems, the gut microbiome plays a
central role in the path from “feed-to-animal” [1–4], and
recent studies have also shown that host-genetic factors
can modulate microbiome composition. Such functional
interconnection between feed, microbes, and host (i.e.,
the feed-microbiome-host axis) opens up intriguing ave-
nues for optimizing aquaculture production systems, for

example by breeding for “optimized” microbiome com-
position [5].
Yet, even though the dietary composition is known

to impact the gut microbiome in aquaculture species
[1], almost nothing is known about the link between
the gut microbiota and important production pheno-
types, or to what extent microbiota composition itself
could be a new breeding target for aquaculture breed-
ing programs [5].
To address this pressing knowledge gap, we use a

family-based experimental design to test if variation in
the gut microbiome composition in juvenile Atlantic
salmon is associated with key phenotypes related to host
metabolism as well as variation in host genetics. Our
results identified phenotypic associations between host
gut microbiome and lipid metabolism, growth, as well as
to feed efficiency, which open the possibility for meta-
bolic modulation through the gut microbiota.
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Materials and methods
Experimental setup
A family experiment with Atlantic salmon was carried
out at the fish laboratory, Norwegian University of Life
Sciences (NMBU), Aas, Norway, according to the laws
and regulations controlling experiments on live animals
in EU (Directive 2010/637EU) and Norway (FOR-2015-
06-18-761). The experiment was approved by the
Norwegian Food Safety Authority (FOTS ID 11676).
The family experiment is explained in detail by Dver-

gedal et al. [6]. In short, broodstock from AquaGen’s
breeding population (22 males and 23 females) were
used to generate 23 families. To ensure clearly con-
trasted family groups with respect to growth potential,
the parents were selected in two directions for high and
low estimated breeding values (EBVs) for growth in sea-
water, respectively.
Prior to the start-feeding, several families were kept in

separate compartments within the same tank, and five
tanks were needed to house all families. Based on par-
entage assignment, 100 family members were identified
for each of the 23 families and reared together in a sin-
gle tank from start-feeding until the start of the experi-
ment. A priori to the 12-day test, families were allocated
to tanks, 50 fish per tank and 2 tanks per family (except
for nine tanks in which the number of fish varied be-
tween 42 and 54, due to some mortality prior to the start
of the experiment or an increased number due to a
counting mistake). From each tank, five fish (10 fish per
family) were collected for microbiota and phenotypic
analyses; a total of 230 fish were sampled all together
(Fig. 1). Families were fed a fishmeal-based diet labeled
with the stable isotopes 15N and 13C, with inclusion

levels of 2% and 1%, respectively, as described in Dverge-
dal et al. [6].
The tanks, each with a 270-L capacity, were supplied

with water from a common source of recirculated fresh
water, at a flow rate of 7 to 8 L.min−1. The fish were kept
under 24 h light regime, with an average temperature of
14.5 °C. Dissolved oxygen was measured daily and main-
tained above 8 mg.L−1 in the outlet water (Handy Delta,
OxyGuard® AS, Farum, Denmark).

Microbiota analyses
Distal intestinal samples (n = 230) were obtained by
squeezing out the gut segment content using sterile
tweezers in 1 ml phosphate-buffered saline (PBS) and
put on ice until further processing. To distinguish be-
tween DNA from dead and alive bacteria, the samples
were treated with propidium monoazide (PMA) within 8
h post sampling in order to inactivate free DNA and
DNA in dead cells [7]. Samples were pulse centrifuged
up to 1200 rpm and split in two, where one part (n =
230, PMA treated samples) was added PMA dye (Bio-
tium, USA) to a final concentration of 50 μM, and the
other part was kept as a control (n = 230, non-PMA
treated samples) with no added PMA. The samples were
then kept dark for 5 min before exposure to light for 30
min in a lightbox from Geniul. DNA extraction (n =
460) was done using mag midi DNA extraction kit (LGC
Genomics, UK) following the manufacturer’s
recommendations.
The 16S rRNA amplicon library was prepared and se-

quenced as previously described [8]. Briefly, this involved
amplification in 25-μl volumes, with 0.2 μM of both
primers, and 2 μl genomic DNA. The PCR cycles

Fig. 1 Schematic outline of the experimental setup. Twenty-three families were distributed on 46 tanks (two tanks per family). Dominant live
bacteria were identified prior to association analyses to fish genetics and metabolism
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involved denaturation at 95 °C for 30 s, annealing at 55
°C for 30 s, with an initial heat activation at 95 °C for 15
min. Illumina modified adapters were added with 10
new PCR cycles after purification with AMPure XP
beads (Beckman-Coulter, USA). Negative controls with-
out genomic DNA were included on all PCR plates (n =
5) and included in sequencing if giving detectable band
by agarose gel electrophoresis. The sequence reads were
processed using USEARCH v8 [9] where the sequences
were paired-end joined, demultiplexed, and quality fil-
tered (maxxee = 1.0, minlength = 350, singletons dis-
carded), before operational taxonomic unit (OTU)
clustering with 97% identity threshold was performed
using the UPARSE pipeline [10]. Taxonomy assignment
was done using the SILVA database [11]. Diversity ana-
lysis was done using a sequence depth of 10,000 se-
quences per sample. These analyses were done using
default parameters.
To filter out OTUs from dead bacteria and bacteria

considered as contaminants, filtering was done using
the following criteria on each individual fish gut
microbiome; OTUs which showed a more than 3-fold
reduction in the PMA-treated sample was considered
dead, while OTUs that showed a more than 6-fold in-
crease in the non PMA-treated sample were consid-
ered contaminants because there were no other
alternative explanations. Out of the 230 fish gut
microbiomes, 188 passed the sequence quality control

filtering criteria, including rarefaction at 10,000 se-
quences as a tradeoff between number of samples and
sequencing depth, in addition to live/dead/contamin-
ation screening. Correlations between OTUs were
determined using Spearman’s rank correlation coeffi-
cient. Raw 16S rRNA sequence data are deposited in
the SRA database under the accession number
PRJNA590084.

Phenotypic data
The host metabolism-related traits analyzed are listed in
Table 1. Details for phenotypic data for growth and
metabolic traits are explained in Dvergedal et al. [6].

Outlier detection
To obtain approximate normality of the relative abun-
dances of OTUs, we transformed the OTU data using
the natural logarithm (Ln). Influence statistic was used
for outlier detection by regressing Ln (OTU) on all the
phenotypes (Table 1) using PROC REG in SAS®. The

cutoff value for outliers was calculated as 3p
.
n
(> 0.10),

where n is the number of samples (i.e., animals) used to
fit the model (n = 188), and p is the number of parame-
ters in the model. A total of 16 outliers were detected
and deleted.

Table 1 Description of the 13 variables phenotyped

No. Variables Description

1 IW Initial weight (g)

2 FW Final weight (g)

3 WG Weight gain (g) (FW − IW)

4 RG Relative weight gain (%) (((FW − IW)/FW)100)

5 AMC Atom % 13C in muscle

6 AMN Atom % 15N in muscle

7 ALC Atom % 13C in liver

8 ALN Atom % 15N in liver

9 AAC Atom % 13C in adipose tissue

10 IFCR_AMC Individual isotope-based indicator of feed conversion ratio, from atom % 13C in muscle

11 IFCR_AMN Individual isotope-based indicator of feed conversion ratio, from atom % 15N in muscle

12 IFER_AMC Individual isotope-based indicator of feed efficiency ratio, from atom % 13C in muscle

13 IFER_AMN Individual isotope-based indicator, of feed efficiency ratio, from atom % 15N in muscle

14 OTU1 Operational taxonomic unit 1, classified as Caulobacteraceae

15 OTU2 Operational taxonomic unit 2 classified as Pseudomonas fluorescens

16 OTU3 Operational taxonomic unit 3 classified as Sphingomonas

17 OTU5 Operational taxonomic unit 5 classified as Bradyrhizobium

18 OTU6 Operational taxonomic unit 6 classified as Ralstonia sp

19 OTU7 Operational taxonomic unit 7 classified as Pseudoalteromonas
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Estimation of heritability
To estimate heritabilities of the microbiota at the
level of each OTU, we first did a single-trait analysis
of variance of the Ln (OTUs). In each analysis, the
model was:

y½ � ¼ X½ � b½ � þ Za½ � a½ � þ Zt½ � t½ � þ e½ �; ð1Þ

where [y] is a vector of individual OTU “phenotypes”
(i.e., the trait), [b] is a vector of fixed effects, including
sampling dayi (i = 1–4), ½a��Nð0;Gσ2aÞ is a vector of
random additive genetic effects for the trait, ½t��Nð0; I
σ2t Þ is a vector of random tank effects for the trait, and ½
e��Nð0; Iσ2eÞ is a vector of random residuals for the trait.
The X and Z matrices are corresponding incidence
matrices, Gσ2a is the genomic (co)variance matrix, Iσ2t is
the (co)variance matrix due to tank effects, and Iσ2e de-
notes the error (co)variance matrix. The number of
phenotyped individuals was rather low (n = 172), and
the genomic relationship matrix was generated accord-
ing to VanRaden’s first method [12]. The matrix G
(2282x2282) was calculated based on a subset of 51,543
SNPs of high genotype quality, covering all autosomal
chromosomes (AquaGen’s custom Axiom®SNP genotyp-
ing array from Thermo Fisher Scientific (San Diego, CA,
USA) includes 56,177 single-nucleotide polymorphisms).

Heritabilities of the OTUs were estimated as: h2

¼ σ2a
σ2aþσ2tþσ2e

, where σ2a , σ
2
t ; and σ2e are the estimates of the

individual additive genetic, tank environmental, and in-
dividual residual variance, respectively, of the trait. The
fraction of variance explained by the tank was estimated

as: c2 ¼ σ2t
σ2aþσ2tþσ2e

. Significance of the genetic effect was

tested using a likelihood-ratio (LR) test-statistic, compar-
ing a single-trait model with genetic effects (H1) to a
model without genetic effects (H0):

LR ¼ 2ðð logLjθ̂H1Þ − ð logLjθ̂H0ÞÞ.
The genetic effect was considered significant if LR

> χ2ðα¼0:05;df¼1Þ .

Genome-wide association analysis
To associate variation in microbial composition with
host genetics, a genome-wide association study was done
using Ln (OTUs) as response variables. The analysis was
carried out by a linear mixed-model algorithm imple-
mented in a genome-wide complex trait analysis
(GCTA) [13]. The leave one chromosome out option
(--mlm-loco) was used, meaning that the chromosome
harboring the SNP tested for was left out when building
the genetic relationship matrix (GRM). The linear mixed
model can be written as:

Y i ¼ aþ bxþ g −
i þ εi; ð2Þ

where Yi is one of the Ln (OTUs) of individual i, a is
the intercept, b is the fixed regression of the candidate
SNP to be tested for association, x is the SNP genotype
indicator variable coded as 0, 1, or 2, g −

i is the random
polygenic effect for individual i ~ N (0, Gσ2g ) where G is

the GRM and σ2
g is the variance component for the poly-

genic effect, and εi is the random residual. In this algo-
rithm, σ2g is re-estimated each time a chromosome is left

out from the calculation of the GRM. The dataset was
filtered, and individuals with < 10% missing genotypes
were kept (n = 2279). Further, it was required that SNPs
should have minor allele frequency (MAF) ≥ 1% and a
call rate > 90%. After filtering, 54,200 SNPs could be in-
cluded in the analysis. The level of significance for SNP
was evaluated with a built-in likelihood-ratio test, and
the threshold value for genome-wide significance was
calculated by the use of Bonferroni correction (0.05/
54200) = 9.23 × 10−7, corresponding to a -log10 p value
(p) of 6.03.

Association between OTUs and fish phenotypes
We examined the association between microbiota and
several individual fish phenotypes related to the metab-
olism of the fish, including growth, nutrient turnover,
and feed efficiency parameters (Table 1). This pheno-
typic association was tested with a linear mixed-effect
model:

y½ � ¼ X½ � b½ � þ Za½ � a½ � þ Zt½ � t½ � þ e½ �; ð3Þ
where [b] is a vector of fixed effects for the trait con-

taining the regressions of sampling day (Day) and the Ln
(OTUs), while the remaining are described with (eq. 1).
In preceding analyses, we experienced a strong co-
linearity between the tank and the family effects, which
in consequence led us to analyze for the phenotypic as-
sociation between production variables and the OTUs
with a model accounting for the genomic relationships
between individuals (also known as a genomic selection
model).
The genetic analyses in (eq. 1) and (eq. 3) were carried

out using the ASReml4 software package [14].

Results
Overall microbiota composition
We obtained a total of 9,991,266 read counts after filter-
ing and paired-end sequence merging. The mean read
count per sample was 22,007. A total of 704 OTUs were
defined, with the dead bacterial fraction representing
9.1% of the sequencing reads (contained in 254 OTUs).
In addition, a fraction of 0.003% of the sequencing reads
(contained in 146 OTUs) was considered as
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contaminations (Fig. 2a). Among the 304 OTUs passing
the live/dead/contamination filtering, we identified a
clear over-representation of Proteobacteria, both with re-
spect to OTU prevalence and quantity (Fig. 2b). OTU1
Caulobacteraceae and OTU2 Pseudomonas fluorescens
dominated, with mean abundances of 32.9% and 34.8%,
respectively. There were 6 OTUs with a mean
abundance > 1% in all the samples. We detected an
overall negative correlation between OTU1 Caulobacter-
aceae to the other OTUs (Fig. 2c). Bacterial DNA was
detected in one out of five negative controls, with a
dominance of Halomonas (43.4%) and Pseudoalteromo-
nas (40.6 %), followed by Bacillus (4.2%) and Pseudo-
monas fluorescens (4.1%).

Effects of rearing tank and host genetics on the gut
microbiome composition
To assess the contribution of genetics (i.e., heritability)
and environment (i.e., tanks effect) in driving the vari-
ation in microbial composition between individual fish,
we applied analyses of variance, using tank as a covari-
ate. Although we classified 304 OTUs across all gut
microbiomes, the top 6 most abundant OTUs repre-
sented 85% of the 16S sequences in our dataset. We,
therefore, conducted these analyses using only these
OTUs. The results (Table 2) showed small genetic
components for OTUs 1 and 3 and only a small non-
significant tank effect for OTU1 (0.03). However, neither
the tank nor genetic effects were significantly different
from zero (p > 0.05). However, the standard errors were
large, meaning that the experiment did not have the

power to estimate these components precisely. This is
supported by the estimates of variance components for
genetic or tank effects (or both) of the remaining OTUs
being zero (i.e., restricted to the boundary of the param-
eter space) (Table 2).
Finally, we utilize the existing genotyping data for

these fish [6] to perform a genome-wide association ana-
lyses for the OTU abundances. No genome-significant
associations between SNPs and OTUs were identified;
however, the Manhattan plots show clear peaks at chro-
mosomes 14, 24, 3, and 5 (Suppl. Fig. 1), with some
SNPs having significant associations to OTU1 and
OTU2 at the chromosome level (Suppl. Fig. 2, Suppl.
Table 1).

Fig. 2 General characteristics of gut microbiota. a Fractions of dead, live, and contamination OTUs. Fractions calculated based on the ratio of OTU
counts in PMA-treated samples versus untreated samples. b Prevalence (number of OTUs) and quantity (number of sequencing reads) for the
different phyla in the most abundant OTUs. c Spearman correlations between the dominant live bacteria (high-abundant OTUs). The highly
abundant OTUs were identified as those that have an abundance of > 1% on average in all the samples

Table 2 Estimates of the genetic, tank, and residual variance
components (σa2, σt2 and σe2 , respectively), the fraction of
phenotypic variance explained by the environmental tank effect
(c2), heritability (h2), as well as the χ2 statistics for the additive
genetic family effect, with the corresponding level of
significance (p)

σ2
a σ2

t σ2
e c2 h2 χ2 p

OTU1 0.007 0.009 0.25 0.03 ± 0.08 0.03 ± 0.09 0.13 0.72

OTU2 0.001 0.001 0.14 0 0 0 1

OTU3 0.007 0.001 0.58 0 0.10 ± 0.09 1.72 0.19

OTU5 0.001 0.001 0.13 0 0 0 1

OTU6 0.001 0.001 0.07 0 0 0 1

OTU7 0.001 0.001 0.18 0 0 0 1
1Restricted on the boundary of parameter space
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Community structure is associated with fish growth and
metabolism
Linear regressions were used to examine the phenotypic
relationship between the gut microbiome and host me-
tabolism traits (i.e., growth, nutrient turnover, and feed
efficiency, see Table 1). Indeed, these analyses (Table 3)

do indicate a link between the production variables and
the gut microbiome (significant associations in Table 3,
for all results see Suppl. Table 2).
OTU3 (Sphingomonas) regressed negatively on weight

gain (p < 0.05), OTU1 (Caulobacteraceae) and OTU7
(Pseudoalteromonas) regressed positively on feed

Table 3 Regression estimates, standard errors, F, and p-values when regressing OTUs on growth, metabolism, and feed efficiency
variables. The model also contained regression on day and random effects of animal (utilizing genomic relationships) and tank, for
which variance components are included

Dependent variable Variables Estimate Stderr F value p-value Variance component

WG Day 3.338 0.177 355.73 < 0.005

OTU1 − 0.324 0.376 0.15 NS

OTU2 2.191 1.199 0.04 NS

OTU3 − 1.352 0.624 4.66 < 0.05

OTU5 − 0.743 0.535 1.78 NS

OTU6 − 0.440 0.866 0.26 NS

OTU7 0.179 0.492 0.30 NS

Tank 13.84 ± 3.25

Animal 5.54 ± 0.69

AAC Day 0.082 0.019 17.95 < 0.005

OTU1 0.007 0.003 1.39 NS

OTU2 − 0.016 0.009 2.15 NS

OTU3 − 0.001 0.005 1.31 NS

OTU5 0.006 0.004 4.63 < 0.05

OTU6 − 0.001 0.007 0.01 NS

OTU7 0.010 0.004 8.53 < 0.005

Tank 0.90 ± 0.20

Animal 0.87 × 10−4 ± 2.21 × 10−4

IFER_AMC Day 0.365 0.021 297.49 < 0.005

OTU1 0.043 0.026 5.55 < 0.03

OTU2 − 0.101 0.083 0.41 NS

OTU3 0.018 0.043 1.34 NS

OTU5 − 0.023 0.037 0.03 NS

OTU6 0.035 0.060 0.34 NS

OTU7 0.081 0.034 5.22 < 0.03

Tank 0.20 ± 0.04

Animal 0.43 × 10−2 ± 1.51 × 10−3

IFER_AMN Day 0.149 0.009 273.21 < 0.005

OTU1 0.020 0.009 3.89 < 0.05

OTU2 − 0.026 0.027 2.86 NS

OTU3 0.001 0.014 0.64 NS

OTU5 − 0.016 0.012 0.79 NS

OTU6 0.008 0.020 0.16 NS

OTU7 0.027 0.011 5.83 < 0.03

Tank 0.04 ± 7.86 × 10−3

Animal 0.29 × 10−3 ± 1.51 × 10−4
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efficiency indicators (p < 0.05), while OTU7 (p < 0.005)
and OTU5 (Bradyrhizobium) (p < 0.05) regressed posi-
tively on carbon metabolism in adipose tissue (AAC
variable).

Discussion
A major strength of this experiment is that each individ-
ual fish microbiome can be linked to detailed individual-
level phenotypes of growth, feed efficiency, and nutrient
turnover as measured by the use of stable-isotope profil-
ing in the liver, muscle, and adipose tissues [6]. Intri-
guingly, the phenotypic associations between OTUs and
fish production-related phenotypes revealed several sig-
nificant relationships (Table 3). We observed significant
positive associations between lipid carbon metabolism
(the AAC phenotype) and OTU5 (p < 0.05) and OTU7
(p < 0.005). These OTUs belong to the genera Bradyrhi-
zobium and Pseudoalteromonas, respectively. Pseudoal-
teromonas is known to have the capacity to produce a
range of biologically active extracellular compounds,
ranging from antimicrobial compounds and proteases to
compounds important for host metamorphosis [15].
This genus has also been used as probiotics in fish farm-
ing [16]. Bradyrhizobium, on the other hand, is a wide-
spread environmental bacterium capable of degrading
aromatic compounds and nitrogen fixation [17]. How-
ever, the potential mechanisms for the bacterial associa-
tions with lipid metabolism in salmon are completely
unknown. The Sphingomonas OTU3 showed a signifi-
cant negative association with weight gain. This genus
has previously been associated with antibiotic resistance
connected to disease treatment of juvenile salmon in
freshwater [18], which may indicate that reduced weight
gain could be connected to the opportunistic properties
of Sphingomonas [19]. Lastly, OTU1 belonging to Caulo-
bacteraceae showed a strong negative correlation with
the other OTU (Fig. 2c), and a significant positive asso-
ciation with two of the feed utilization efficiency metrics
(Table 3), which also had a positive association to
OTU7. One interpretation of this is that Caulobactera-
ceae has a mutualistic association with juvenile salmon,
possibly by protecting juvenile salmon against opportun-
istic infections.
The association between OTUs and the lipid carbon

metabolism (AAC) in Atlantic salmon means that fish
with higher abundances of these microbes also convert
the feed protein fraction to lipids at a higher rate. How-
ever, the mechanisms driving this association remain
elusive. One possibility is that the Atlantic salmon gut
microbiota has a direct impact on the production of bio-
molecules in the distal intestine which are readily
absorbed and deposited as fat in adipose tissues. It is
worth noting that Dvergedal et al. [6] have reported that
fish with a higher turnover of carbon in lipid tissues also

have improved feed efficiency (see IFER variable in Ta-
bles 1 and 3) and fast growth. In other words, the fish
with high carbon turnover in lipid tissues will likely have
a positive energy balance and therefore also the oppor-
tunity to convert more surplus energy into lipids for
storage. We did however not observe associations be-
tween gut microbes and nutrient turnover in muscle or
liver. This lack of association with nitrogen turnover
could be because the majority of the protein fraction is
digested and absorbed before the distal intestine where
our microbial samples were collected from. It is also
possible that the associations between microbial com-
position and fish metabolism are driven by indirect fac-
tors. Since growth is positively correlated with feed
intake [6], these fish might also have increased passage
rate in the gastrointestinal tract due to high feed intake.
This could indirectly affect the competition and balance
among microbes and thereby shift the community struc-
ture. It is thus critical that future studies include func-
tional meta-omics data that can also demonstrate shifts
in activities in microbial metabolic pathways.
Host genetic effects on gut microbiomes have been

identified in recent studies in a wide range of animals,
including invertebrates [20], mammals [21, 22], and fish
[23]. Here, we associate OTUs and metabolic fish phe-
notypes using a regression, correcting for the effects of
additive genotype and tank, aiming to eliminate possible
confounding effects. Using this approach, we only found
weak (and non-significant) associations between host
genetics and relative OTU abundance (Table 2, Supple-
mentary Fig. 1 and 2). Neither did we find rearing tank
effects, in correspondence with a study in tilapia [24].
However, it is clear from the standard errors (Table 2)
that our OTU heritability estimates were very imprecise.
Hence, to assess the importance of host genetics on gut
microbiome composition in Atlantic salmon, future
studies must increase sample size significantly and apply
“common rearing” experimental designs to avoid con-
founding tank and family effects. The PMA screening in-
dicates that more than half of the OTUs detected in the
salmon gut could come from feed or dead bacteria. The
PMA assay, however, does not cover contaminants in re-
agents. The negative controls revealed detectable con-
tamination in only one sample, with none of the
common reagent contaminants being detected at levels
>5% [25, 26]. The most likely source of contamination in
that sample would therefore be spillover and not reagent
contaminants.

Conclusion
In conclusion, our results demonstrate an association
between the microbial composition in the distal gut and
a key aspect of Atlantic salmon metabolism. This associ-
ation could be a direct effect of microbes contributing to
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improved nutrient availability and absorption for the
host. Alternatively, these associations could be
uncoupled from the microbiota function and instead
driven by feeding behavior and passage rates. Future ex-
periments should, therefore, aim to measure changes in
microbial metabolic pathways to separate causal from
correlative microbe-host associations.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s40168-020-00938-2.

Additional file 1: Suppl. Table 1. Single-nucleotide polymorphisms (SNP)
associated with the OTU variables. Suppl. Table 2. Regression estimates,
standard errors, F- and p-values when regressing OTUs on growth, me-
tabolism, and feed efficiency variables. The model also contained regres-
sion on day and random effects of animal (utilizing genomic
relationships), and tank for which variance components are included.
Suppl. Fig. 1. Genome-wide Manhattan plot for the different OTUs. The
horizontal line represents the genome-wide Bonferroni -log10 (p) = 6.03
threshold. Suppl. Fig. 2. Q-Q plots from genome-wide association analyses
of the different OTUs.
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