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Dynamic linear models guide design and
analysis of microbiota studies within
artificial human guts
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Abstract

Background: Artificial gut models provide unique opportunities to study human-associated microbiota.
Outstanding questions for these models’ fundamental biology include the timescales on which microbiota vary and
the factors that drive such change. Answering these questions though requires overcoming analytical obstacles like
estimating the effects of technical variation on observed microbiota dynamics, as well as the lack of appropriate
benchmark datasets.

Results: To address these obstacles, we created a modeling framework based on multinomial logistic-normal
dynamic linear models (MALLARDs) and performed dense longitudinal sampling of four replicate artificial human
guts over the course of 1 month. The resulting analyses revealed how the ratio of biological variation to technical
variation from sample processing depends on sampling frequency. In particular, we find that at hourly sampling
frequencies, 76% of observed variation could be ascribed to technical sources, which could also skew the observed
covariation between taxa. We also found that the artificial guts demonstrated replicable trajectories even after a
recovery from a transient feed disruption. Additionally, we observed irregular sub-daily oscillatory dynamics
associated with the bacterial family Enterobacteriaceae within all four replicate vessels.

Conclusions: Our analyses suggest that, beyond variation due to sequence counting, technical variation from
sample processing can obscure temporal variation from biological sources in artificial gut studies. Our analyses also
supported hypotheses that human gut microbiota fluctuates on sub-daily timescales in the absence of a host and
that microbiota can follow replicable trajectories in the presence of environmental driving forces. Finally, multiple
aspects of our approach are generalizable and could ultimately be used to facilitate the design and analysis of
longitudinal microbiota studies in vivo.

Keywords: Artificial gut, Bioreactor, Microbiome, Metagenomics, Compositional data, Bayesian statistics, Time series
analysis

Background
Artificial gut models have been used for decades to repli-
cate the human intestinal environment and study the dy-
namics of resident microbes [1–3]. These systems have
the advantage of being sampled with arbitrary frequency,
house environments that can be precisely controlled,
and often face fewer ethical concerns than in-human

studies [4]. Artificial gut models have therefore been used
to discover the effect of nutritional supplements on infant
gut microbiota [5], mechanisms by how commensals re-
press Salmonella virulence [6], and dose-dependencies
between microbiota-targeting therapies and metabolite
production [7].
Yet, despite the utility and long development of artificial

gut models, fresh questions regarding their fundamental
biology remain. Such questions include the rapidity with
which the composition of these microbial communities
varies both in the presence and absence of perturbations
[1, 8]. While it is well known that in vivo microbiota may
change on sub-daily timescales due to host forcing, it is
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unclear whether such sub-daily dynamics may be seen
in the absence of host effects [9]. The degree to which
replicate ex vivo systems exhibit stochastic behavior, or
conversely behave deterministically, remains another
outstanding question [1, 10]. Finally, a deeper under-
standing of the reproducibility of artificial gut models
may also have implications for our understanding of
the relative importance of various factors in shaping
the dynamics of host-associated microbiota [11].
Gaining greater insight into the biology of artificial gut

models though requires addressing analytical and statis-
tical challenges. One key challenge is the often unquanti-
fied impact of artificial sources of intra-study variation
such as variation due to sequencing counting and tech-
nical variation from sample processing (e.g., unintended
experimental errors and batch effects) [12–18]. In particu-
lar, while the impact of variation due to sequence counting
is more commonly addressed and modeled [12, 19–21], the
impact of technical variation from sample processing is
often unquantified and less well understood. Such technical
variation may alter inference of both the magnitude and
direction of variation among bacterial taxa. In addition, it is
well established that sequencing studies of microbiota pro-
vide information only on the relative amounts of taxa and
not their absolute abundance [22–24]. The analysis of
such relative (or compositional) data remains an open
area of study and naive analyses can lead to a distorted
view of the patterns of variation present in a commu-
nity [21, 22, 25–27]. Notably, the variation due to se-
quence counting, technical variation from sample
processing, and compositional effects are all challenges
facing in vivo microbiota studies, in addition to artifi-
cial gut experiments.
The design of ex vivo microbiota studies is also con-

fronted by the lack of appropriate benchmark datasets.
For example, defining suitable sampling frequencies for
artificial gut studies requires insight into the timescales on
which human gut microbiota fluctuate [28]. Yet, even
though gut microbiota dynamics in vivo and bacterial
mock communities in vitro are known to behave on the
timescale of hours [9, 29, 30], most longitudinal studies to
date in ex vivo models are only sampled on the order of
days [1, 8, 10, 31]. Additionally, while the collection of
technical replicates could be used to quantify the effects
of technical variation [32], such replicate sampling is gen-
erally not performed in longitudinal microbiota studies.
Here, we integrated model development and experimen-

tal design to address key challenges facing the analysis and
design of longitudinal artificial gut studies. We collected
longitudinal samples with up to hourly frequency from
replicate artificial gut models over the course of 1 month.
We combined this longitudinal sampling with the collec-
tion of technical replicates so that we could characterize
the impact of technical sources of variation on observed

microbiota dynamics. To isolate separate biological and
technical sources of community variation in our dataset,
we created a modeling framework called MALLARD that
is based on a class of generalized dynamic linear models
appropriate for microbiota time-series data. Together, our
dataset and modeling framework allowed us to investigate
the patterns and timescales of microbiota variation in an
artificial human gut.

Results
Longitudinal modeling
To separate biological and technical variation in artificial
gut time-series, we introduce an extension of dynamic lin-
ear models (DLMs) tailored for microbiota data. DLMs
have widespread use including industrial applications such
as commercial forecasting and engineering control sys-
tems [33]. At their core, DLMs model a system as a
time-varying state that is observed through a noisy
process. We extended DLMs to a class of multinomial
logistic-normal dynamic linear models by building off of
the work by Cargnoni C, Muller P, and West M [34]. We
refer to this as the MALLARD class of models.
We analyzed the artificial gut dataset described below

using a MALLARD model that is generative and as-
sumes there exists an unobserved microbial composition
(θt; the state) that evolves through time (Fig. 1a) due to
stochastic biological variations (wt). We regard the state
sequence (θ1, …, θt, …, θT) as the true microbial dynam-
ics in a time-series. Random technical variations (vt) are
then added to the true system state (θt) resulting in the
composition ηt (Fig. 1b). We observe ηt through a multi-
nomial counting process. This formulation is similar to
the constant level model commonly used in Bayesian
time-series analysis [34]. By separately modeling the
process generating wt and vt with distinct covariance
matrices (W and V, respectively), we can decouple bio-
logical and technical variations in artificial gut datasets
(Fig. 1c). Visually, we found this model provided a good
fit to artificial gut data (Additional file 1).

Daily and hourly gut microbiota time-series in an artificial
human gut
We applied our model to an artificial gut that was con-
structed using continuous-flow anaerobic bioreactor systems
that have been validated as models of human gut microbiota
[1, 6, 14, 35, 36]. The same starting human fecal inoculum
was seeded into replicate ex vivo vessels (n= 4) and cultured
for 1 month (Fig. 2 and Additional files 2, 3, 4, and 5).
Throughout the experiment, pH, temperature, media input
rates, and oxygen concentration were all fixed (“Methods”
section). To introduce microbial dynamics into our systems,
a single bolus of Bacteroides ovatus isolated from the stool
donor was administered to the system on Day 23 (“Methods”
section). The B. ovatus bolus did not have discernable effects
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on microbial dynamics, but the media it was suspended in
appeared to induce minor shifts in the relative abundances
of select bacterial taxa that were visible with hourly sampling
(Additional file 3). Additional microbial dynamics related to
media input were generated by an inadvertent feed disrup-
tion in two vessels between days 11 and 13 of the study.
Overall, similar to previous studies [1, 10], the artificial gut
maintained much of the microbial diversity present in the in-
oculating stool: 91% of bacterial families present on days 1–5
of the study were detected between days 23 and 28. The 9%
of bacterial families that did not persist represented only
0.06% of the total sequencing reads in the dataset.
To investigate the timescales on which microbial com-

munities vary ex vivo and to characterize the impact of
technical variation on our measurements, we developed
a sampling scheme for our artificial gut that featured
fine temporal resolution and numerous technical repli-
cates (Additional file 4). As in previous studies, all four
vessels of the artificial gut were sampled daily over the
course of 1 month. To investigate potential sub-daily
variation, we aimed to oversample the system and col-
lected 120 sequential hourly samples, from each repli-
cate vessel, during a 5-day period. To estimate the
technical variation in our measurements, we collected
20 replicate samples from the final time-point of each
artificial gut vessel (Fig. 1c; “Methods” section). As

samples collected in the same vessel at the same time
are expected to be biologically identical (i.e., feature no
biological variation), any variation in the resulting com-
munity measurements between these technical replicates
can be ascribed solely to technical sources (Fig. 1c). To
ensure that the technical variation profile of the replicate
sampled matched that of the longitudinal samples, all
samples were randomized and processed together for
sequencing.

The structure and magnitude of technical variation from
sample processing
After fitting the MALLARD model to the resulting arti-
ficial gut dataset, we investigated the technical variation
from sample processing (V) to our inference of variation
due to biological sources (W). Variation from sample
processing and variation due to sequence counting were
represented as separate processes (Fig. 1d). Differing cor-
relation structure between V and W would support our
hypothesis that sources of technical variation could ob-
scure biological forces acting on microbiota within an
artificial gut. Indeed, a permutation analysis indicated it
highly improbable that V and W had the same correl-
ation structure (posterior probability < 1%; “Methods”
section). Low-dimensional projections of the posterior
distributions of V and W supported this conclusion and

A

C D

B

Fig. 1 A generative model for microbial dynamics obscured by technical variation. a Microbial dynamics result from biological variation. The time
series (θ1, ,…, θt,…, θT) defines the dynamics of a microbial community and results from biological variations (w1, ,…,wt,…,wT) which are
assumed to be independent and identically distributed (i.i.d.) logistic-normal with mean zero and covariance W. b Technical variation obscures
microbial dynamics. Technical variation (v1, ,…, vt,…, vT) from sample processing introduces noise into measurements of microbial dynamics and
are assumed to be i.i.d. logistic-normal with mean zero and covariance V. c Replicate sampling enables quantification of technical variation.
Hypothetical collected samples are denoted by green squares. Differences between longitudinal samples reflect both biological and technical
sources of variation. In contrast, differences between technical replicates (samples from the same time point) should reflect only technical sources
of variation and can be used to estimate V (“Methods” section). d Overview of longitudinal model. The microbial dynamics and the confounding
technical variation (a, b) are modeled in an isometric log-ratio (ILR) space such that the logistic-normal distribution transforms to a multivariate
normal distribution for mathematical convenience (“Methods” section). The observed count data is assumed to be distributed multinomial from
the compositions (η1, ,…, ηt,…, ηT) (“Methods” section)
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revealed how overall variation patterns involving bacter-
ial families like Lachnospiraceae, Fusobacteriaceae, and
Bacteroidaceae more strongly resembled patterns of
technical variation than biological variation (Fig. 3a).
Thus, some patterns of covariation among taxa in artifi-
cial gut studies may be due to technical sources of
variation.
We next investigated the relative magnitude of tech-

nical variation from sample processing and biological
variation as a function of sampling frequency. Total vari-
ation is defined as the trace of a covariance matrix [37].
We therefore computed Tr(W)/Tr(V), which is analo-
gous to the signal-to-noise ratio used in signal process-
ing [38]. We found that for our time-series analyzed on
an hourly basis (“Methods” section), the median ratio of
biological to technical variation was 0.30 (0.26–0.36 95%
credible interval). We therefore estimate that only 24%
(21%–26%) of the total variation in relative abundances
was due to biological sources. This result was insensitive
to perturbation of our priors (Additional file 6).
Moreover, because variance is additive between
time-points within our model, we could estimate bio-
logical and technical variation as a function of sampling

interval (Fig. 3b; “Methods” section). We found that at a
sampling interval of 3.5 h, the total biological and tech-
nical variation was approximately equal. At sampling
frequencies faster than 3.5 h, technical variation out-
weighed biological variation; at slower sampling frequen-
cies, signal associated with biological variation exceeded
technical noise.

Timescales of microbial dynamics
In order to explore the timescale of microbial dynam-
ics within replicate artificial gut vessels, we visualized
microbial dynamics using PhILR balances. PhILR bal-
ances represent the log-ratio between phylogenetically
neighboring clades of taxa, providing a phylogenetic-
ally informed way to study microbial dynamics with-
out compositional artifacts [22]. We quantified the
magnitude of changes in balance values in units of
evidence information (e.i.), which are a measurement
of compositional change [39]. A 1 e.i. change is
equivalent to an approximately 4-fold change in the
ratio of two bacterial taxa and a 2 e.i. change is
equivalent to an approximately 17-fold change in the
ratio of two taxa (see “Methods” section for further

Fig. 2 Proportions of ten most abundant bacterial families over time. Four identical continuous-flow anaerobic bioreactor systems were each
inoculated from a single human fecal specimen and cultured over the course of 1 month. Proportions of bacterial taxa at sampled time points
were estimated by dividing observed read counts from 16S rRNA sequencing by the total number of counts observed for each sample. In
addition to daily sampling (shown here), hourly samples were taken from each vessel (480 hourly samples total) as well as 20 technical replicate
samples from the final time point of each vessel (Additional file 4). Proportions from the hourly sampling data are shown in Additional file 3.
PCoA analysis using the Aitchison distance is shown in Additional file 5
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discussion). Multiple balances exhibited sub-daily dy-
namics (Additional files 7 and 8), most notably the
ratio of bacteria from the phylum Bacteroidetes to
bacteria from the phyla Proteobacteria and Fusobac-
teria (Fig. 4). The balance between Bacteroidetes and
Proteobacteria/Fusobacteria appeared to fluctuate on
timescales shorter than 1 day with an amplitude of
approximately 1 e.i. (0.5–1.5, 95% credible interval;
Fig. 4b). Balance dynamics did not correspond to re-
corded environmental or technical variations (e.g.,
media changes, identity of the researcher collecting
the sample, sequencing batch number, B. ovatus supple-
mentation, or the feed disruption of vessels 1 and 2) and
did not display an exact 24-h periodicity (Additional file 9).
Balance fluctuations were observed in all four replicate
artificial gut models, but did not appear to be synchro-
nized as would be expected if these dynamics were driven
by a shared environmental factor (Additional file 8). We
ultimately could not identify a technical or environmental
cause of fluctuating balance dynamics on sub-daily
timescales.

Exploratory analysis of biological variation
We next explored the biological variation captured in our
model by investigating the pairwise variation between bac-
terial families in our dataset. Direct taxon-level analysis of
the covariance matrix W is difficult though because the el-
ements of this matrix are balances—not individual taxa.
We therefore investigated the temporal variation of spe-
cific taxon pairs using a tool from compositional data ana-
lysis called the variation array [40]. A variation array
represents the variance of the log-ratio between pairs of

B

A

Fig. 3 Structure and magnitude of biological and technical variation.
a Ternary plot showing the 95% probability regions of the logistic-
normal distributions corresponding to W, V, and W + V along the
Bacteroidaceae, Fusobacteriaceae, and Lachnospiraceae
subcomposition. To visualize posterior uncertainty, 100 posterior
samples of each of these quantities are plotted. b Mean and 95%
credible interval for total biological (Tr(W)) and total technical (Tr(V))
variation as a function of sampling interval in hours

A B

Fig. 4 Sub-daily microbiota dynamics within the artificial intestine. a An annotated phylogenetic tree defining PhILR balance between the phyla
Fusobacteria, Proteobacteria, and Bacteroidetes. The balance reflects the scaled log-ratio of the geometric mean relative abundance of families in
the Bacteroidetes phyla (numerator, +) to the geometric mean relative abundance of families in the Fusobacteria and Proteobacteria phyla
(denominator, −) (“Methods” section). b Mean, 50%, and 95% credible interval of posterior distribution for θ (microbial dynamics in absence of
technical variation) for the PhILR balance defined in (a). The full list of PhILR balances and corresponding posterior estimates are shown in
Additional files 7 and 8
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taxa (“Methods” section). When variance of a pairwise
log-ratio is near zero, the two taxa positively covary;
whereas when this variance is, high the two taxa exhibit
either unlinked or exclusionary patterns [22, 41]. The
resulting variation array (corresponding to W) revealed
that most temporal variation was contained in log-ratios
between four bacterial families: the Rikenellaceae, Syner-
gistaceae, Enterobacteriaceae, and Fusobacteriaceae. By
contrast, log-ratios between other bacterial families were
approximately 1 order of magnitude smaller (Fig. 5a).
Overall, we estimated that the Rikenellaceae, Synergista-
ceae, Enterobacteriaceae, and Fusobacteriaceae accounted
for 72% (69–75%; CLR basis) of the total biological vari-
ation seen in the dataset (Additional files 10 and 11).
We noticed an inverse relationship between the bio-

logical variation of taxa to their relative abundance in
the starting inoculum. We observed this relationship
by fitting a linear regression model to each posterior
sample in a CLR-transformed space (95% posterior
credible interval for regression slope: − 0.26 to − 0.18;
Additional file 12; “Methods” section). Thus, our ana-
lyses suggested that more variable taxa in the artificial
gut tended to be rarer at the time of inoculation.
This result was insensitive to perturbation of our
prior assumptions (Additional file 13), and there was
only a 3.8% posterior probability that the observed in-
verse relationship was an artifact of low abundance

families being more numerous than high abundance
ones (“Methods” section).
To better understand the patterns of variation we ob-

served from the above analysis, we manually created
three balances which together highlighted patterns that
we believe explain the high variability of the Rikenella-
ceae, Synergistaceae, Enterobacteriaceae, and Fusobac-
teriaceae families (Fig. 5b–d). Together, these three
manually curated balances explained 73% of the bio-
logical variation in the dataset (69–76%, 95% credible
interval). This manual curation was informed by the in-
spection of microbial dynamics within the PhILR basis
and a hierarchical cluster analysis which suggested that
the Fusobacteriacae and Synergistaceae shared similar
dynamic patterns and should therefore be grouped to-
gether for analysis (“Methods” section, Additional file
14). One highly variable balance, which represented the
ratio of Rikenellaceae to the other nine bacterial families,
exhibited a 3 e.i. decrease during days 11–13 in two arti-
ficial gut replicate vessels before recovering over the
subsequent week (Fig. 5b). This decrease corresponded
with the transient feed disruption in those replicate ves-
sels. A second highly variable balance, the ratio between
the Fusobacteriaceae and Synergistaceae to all other bac-
terial families, increased by approximately 8 e.i. between
days 2 and 7 and the end of the experiment (Fig. 5c).
The nadir of this balance coincided with an initial

A B

C

D

Fig. 5 The decomposition of biological variation among bacterial families. a Heatmap of posterior distribution of log-ratio variance (ρ) between
pairs of bacterial families. Heatmap color is given by the median of the posterior distribution of ρ. Columns and rows refer to the bacteria in the
numerator and denominator of the corresponding log-ratios respectively. A similar decomposition of technical variation is shown in
Additional file 11. b–d The highest variance bacteria displayed distinct temporal patterns (95% posterior credible regions for θ). Hourly sampling
results in smaller posterior credible intervals and more resolvable dynamics in the time around day 23. b The balance between the family
Rikenellaceae versus all other bacterial families decreased substantially during the feed disruption of vessels 1 and 2. c The balance between the
Fusobacteriaceae and Synergistaceae versus all other bacterial families slowly increased over the course of the study after an initial acclimation
period. d The balance between the family Enterobacteriaceae versus all other bacterial families displayed fluctuating dynamics likely related to
those shown in Fig. 4
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microbiota adaptation phase that is repeatedly reported
in artificial gut studies [1, 10]. A third balance, repre-
senting the ratio of Enterobacteriaceae to the other nine
bacterial families, exhibited irregular sub-daily oscillatory
behavior (Fig. 5d and Additional file 15). These balance
dynamics are likely related to those observed earlier
between the phyla Bacteriodetes and Fusobacteria/Pro-
teobacteria (Fig. 4), given the membership of Enterobac-
teriaceae within the phylum Proteobacteria.

Discussion
Our findings in concert offer several insights that could
be useful for the design and analysis of ex vivo studies of
human gut microbiota. Our study suggests that technical
variation introduced during sample processing can affect
observations of microbiota dynamics not just in scale
but also in the patterns of covariation among taxa. To
date, knowledge has been limited on the effects of tech-
nical variation in ex vivo studies of human gut micro-
biota. Select exceptions include prior bioreactor studies
that found technical variation to be limited and domi-
nated by biological variation [10].
Our methods and results also have implications for the

choice of sampling frequency in ex vivo artificial gut studies.
While oversampling can waste resources, under-sampling
can bias inference through a mechanism known as signal
aliasing [28, 42, 43]. Here, to balance between
resource-intensive exploration of sub-daily dynamics while
still capturing longer multi-day dynamics, we made use of
MALLARD and mixed rate sampling (e.g., sampling at both
daily and hourly timescales). Our findings suggest that future
studies interested in tracking the full range of ex vivo micro-
biota dynamics or that focus on community responses to
rapidly changing external factors (e.g., single dose small mol-
ecule or prebiotic supplementation studies) should consider
collecting sub-daily measurements. By contrast, studies inter-
ested solely in longer term changes (e.g., overall nutritional
studies) may find daily sampling sufficient. Additionally, by
combining replicate sampling with purposeful oversampling,
we were able to determine an effective signal-to-noise ratio
as a function of sampling frequency. This ratio could be used
to estimate an upper-limit sampling frequency above which
the benefits of increases samples are diminished by the rela-
tively high levels of technical variation.
Another methodological approach we develop here for

artificial gut studies is an exploratory technique for dis-
covering temporal patterns among microbial taxa. As
gut microbiota time-series often involve many taxa,
methods of dimension reduction can aid data interpret-
ation. Yet, many standard time-series tools for dimen-
sion reduction, such as dynamic principal component
analysis, are not well suited for microbiota data in the
form of relative taxa abundances. We overcome this
challenge and identify distinct patterns in our dataset

using a tool from compositional data analysis called the
variation array [40]. Hierarchical cluster analysis and
manual curation then allowed us to identify three bal-
ances (Fig. 5b–d), highlighting four bacterial families,
that together accounted for over 70% of the variation in
our dataset. These three balances revealed key dynamical
patterns and aided in our interpretation of the forces
acting on our artificial intestine.
Beyond methodology for designing ex vivo gut micro-

biota studies, our findings also have several implica-
tions for the underlying biology of these systems. First,
we observed distinct differences in the replicability of
dynamics between vessels at hourly compared to daily
timescales. In keeping with previous reports, we found
that replicate artificial guts display replicable dynamic
patterns when analyzed on daily timescales [1]. Notably,
even after a feed interruption, vessels 1 and 2 returned
to a similar composition as the two continuously fed
vessels after roughly 1 week and appeared to display
similar overall dynamics thereafter (Fig. 5b and
Additional file 7). Such observations suggest that these
systems follow distinct and potentially predictable tra-
jectories on the timescales of days. Conversely, dynam-
ics appeared less synchronized at hourly timescales
(Additional file 8). For example, balances involving the
family Enterobacteriaceae (e.g., balance n12), which
demonstrate oscillatory patterns in multiple replicate
vessels, do not appear in phase with one another. To-
gether, these observations suggest a conceptual model
for our artificial gut systems in which strong determin-
istic forces such as resource availability drive predict-
able community dynamics on longer timescales while
other, potentially more subtle and variable ecological
forces, drive temporal variation on shorter timescales.
Another implication of our results to the biology of ex

vivo gut microbiota involves sub-daily dynamics of bac-
terial families such as the Enterobacteriaceae. We
acknowledge that despite our efforts to keep culture
conditions constant in the artificial gut, we cannot ex-
clude the possibility that these dynamics were caused by
fluctuating and unmeasured aspects of our artificial gut
setup (e.g., room temperature, ambient humidity, room
lighting). Although, we consider it unlikely that such
external driving forces would cause dynamics that were un-
synchronized between replicate vessels (Additional file 9).
Moreover, rhythmic dynamics within microbial com-
munities have previously been observed or predicted
in host-free environments [44–46], and bacteria have
been speculated to harbor circadian clocks [47]. The
dynamics we observed may have even underestimated the
rate at which microbiota varied in our system as genomic
material likely remains measurable for a period after cell
death and our analysis at the family level could smooth dy-
namics at finer taxonomic scales. Thus, our results support
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hypotheses that dynamical properties inherent to micro-
biota could contribute to sub-daily oscillations observed in
the mammalian gut [48].
We also found that rare bacterial taxa tended to har-

bor the greatest variation over time. Such variation may
reflect a general property of artificial gut systems, in
which dormant enteric microbes take advantage of dif-
ferences between ex vivo and in vivo environments to
expand [49, 50]. In particular, we found that in all four
artificial gut vessels, the Fusobacteriaceae and the
Synergistaceae underwent an approximately 4 e.i. drop
in their relative abundance upon transplantation from
the in vivo to ex vivo environment and then a subse-
quent increase to approximately 4 e.i. greater than their
initial levels (Fig. 5c). These patterns may reflect a form
of ecological succession in which bacterial families are
well suited for the ex vivo environment, but are initially
outcompeted by faster growing microbes. Such succes-
sion is well described in both in vivo and environmental
ecosystems [51–53], and supports the general hypoth-
esis that select theoretical frameworks from the field of
environmental microbial ecology are also applicable to
host-associated microbiota [54].
Still, insights from our study here into the method-

ology and underlying biology of artificial gut experi-
ments have several limitations. First, some sources of
technical variation, such as systematic biases intro-
duced due to separation of samples into batches for
DNA extraction, PCR, or sequencing, may have ex-
ploitable and reproducible structure that could be
controlled for during modeling thus improving the
resolution of longitudinal microbiome studies. Here,
we have chosen to treat these sources of variation as
random en batch and instead leave such extensions of
our analysis for future work. We note however, that
mixed effects models, which have proven to be a
powerful method of accounting for such systematic
biases or batch effects, and their dynamic extensions
both represent special cases of dynamic linear models
[38]. We therefore believe MALLARD will prove use-
ful in modeling and controlling for such batch effects.
Second, computational limitations restricted our ana-
lysis to relatively few dimensions. Due to this limita-
tion, we analyzed only the ten most abundant
bacterial families, which in turn could have masked
dynamics occurring at finer taxonomic scales [28].
Two future refinements may improve computational
efficiency: univariate filtering methods for multivariate
time-series have been developed and would reduce
the dimensionality of matrix manipulations used in
MALLARD [55], and emulation methods that itera-
tively refine probabilistic models have been developed
for high-dimensional count data and show promise
[56]. Third, we chose to collect all technical replicates

from the same time-point and relied on randomizing
both longitudinal and replicate samples into batches
to ensure that the replicate samples faithfully repre-
sented the technical variation profile in our study. As
an alternative, we could have instead spread technical
replicate samples out over the course of the experi-
ment, collecting duplicate or triplicate samples at
regular intervals. As the MALLARD framework en-
ables technical replicate samples to be collected with
any distribution within the study, distributed replicate
samples may have estimated microbial dynamics with
differing precision.
Despite our study’s limitations though, we believe

that our methodological insights are useful for the de-
sign of artificial gut experiments and, more broadly, de-
signing in vivo longitudinal studies of host-associated
microbial communities. Longitudinal studies in humans
have provided unique insights into disease and therapy
[28, 43], including optimal antibiotic treatment regi-
mens [57], mechanisms underlying disease and recov-
ery from acute secretory diarrhea [58] or intestinal
cleanout [59], as well as identifying vaginal microbiota
signatures associated with preterm birth [60]. Aspects
of our modeling framework here could be applied to fu-
ture longitudinal analyses in humans. Specifically, at-
tention has been given recently to issues arising in the
analysis of relative microbiome data [22–27, 41, 61, 62]
and there is growing awareness of how count variability
influences microbiota surveys [20, 21, 63]. Missing data
are also a common challenge in longitudinal micro-
biome analyses, particularly when the temporal evolu-
tion of observed data is modeled. MALLARD is unique
in working at the intersection of compositional analysis,
count variability, and linear longitudinal models that
can account for technical variation in datasets with
many missing observations [64–67].
Aspects of our artificial gut sampling design could also

be applied to longitudinal microbiota studies in humans.
Replicate sampling could be used to quantify the effects
of technical variation for in vivo microbiota time-series.
Moreover, choosing an appropriate sampling frequency
remains an outstanding challenge in translational micro-
biome studies [68]. Pilot time-series experiments that
intentionally sample in vivo systems more frequently
than expected microbiota dynamics (i.e., oversampling)
could be used to compute tradeoffs between technical
and biological variation at higher sampling frequencies
as we do here; aiming to sample at frequencies where
technical variation does not exceed biological variation
could help guide economical use of laboratory resources.
Indeed, potentially oversampled longitudinal datasets for
human gut microbiota already exist (albeit with limited
replicate technical sampling) [69, 70]. Ultimately, by im-
proving the design and analysis of microbial community
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dynamics in longitudinal in vivo studies, an improved
understanding of the role of microbiota in human health
and disease can be achieved.

Conclusions
Here, we created a modeling framework that allowed us
to partition a densely sampled artificial human gut
time-series into components associated with technical
and biological sources of variation. Our results demon-
strate that technical variation from sample processing
can influence ex vivo microbiota dynamics, accounting
for 76% of community variation on hourly timescales.
Still, we observed evidence for bona fide microbiota dy-
namics on sub-daily timescales. Our integrated analyses
also resulted in approaches for characterizing microbiota
variation over time. By investigating the distribution of
biological variation among taxa, we identified three dis-
tinct dynamic patterns that accounted for over 70% of
the variation within our dataset. Together, our results
contribute to our understanding of the dynamics of ex
vivo artificial gut systems, as well as the design and ana-
lysis of future longitudinal microbiota studies.

Methods
Artificial intestine experiments
Collection and preparation of fecal inoculate
A fresh fecal sample was obtained from a healthy volun-
teer who provided written informed consent (Duke
Health IRB Pro00049498). The sample was stored and
prepared for inoculation into artificial gut systems within
an anaerobic chamber (Coy). The fecal sample was
weighed into 50 ml conical tubes, approximately 5 g per
tube, and then pre-reduced MGM (McDonald Gut
Media; [1]) was used to fill the tube. The fecal matter
was homogenized briefly using a benchtop vortex and
then centrifuged 10 min at a speed of 175×g. The super-
natant was decanted into syringes for inoculation.

Artificial gut preparation
A four-vessel continuous flow artificial gut system (Mul-
tifors 2, Infors) was used to culture gut microbiota
seeded from human stool. Vessels were sterilized and
prepared with 300 ml of fresh MGM. Inoculation of re-
actors used 100 ml of fecal inoculate resulting in an
overall volume of 400 ml. The media feed was started
24 h after inoculation at a constant rate of 400 ml per
day to emulate the 24-h average passage time in the hu-
man gut. Media was changed 16 times throughout the
course of the experiment, each time media was prepared
fresh. On day 13, it was discovered that the feed line to
vessels 1 and 2 was blocked; this blockage could have
occurred any time after day 11.
In addition to media feed rate, oxygen, pH, temperature,

and stir rate were controlled by the IRIS software (v6,

Infors). Oxygen concentration in the vessels was kept
below 1% via positive nitrogen pressure at 1 LPM. Oxygen
concentration was measured continuously using Hamilton
VisiFerm DO Arc 225 probes. The oxygen probes were
calibrated using a two-point calibration performed with
nitrogen flowing at 1 LPM as the zero-point calibration
and room air flowing at 1 LPM as the 100% calibration
point. pH was maintained between 6.9 and 7.1 using a 1 N
HCl solution and a 1 N H3PO4 solution. pH was mea-
sured continuously with Hamilton EasyFerm Plus PH
ARC 225 probes. The pH probes were calibrated with a
two-point calibration with standardized pH buffers at
4.00 ± 0.1 and 10.00 ± 0.1 (BDH). Vessels were maintained
at 37 °C via the Infors’ onboard temperature control sys-
tem. Vessels were continuously stirred at 100 rpm using
magnetic impeller stir-shafts.

Bacteroides ovatus delivery
To study community dynamics in response to changes in
a single bacterial taxa, we supplemented replicate vessels
1 and 4 with 2 ml of isolated B. ovatus at 1010 cells/ml (es-
timated by optical density) suspended in anaerobic blood
heart infusion (BHI) agar, and vessels 2 and 3 with 2 ml of
anaerobic BHI as a control on day 23. No evidence of B.
ovatus increase was detected via community composition.
Longitudinal modeling suggest effects of adding delivery
media were limited to a transient 0.5 e.i. shift in the bal-
ance between the families Bacteroidaceae and Porphyro-
monadaceae (Additional file 8).

Sampling
For each time-point sampling of the four replicate vessels
was done as follows. Prior to sampling, sampling ports
were cleared with a sterile syringe and wiped clean with
ethanol. Samples were collected in the following order:
vessel 1, vessel 2, vessel 3, and vessel 4. Sampling consisted
of the collection of 3 ml of active artificial gut culture via
sterile syringe and then immediate storage in labeled and
barcoded cryovials in a –80 °C fridge. The full list of sam-
pled time-points including daily, hourly, and technical
replicate samples is shown in Additional file 4.

DNA extraction, PCR amplification, and sequencing
For all samples, 16S rRNA gene amplicon sequencing
was performed using custom barcoded primers targeting
the V4 region of the gene [71] and published protocols
[71–73]. All samples were randomized into 7 sets of 96
for all sample preparation steps. Extractions were per-
formed using the MoBio PowerMag Soil DNA Isolation
kit (p/n 27100-4-EP) adapted for use without robotic
automation. Due to the large number of samples, sam-
ples were split randomly into 2 pools of 336 samples for
sequencing to ensure adequate read depth per sample.
The final DNA concentration for pool 1 was 35.5 ng/μl
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and for pool 2 was 34.5 ng/μl as assessed by Picogreen
assay. Both sequencing runs were standardized to 10 nM
and sequenced using an Illumina MiSeq with paired end
250 bp reads using the V3 chemistry kits at the Duke
Molecular Physiology Institute core facilities.

Identifying sequence variants
We used DADA2 to identify and quantify sequence variants
in our dataset [74]. To prepare data for denoising with
DADA2, 16S rRNA primer sequences were trimmed from
paired sequencing reads using Trimmomatic v0.36 without
quality filtering [75]. Barcodes corresponding to reads that
were dropped during trimming were removed using a cus-
tom python script. Reads were demultiplexed without quality
filtering using python scripts provided with Qiime v1.9 [76].
Bases between positions 10 and 180 were retained for the
forward reads and between positions 10 and 140 were
retained for the reverse reads based on visual inspection of
quality profiles. This trimming, as well as minimal quality fil-
tering, of the demultiplexed reads was performed using the
function fastqPairedFilter provided with the dada2 R pack-
age (v1.1.6). Sequence variants were inferred by dada2 inde-
pendently for the forward and reverse reads of each of the
two sequencing runs using error profiles learned from a ran-
dom subset of 40 samples from each sequencing run. For-
ward and reverse reads were merged for each of the two
sequencing runs. Bimeras were removed using the function
removeBimeraDenovo with tableMethod set to “consensus.”
Finally, the two sequencing runs were merged together into
a single count table.

Taxonomy assignment
Initially, taxonomy was assigned to sequence variants
using a Naive Bayes classifier [77] trained using ver-
sion 123 of the Silva database [78]. Initial taxonomic
assignments were then augmented by searching for
exact nucleotide matches to the Silva database. This
resulted in 96% of sequence variants being classified
at the family level, 85% at the genus level, and 15% at
the species level.

Data preparation for modeling
After investigating the distribution of sample sequencing
depth, we chose to retain only samples with more than
5000 read counts to remove outlying samples that may
have been subject to library preparation or sequencing
artifacts. This step retained 99.8% of total sequence vari-
ant counts. For computational tractability and to ensure
a maximal number of retained sequence variant counts,
we preformed our analysis at the family level and we
retained only those families that were present with at
least three counts in more than 90% of samples. While
these filters yielded only ten bacterial families, they rep-
resented 97.7% of total sequence variant counts.

Construction of phylogenetic sequential binary partition
To use the PhILR transform [22], we manually cre-
ated a sequential binary partition based on the phylo-
genetic relationships between the bacterial families in
our dataset. This manual partition was created in ac-
cord with the phylogenetic relationships between bac-
terial families specified in Rajilic-Stojanovic M and de
Vos WM [79]. The resulting sequential binary parti-
tion is given in Additional file 7.

The MALLARD framework
To accommodate time-series with replicate observations
(as depicted in Fig. 1c), we refer to samples by sample
index k ∈ {1,…, K} rather than time index t ∈ {1,…,T}
such that K ≥ T. Further, let the function ϕ provide a
mapping between the sample index and the time index
such that ϕ(k) = t. As in standard time-series notation,
we assume that these sample indices are temporally or-
dered such that ϕ(k) ≤ ϕ(k + 1) for all k. With this nota-
tion, denote a typical longitudinal microbiome dataset as
a matrix Y with element Ykd representing the number of
counts measured for taxa d ∈ {1,…,D} in sample k. We
also denote the total sequence counts (sequencing

depth) attributed to the kth sample as nk ¼
PD

d¼1 Ykd .
In what follows, we will introduce the MALLARD
framework in full generality and then demonstrate how
features such as missing observations, multiple concur-
rent time-series, and replicate observations can be han-
dled. After introducing the MALLARD framework, we
will then introduce the MALLARD model used to
analyze the artificial gut dataset in this work.

MALLARD overview
To introduce MALLARD, we first present the entire
MALLARD framework and then discuss the motivation
and intuition behind each component individually.
MALLARD can be written as the following hierarchical
model

Yk∼Multinomial πk ; nkð Þ ð1Þ

πk ¼ ILR−1 ηk
� � ð2Þ

ηk ¼ F
0
kθk þ νk ; υk∼N 0;Vkð Þ ð3Þ

θk ¼ Gkθk−1 þ wk ; wk∼Nð0;WkÞ ð4Þ

θ0∼N m0;C0ð Þ ð5Þ

V 1;…;VK ;W 1;…;Wk∼p ζð Þ ð6Þ

where ILR−1 represents the inverse Isometric Log-ratio
transform [22, 80] and p(ζ) is a placeholder for a variety
of potential priors.
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Equation 1 models the process of sequence counting.
High-throughput DNA sequencing does not measure
the total number of target DNA transcripts in a bio-
logical system but only a random subset of this total.
The size of this subset is represented by the sequencing
depth of a sample. This feature of DNA sequencing
leads to a competition to be counted between transcripts
in which more abundant transcripts can exclude obser-
vations of less abundant transcripts. To capture this be-
havior, MALLARD models DNA sequencing as a
multinomial counting process where a D-dimensional
vector of counts from each sample Yk = (Yk1,…,YkD) pro-
vides a noisy measurement of the relative abundance of
each taxa in the sequencing library (πk = (πk1,…, πkD)
such that ∑dπkrd = 1).
While the multinomial component of our model ac-

counts for uncertainty due to the counting process under-
lying DNA sequencing, the multinomial component alone
is insufficient to account for the other sources of technical
and biological variation in longitudinal microbiome stud-
ies. To allow for this type of extra-multinomial variability,
MALLARD treats the multinomial parameters (π) as dis-
tributed logistic-normal. We chose the logistic-normal
distribution for two reasons. First, the logistic-normal has
greater flexibility than the more common Dirichlet distri-
bution allowing for both positive and negative covariation
between taxa [40, 81]. Second, the logistic-normal distri-
bution represents the central limiting distribution over the
space of multinomial parameters assuming multiplicative
errors [37, 82]. We chose to model with a multiplicative
error structure due to the multiplicative nature of bacter-
ial growth and DNA amplification.
Although the logistic-normal can be difficult to work

with in terms of relative abundances (πk), under the
isometric log-ratio transform (ILR) [22, 80], the
logistic-normal simplifies to a multivariate normal dis-
tribution on the transformed parameters ηk [37]. Add-
itionally, while many log-ratio methods suffer from
numerical problems when trying to take the log or ratio
of zeros, by modeling the process of sequence counting
and treating the relative abundances πk as an unknown
parameter to be inferred, zeros are handled by MAL-
LARD without the need for pseudo-counts or multi-
plicative replacement schemes.
To model the relationship between samples, we consider

that the specific multivariate normal model relating the pa-
rameters η1, …, ηK is a class of linear Gaussian state-space
models (Eqs. 3 and 4) often referred to as dynamic linear
models (DLMs) [38]. The DLM can be thought of as mod-
eling an unobserved system parameterized by a p-dimen-
sional vector θk that evolves through time based on a
deterministic linear model (θk =Gkθk− 1) where Gk is a p × p
matrix of covariates. Additionally, the state evolution has a
random component which is modeled as mean zero

multivariate normal random perturbations wk with covari-
ance Wk. Furthermore, the DLM models that the state
parameters θk is translated into the parameters ηk
through a similar, though independent, deterministic
linear model with added multivariate normal variation
( ηk ¼ F 0

kθk þ vkÞ where ηk and vk are D − 1 dimen-
sional vectors and Fk is a p × (D − 1) matrix of covari-
ates. In this work, we use this later component to
model technical variation. Flexibility in the specifica-
tion of Fk, Gk, Wk, and Vk, allows the MALLARD
framework to encompass many different types of
models as special cases including dynamic and static
mixed effects or factor models, models with seasonal
or polynomial trends, and even dynamic regression
models [38]. A thorough review of the use of dy-
namic linear models, and MALLARD models by ex-
tension, is given in West M and Harrison J [38].
We specified two types of prior beliefs for parame-

ters in the MALLARD likelihood model, the priors
over the state vectors θ and the priors over the co-
variance components (V1, …, VK and W1, …, Wk). For
the state vector component, Eq. 5 enables prior
knowledge regarding the value of the state vector 1
time-step prior to the first observation to be encoded
as a normal distribution with mean m0 and covari-
ance C0. In contrast to the state vector component,
we allow greater flexibility in prior form regarding V1,
…, VK and W1, …, Wk. Classically, priors for these
terms are based on the inverse Wishart distribution;
however, in this work, we instead modeled using a
decomposition of these covariance matrices for nu-
merical stability (see subsection “MALLARD model
specifications for analysis of the artificial gut data-
set”). Finally, flexibility in the specification of these
covariance terms allows MALLARD to model
time-varying covariance structures as is commonly
done in stochastic volatility models [38].

Handling multiple concurrent time-series with MALLARD
Many longitudinal microbiome studies involve mul-
tiple concurrent time-series either from different indi-
viduals or, as in this study, different artificial gut
vessels. Denoting each of R concurrent time-series by
an index r ∈ {1,…, R}, we introduce a state expansion
as one method for modeling concurrent time-series

with MALLARD. First, let θk ¼ ½θð1Þ0k ;…; θðRÞ0k �0 where

θðrÞk denotes a p-vector of state parameters for
time-series r at sampling point k. Similarly, we can

define ηk ¼ ½ηð1Þ0k ;…; ηðRÞ0k �0 . Using this state expansion,
we can write the MALLARD model for multiple con-
current time-series just as in Eqs. 1, 2, 3, 4, 5 and 6
but with the replacement of Eqs. 1 and 2 by
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Y rð Þ
k ∼Multinomial π rð Þ

k ; nk
� �

π rð Þ
k ¼ ILR−1 η rð Þ

k

� �
:

With this specification, θk is a vector of length Rp and
ηk is a vector of length R(D − 1). This state expansion
also enables flexible modeling of covariation between
and within concurrent time-series through an induced
expansion of components V1, …,VK, W1, …, WK. For ex-
ample, consider that if θk denotes an Rp vector of the
combined states of R concurrent time-series, then the
off-diagonal blocks of Wk model the covariation between
concurrent time-series while the diagonal blocks repre-
sent the covariation within each time-series.

Posterior inference
The inference goal for the above model is to sample
from the posterior distribution p(θ, η,V,W|D, B) where
D = {Y, F,G}, B = {m0,C0, ζ} and we have denoted sets of
parameters by dropping the associated subscripts (e.g., V
represents the set {V1,…,VK}). The inference method we
describe is based on the conditional decomposition of
this posterior as

p θ; η;V ;W jD;Bð Þ ¼ p θjη;V ;W ;D;Bð Þp η;V ;W jD;Bð Þ:
In particular, we show that the density p(η,V,W|D) can

be efficiently computed and sampled using MCMC in com-
bination with the Kalman filter to marginalize over the state
parameters θ and that, conditional on having samples from
the conditional posterior p(η,V,W|D), we can efficiently
sample from p(θ| η,V, W, D) using recursive samplers (i.e.,
the Kalman smoother or the backwards sampling algo-
rithm; see below). Importantly, this approach removes all
state parameters θ from the MCMC and instead samples
them directly from the conditional posterior using more ef-
ficient recursive samplers. This is in contrast to prior work
with multinomial conditionally Gaussian dynamic linear
models which used a Metropolis-within-Gibbs sampling
scheme but did not make use of such marginalization [34].
Additionally, in contrast to prior work, our sampling
scheme allows us to use MCMC methods that incorporate
posterior adaptation further improving MCMC efficiency.
The term p(η,V,W|D) can be efficiently computed

using the Kalman filter as follows. Using Bayes rule
and the conditional independence relationships Y ⊥ B,
V, W, F, G ∣ η, η ⊥ ζ ∣ V, W, and V, W ⊥m0, C0, F, G ∣
ζ, we can write

p η;V ;W jD;Bð Þ∝p Y jηð Þp ηjV ;W ; F ;G;m0;C0ð Þp V ;W jζð Þ:

Importantly, this first term is easily calculable and is

given by pðY jηÞ ¼ QK
k¼1 Multinomialðyk jπkÞ . The third

term is also easily calculable as it is the density of the

prior for the covariance matrices evaluated at V and W.
Letting Ξ = {V,W, F,G,m0,C0} for notational convenience
and by noting the first-order Markov structure of the
DLM, we can simplify the second term as

p ηjΞð Þ ¼ p η1jΞð Þ
YK

k¼2
p ηk jηk−1;…; η1;Ξ
� �

:

This relation is directly calculable as the product of
1-step ahead predictive densities in the Kalman filter
(see Additional file 16). As the above represents an effi-
cient method of calculating the density of p(η, V, W|D,
B) up to a proportionality constant, sampling from this
density can be accomplished via MCMC. In this work,
we choose to use adaptive Hamiltonian Markov Chain
Monte Carlo (HMCMC) provided by the Stan modeling
language to simulate from the density p(η, V, W|D, B)
[83, 84]. Finally, the use of the Kalman filter also enables
simple and efficient handling of missing observations
(see Additional file 16).
Given samples from p(η,V, W|D, B), we now describe

an efficient method for sampling from the conditional
posterior distribution p(θ| η,V, W, D, B). Using the con-
ditional independence relationship θ ⊥ Y, ζ ∣H, V, W,
we can simplify this conditional density to p(θ|H,V,W,
F,G,m0,C0) which we show in Additional file 16 can be
sampled from directly using either the Kalman
smoother or the backwards sampling algorithm (see
Additional file 16).

MALLARD model specifications for analysis of the artificial
gut dataset
We describe the specific MALLARD model used in this
work as a special case of the general MALLARD frame-
work. We introduce these simplifications in four parts
relating to model structure, prior specifications, handling
of missing data, and posterior inference. Regarding
model structure, here we analyzed four concurrent
time-series (from four artificial gut vessels) using the
state expansion mentioned above. As these vessels were
physically isolated from each other, we modeled the four
vessels as being conditionally independent (given shared
covariance components) of each other such that we
could rewrite Eqs. 3 and 4 as

ηk ¼ IR � F
0
k

h i
θk þ νk ; νk∼N 0; IR � Vk½ �ð Þ

θk ¼ ½IR � Gk �θk−1 þ wk ; wk∼Nð0; ½IR �Wk �Þ:
where ⊗ represents the Kronecker product. This specifi-
cation also had computational advantages as p(η| Ξ)

could then be written as
QR

r¼1 pðηðrÞjΞðrÞÞ and therefore
sampled using R independent p-dimensional Kalman fil-
ters rather than a single Rp dimensional Kalman filter
over the expanded state. Additionally, we model the
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state of each vessel as being identified with an unob-
served microbial composition before the addition of
confounding technical variation. With this specification,
the dimension of the state space p is equal to 4(D − 1).
As our primary interest was in retrospective inference,
we chose to model the state evolution as a simple ran-
dom walk (or constant level) such that F 0

k ¼ Gk

¼ IðD−1Þ�ðD−1Þ . Furthermore, as we randomized our sam-
ples through all steps of preprocessing, we assumed that
the technical noise profile of each sample is identical
such that we could write Vk =V. Finally, to simplify the
model and mitigate overfitting, we assumed that there
was a single biological variation profile that was identical
across all non-equal time-points such that

Wk ¼ W ; if ϕ kð Þ≠ϕ k−1ð Þ
0; if ϕ kð Þ ¼ ϕ k−1ð Þ:

�
ð7Þ

The conditional relationship in Eq. (7) allowed us to ac-
count for the lack of temporal evolution between replicate
samples. Importantly, while this assumption of a single
biological variation profile does not directly model com-
plex dynamic patters such as linear trend or oscillation, it
is flexible enough to infer such patterns if they are
strongly supported by the data (e.g., Figs. 4 and 5). Finally,
we chose the phylogenetic basis defined in Silverman JD,
Washburne AD, Mukherjee S, and David LA [22], without
tip or branch weights as a default basis for all posterior
computations. A table showing the total number of mod-
eled parameters induced by these choices is given in
Additional file 17.
Regarding the prior specifications, we specified two

types of prior beliefs for parameters in the MALLARD
likelihood model, the priors over the state vectors θ and
the priors over the covariance components V and W.
For the state vector component, we specified a distribu-
tion over the true composition of each of the replicate
vessels 1-h prior to the first observed sample such that
for r ∈ {1,…, 4}

θ rð Þ
0 � N m0;C0ð Þ

with m0 = 0(D − 1) and C0 = 25 · I(D − 1) × (D − 1). With this
specification, there is an approximately 66% probabil-
ity (1 standard deviation) that no single taxa was
greater than approximately 200 times more abundant
than the geometric mean of the remaining taxa. As
we are only modeling bacterial families that are
present with at least three counts in at least 90% of
samples, we believed that such concentration of our
prior about zero was warranted.
To quantify our uncertainty in the covariance com-

ponents of our model, we also specified a prior distri-
bution for V and W. While this is most commonly
done using inverse Wishart distributions due to their

conjugacy with the multivariate normal distribution,
here we chose to use a reparameterization of the co-
variance matricies V and W with non-conjugate priors
to improve numerical stability. A covariance matrix
Σ ∈ {V,W} can be parameterized as

Σ ¼ σΛσ′

where Λ denotes the correlation matrix corresponding
to Σ, and σ represents the diagonal matrix with posi-
tive diagonal entries (σ1,…, σD − 1) which dictate the
scale of the covariance matrix. Thus, for the covari-
ance matrices V and W, we specified the components
ðσV1 ;…; σVD−1Þ , ΛV, ðσW1 ;…; σWD−1Þ , and ΛW respectively.
As the representation of ΛV and ΛW depends on the
chosen ILR basis and we had no prior knowledge re-
garding how the technical and biological variation will
decompose in our chosen basis, we chose to use a
uniform prior over the space of symmetric positive
semi-definite matrices such that

ΛV�LKJ ζV
� �

ΛW�LKJ ζW
� �

with ζV = ζW = 1 and where LKJ represents copula-based
distribution over correlation matrices introduced by
Lewandowski D, Kurowicka D and Joe H [85]. With
regards to the terms ðσV1 ;…; σVD−1Þ and ðσW1 ;…; σWD−1Þ ,
we chose independent log-normal priors to ensure that
these terms were strictly positive and to allow
parameterization of uncertainty with respect to multi-
plicative fold-changes. In particular, for each i ∈ {1,…,D
− 1}, we specified

σVi ∼Log−Normal ξVi ; τ
V
i

� �

σWi ∼Log−Normal ξWi ; τWi
� �

with ξVi ¼ 1, τVi ¼ 2, ξWi ¼ 0, and τWi ¼ 2. This specifi-
cation reflects a 95% probability that the ratio of total

technical (
P

i½σVi �2 ) to total biological variation (
P

i

½σWi �2 ) is between 10−2 and 102 with an expected value
of approximately 10.
In this work, we chose to distinguish two types of

missing observations based on whether they were to be
imputed or marginalized over during posterior sampling.
To ensure each of the four replicate vessel time-series
remains synchronized, we considered any sample point
that is missing from one vessel but observed in at least
one other vessel as a missing value to be imputed by
augmenting HMCMC simulations with a corresponding

vector ηðrÞk . Conversely, we considered sample points that
are present in none of the four replicate vessels as miss-
ing values that were marginalized over using the Kalman
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filter (see Additional file 16). We padded periods of daily
sampling with missing values so that the entire dataset
could be analyzed at an hourly base interval.
For this model, posterior inference was performed

using the No-U-Turn Sampler (NUTS; a variant of
HMCMC) provided in the Stan modeling language [83,
84] using 4 chains run in parallel each with 1000 transi-
tions for warmup and adaptation and 1000 iterations
collected as posterior samples. Preliminary results sug-
gested that the time required for the NUTS sampler to
converge to the typical set could be quite sensitive to en-
tirely random parameter initializations. To address this
computational limitation, the following parameters were
manually specified: η was set by first adding a
pseudo-count of 0.65 to each observed counts and then
normalizing the counts of each sample to sum to 1, ΛV

and ΛW were each initialized to the p × p dimensional
identity matrix, and all other parameters were randomly
initialized. To mitigate the potential bias introduced by
fixing these parameters during initialization, approxi-
mate posterior samples from the model were first drawn
using a variational algorithm [86] and then four ran-
domly selecting posterior samples from this approximate
posterior sample were used to initialize four parallel
HMCMC chains. Convergence of the chains was deter-
mined both by manual inspection of sampler trace plots
and through inspection of the split R̂ statistic [87, 88].
All sampled parameters had an R̂ value less than 1.01.
Posterior intervals for all calculations derived from dir-
ectly sampled quantities were calculated by preforming
the necessary computations on each posterior sample
independently and then summarizing the resulting
distribution over calculated quantities.

Comparing the correlation structure of technical and
biological variation
To quantitatively compare the correlation structure of tech-
nical and biological variation, we analyzed the probability
that posterior samples of the correlation matrices corre-
sponding to V andW came from the same distribution using
a permutation scheme and a distance metric on the space of
square symmetric positive semi-definite matricies. To isolate
our inferences to only involve the correlation structure of V
and W and not the magnitude of the variation, we trans-
formed sampled covariance matrices into corresponding cor-
relation matrices which we denote Vc and Wc. We took as a
measure of distance between two correlation matrices S1 and
S2 the Riemannian metric on the space of square symmetric
positive definite matrices defined by

dR S1; S2ð Þ ¼ log S
−1
2

1 S2S
−1
2

1

� ���� ���

as described in [89] and calculated using the function
distcov with option “Riemannian” in the R package
shapes [90]. Using this distance metric, we calculated a
distance matrix between 500 posterior samples of Vc and
Wc each. Let D represent the resultant 1000 by 1000 dis-
tance matrix such that Dij represents the distance be-
tween correlation matrix i and correlation matrix j. Let l
represent the vector of labels of the correlation matrices
such that li ∈ {V

c,Wc} for i ∈ {1,…, 1000}. We define a
statistic δ as the ratio of the within to between group
distances in D as

δ ¼
P

li∈Wc;l j∈WcDij þ
P

li∈Vc;l j∈VcDij

2
P

li∈Wc;l j∈VcDij
:

Thus, low values of δ indicate that most of the dis-
tance between the correlation matrices is attributable to
intergroup differences in correlation structure, whereas
larger values suggest that most of the pairwise distances
come from differences within groups. We built a distri-
bution of δ under a model in which the sampled correl-
ation matrices all came from the same distribution by
permuting the labels l and recomputing δ 1000 times.
The probability that posterior samples of Vc and Wc

came from the same distribution was calculated by cal-
culating the probability of a test statistic more extreme
than that which we observed under the created permu-
tation distribution.

Computation of total technical and biological variation
Denoting the trace of a matrix as Tr(·) , total biological
and total technical variation were calculated as Tr(W)
and Tr(V) respectively. The proportion of variation at-
tributable to biological sources was calculated as Tr(W)/
(Tr(V) + Tr(W)). Based on the linear systems assumption
underlying our model, we choose to calculate the total
biological variation as a function of sampling interval L
as L · Tr(W) (Fig. 3b). Technical variation does not vary
with sampling interval and was therefore held constant
as a function of sampling interval.

Changing representations of posterior state estimates
and covariance matrices
While we chose the PhILR basis [22] for all posterior
computations as well as initial analysis (Fig. 4 and
Additional files 7 and 8), we also made use of the
isometric properties of the ILR transform to represent
our posterior state estimates and our posterior sam-
ples of covariance matrices W and V with respect to
alternative coordinates. In what follows, we denote
vectors or matrices represented with respect to some-
thing other than the PhILR coordinates with an asso-
ciated superscript. We used the inverse PhILR
transform to represent any vector x = (x1,…, xD − 1) in
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terms of raw relative abundances such that x∗ =
PhILR−1(x) [22]. Any other log-ratio quantities could
then be calculated from x∗. Transforming a covariance
matrix Σ between representations was done by mak-
ing use of the following identities [37]

ΣILR ¼ Ψ ILR Ψ
0
ΣΨ

� �
Ψ ILRð Þ0 ð7Þ

ΣCLR ¼ Ψ
0
ΣΨ ð8Þ

where Ψ denotes the contrast matrix of the PhILR transform
[22] and ΨILR represents the contrast matrix of an arbitrary
ILR transform. In addition, we made use of the variation
matrix representation of a covariance matrix in which the
covariance matrix is represented as a matrix describing the
variance of all pairwise log-ratios [40]. Letting ρij represent
the entry in the ith row and jth column of ΣCLR, we compute
the variation matrix T element-wise as [37]

tij ¼ ρii þ ρjj−2ρij: ð9Þ

Hierarchical clustering of variation matrix
To develop a sparse representation of the principal di-
rections of biological variation in our dataset, we make
use of an algorithm for determining a sequence of ortho-
normal balances that maximize successively the ex-
plained variance in a dataset (principal balances) [91].
As TW, the variation matrix calculated from W is pro-
portional to the Aitchison distance between the bacterial
families in our dataset [91, 92], applying Ward clustering
to the matrix TW results in an approximate solution to
the problem of determining principal balances [91, 93].
For each posterior sample of W, we calculated TWusing
Eqs. (8) and (9). We then calculated a sequential binary
partition from each posterior sample of TW using Ward
clustering [94]. To summarize this posterior sample of
sequential binary partitions, we computed the
majority-rule consensus tree and the frequency with
which a given bipartition occurred in our posterior sam-
ple using the functions consensus and prop.part from the
R package ape [95].

Exploring the relation between starting composition and
biological variation
To investigate the relationship between starting commu-
nity composition and biological variation in our replicate
vessels, we made use of the CLR representation of both

the community state at the first observed time-point (θðrÞ1 )
and the biological variation (W). The mean composition

in the first observed sample ( θ̂1 ¼ 1=R �PR
r¼1θ

ðrÞ
1 ) repre-

sented in the CLR basis was used as a measurement of the
starting community. As we were primarily interested in
the relative degree to which bacterial families vary in our

dataset, we normalized the diagonal elements of the CLR
representation of the biological variation matrix W to sum
to 1 forming a composition and then used the CLR trans-
form of these normalized variances as our measure of the
relative biological variation of each bacterial family. We
represent the resulting CLR transformed relative bio-
logical variation of each bacterial family by the vector ω
= (ω1,…,ωD). For each posterior sample, a univariate lin-

ear regression model given by the relation ωi � βθ̂1i þ β0
where β denotes the slope of fitted model and β0 repre-
sents an intercept was fit resulting in a posterior sample
over β. Probability contours over the joint posterior distri-

bution of each pair ðωi; θ̂1iÞ was calculated using kernel
density estimates computed by the R package ks [96].
We constructed a permutation distribution to investi-

gate whether the negative relationship between θ̂1 and ω
suggested by this posterior distribution of β could be
trivially due to there being more low abundance families
than high abundance families in our starting community
or a feature of working with such CLR transformed vari-
ables. This permutation distribution was constructed by

randomly permuting the labels of the vector θ̂1 and
recomputing the posterior mean of β 1000 times. We
computed the probability of our observed posterior
mean of β under the constructed permutation distribu-
tion to estimate the probability, conditioned on our prior
beliefs that the observed inverse relationship was simply
due to the rank abundance distribution of our starting
community or a feature of working with such CLR
transformed variables. This probability is different than a
traditional frequentist p value in that it is conditioned
on our prior specifications and our observed data.

Sensitivity analyses
The sensitivity of our results to our prior specifications
was assessed by rerunning our posterior inference and
computations under perturbed priors. We identified two
key quantities in our analysis, the regression slope β and
the percentage of total variation attributable to biological
sources Tr(W), and looked at the change of the associ-
ated posterior intervals under the perturbed priors. The
results and specifications of the modified priors are
shown in Additional files 6 and 13.

Calculation of fold changes from balance values
Changes in balances values are a measure of evidence in-
formation [39]. Given a composition x with D taxa, we
can denote the balance that separates a group of r taxa
from another group of s taxa as

y ¼
ffiffiffiffiffiffiffiffiffiffi
rs

r þ s

r
log

g xþð Þ
g x−ð Þ
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where we denote the geometric mean of the elements of
x that correspond to each of the two groups as g(x+) and
g(x−) respectively. In this form, the equivalent fold
change between geometric means of the two groups can
be calculated as

gðxþÞ
gðx−Þ ¼ eð

ffiffiffiffi
rs
rþs

p
Þ−1y:

Data simulation
To test our implementation and explore the behavior of
the MALLARD model we used to analyze our artificial
gut dataset, we simulated a toy microbial community
time-series of three bacterial taxa (Additional file 18
panels A and B) based on the likelihood component of
this model. We simulated a single vessel over 200
time-points with an extra 25 replicate samples taken on
the final time-point of the series. We also modeled miss-
ing observations (n = 3), sparsity (23% of counts were
zeros), and many low counts (53% of counts were less
than or equal to 10). We created a random ILR basis de-
noted by the contrast matrix Ψtrue by using the functions
named_rtree, phylo2sbp, and buildilrBasep from the R
package philr [97]. With respect to Ψtrue, we simulated
data in accordance with our likelihood model using the
following “true” values,

Wtrue ¼ 0:05 0:01
0:01 0:05

	 


V true ¼ 0:2 −0:1
−0:1 0:2

	 


θtrue0 ¼ 1
−3

	 

:

After simulation, we removed samples from time-
points 15, 16, and 20 to simulate missing observations.
To demonstrate that our inferences were not sensitive to
our choice of basis, we modeled the resulting dataset
using a second random ILR basis Ψ. Our results in com-
parison to the true values are shown in Additional file 18
with respect to the basis Ψ.
Analysis of this simulated dataset showed that esti-

mates for the unobserved compositions η and θ were
closer to the true simulated values than a standard
modeling approach of normalizing read counts to
proportions (Additional file 18 panels C and D). This
result is clearest in regimes rich in low and zero read
counts, which we expected because of our Bayesian
approach to modeling the read counting process. In
addition, we found that the model correctly estimated
distinct technical and biological variation patterns
(Additional file 18 panels E and F). Thus, our simula-
tions suggested that our model implementation could

successfully decompose longitudinal microbiota data
into component processes and characterize technical
and biological variation.

Visualizations
All visualization were produced using the R program-
ming language (v3.4.0) with the addition of the following
packages: ggplot2 [98], ggtree for plotting phylogenetic
trees [99], and compositions [100].

Additional files

Additional file 1: Model fits to the observed data. Posterior mean (red),
50% (dark blue) and 95% credible (light blue) intervals for θt in terms of
log transformed proportions (black). The raw count data are shown in
black for comparison. A pseudo-count of 0.65 was added to the raw data
prior to normalization and log-transformation to avoid taking the log of
zero values. (PDF 163 kb)

Additional file 2: Artificial gut setup. (1) Reactor vessels; (2) flow meters
controlling gas inputs; (3) pump-fed media; (4) acid and base to regulate
pH; (5) central controller; (6) snorkel for exhaust. Note that only two of
four replicate vessels are illustrated in this photograph. (PNG 151 kb)

Additional file 3: Proportions of most abundant bacterial families
estimated from count data during hourly sampling period. Proportions
were estimated by dividing observed counts by the total number of
counts observed for each sample. The time-point corresponding to B.
ovatus supplementation is depicted as a black line. (PDF 37 kb)

Additional file 4: Samples were collected over a one month period
with both daily and hourly sampling intervals. Daily samples were
collected at 15:00 ± 00:30 h, hourly samples were collected within ±
10 min of depicted time. Samples that were either not collected or
filtered from analysis due to low sequencing depth are shown in white,
samples that were included in analyses are shown in blue. Samples from
days 5, 6, and 13 were not collected due to holiday. In addition to
standard hourly and daily longitudinal sampling, 20 samples were
collected from the final time-point of each replicate vessel. The number
of replicate samples that were included in the analysis are depicted in
blue. (PDF 30 kb)

Additional file 5: PCoA based on Aitchison distance applied to most
abundant bacterial families. To avoid taking the log or ratio of zero
counts, a pseudo-count of 0.65 was added to all counts prior to
calculation of the Aitchison distance. In panel (A) samples are labeled by
collection time since the start of the experiment with technical replicates
labeled in black. In panel (B) samples are labeled by sequencing batch
and show no clear separation between batches. In panel (C) samples are
labeled by artificial gut vessel. All results in Panels A, B, and C are shown
with respect to the same two principle coordinates and are thus directly
comparable across plots and panels. (PDF 87 kb)

Additional file 6: Posterior estimates for the percent of total variation
attributable to biological sources is not sensitive to modification of prior
parameters. The “Base” prior parameter values refer to the values
specified throughout the “Methods” section. In addition, the complete
model was rerun with 14 separate prior parameters settings, each
deviating from the Base values with respect to one parameter. Posterior
95% credible intervals and mean are shown for each set of prior
parameters. (PDF 5 kb)

Additional file 7: Posterior 95% credible regions for bacterial dynamics
(θ) in the PhILR Basis. (Left) The hierarchical tree of phylogenetic
relationships between the bacterial families with PhILR balances (n1-n16,
non-consecutive numbering) depicted (“Methods” section). Balance n12 is
highlighted in Fig. 4. Branch lengths are not to scale. (+) and (−) refer to
which subclade is found in the numerator or denominator of the balance
respectively. (Right) Posterior 95% credible regions for the bacterial
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dynamics for each PhILR balance is depicted. The time-point corresponding
to B. ovatus supplementation is depicted as a black line. (PDF 100 kb)

Additional file 8: Posterior 95% credible regions for bacterial dynamics
(θ) for hourly samples in the PhILR Basis. Balances are defined in the left
panel of Additional file 7, here highlighting the dynamics observed
during the hourly sampling period. Balance n12 is highlighted in Fig. 4.
Balance n14 shows a decrease in the ratio of the families Bacteroidaceae
to Porphyromonadaceae. It is likely that this effect was due to the effects
of fresh delivery media as balance shifts appear strongest in the control
vessels that received sham treatment (media alone) (#2 and #3)
compared to the treatment vessels that received media and B. ovatus (#1
and #4). (PDF 77 kb)

Additional file 9: Irregular sub-daily oscillation observed in PhILR
balance n12 does not correlate with known external factors. As in Fig. 4b,
the posterior mean and 95% credible interval of the microbial dynamics (θ) for
balance n12 is shown during hourly sampling. The posterior mean is colored
with the ID of the researcher who obtained each corresponding sample.
Samples that were dropped from analysis due to low sequencing depth are
denoted by NA for researcher ID. Times at which media feed bottles were
changed are indicated with red dashed lines. Time-points corresponding to
the daily sampling regimen are indicated by dark gray lines. (PDF 20 kb)

Additional file 10: Four bacterial families comprise most the biological
variation in our study. Relative biological variation for each family was
taken as the corresponding diagonal entry of the CLR transformed
Biological variation matrix (WCLR; “Methods” section). The median and
95% posterior credible interval are depicted for each bacterial family.
(PDF 20 kb)

Additional file 11: The decomposition of technical variation among
bacterial families. Posterior distribution for log-ratio variance (ρ)
between pairs of bacterial families for technical variation (V).
Heatmap color is given by the median of the posterior distribution
of ρ. Each cell also gives the median and 95% credible region for
the log-ratio variance (ρ) for the corresponding bacterial families.
Columns and rows refer to the bacteria in the numerator and denominator
of the corresponding log-ratios respectively. (PDF 5 kb)

Additional file 12: An inverse relationship between biological variation
and initial relative abundance. 5, 25, 50, 75, and 95% highest posterior
density regions of the posterior distribution of mean relative abundances
on day 0 and biological variation of the ten most abundant bacterial
families. Both axes are CLR-transformed. Posterior mean and 95% credible
regions are also shown for the regression between these variables
(“Methods” section). (PDF 84 kb)

Additional file 13: Posterior estimates for the regression slope
between biological variation and bacterial family starting relative
abundance is not sensitive to modification of prior parameters. The
“Base” prior parameter values refer to the values specified throughout
the “Methods” section. In addition, the complete model was rerun
with 14 separate prior parameters settings, each deviating from the
Base values with respect to one parameter. Posterior 95% credible
intervals and mean are shown for each set of prior parameters.
(PDF 5 kb)

Additional file 14: Posterior 95% credible regions for bacterial
dynamics (θ) in the Ward Basis. (Left) The consensus tree created by
Ward clustering of bacterial families with Ward balances (w1-w9) is
depicted (“Methods” section). Balances nearer the root of the tree
display higher variance than balances nearer the tips (“Methods”
section). (+) and (−) refer to which subgroup is found in the
numerator or denominator of each Ward balance respectively. The
proportion of samples from the posterior distribution in which a
given bipartition was present is denoted under the corresponding
balance name (“Methods” section). (Right) Posterior 95% credible
regions for the bacterial dynamics for each Ward balance is depicted.
The time-point corresponding to B. ovatus treatment is depicted as a
black line. (PDF 89 kb)

Additional file 15: Dynamics inferred in the balance between the
Enterobacteriaceae and all other taxa does not correlate with known
external factors. As in Fig. 5d, the posterior 95% credible interval of
the microbial dynamics (θ) for the balance between the

Enterobacteriaceae and all other taxa shown. The posterior mean is
colored according to the ID of the researcher who obtained each
corresponding sample. Samples that were dropped from analysis due
to low sequencing depth are denoted by NA for researcher ID. Time-
points corresponding to the daily sampling regimen are shown in
black. (PDF 42 kb)

Additional file 16: Summary of the Kalman Filter, Kalman Smoother,
and Backwards Sampling algorithm. (PDF 295 kb)

Additional file 17: Table of parameters in MALLARD model used to
analyze artificial gut dataset. For the artificial gut dataset: R = 4, the
number of artificial gut vessels; D = 10, the number of bacterial families
analyzed; T(1) = 158, the number of sample points at which η is to be
inferred; and T(2) = 138, the number of time-points at which θ is to be
inferred. T(1) and T(2) differ due to technical replicates and time-points
which lacked measurement but where inference of θ was still desired.
Only the parameters η, ΛV, ΛW, σV, and σW are sampled using HMCMC.
The parameters θ are sampled directly from the posterior using the
Kalman smoother. (PDF 22 kb)

Additional file 18: Analysis of a toy simulated microbial community
demonstrates the advantages of accounting for technical noise and
uncertainty due to counting. (A) A 3 taxon (t1, t2, t3) microbial
community was simulated according to the likelihood model used to
analyze the artificial gut dataset (“Methods” section). Data from time-
points 15, 16, and 20 were removed to simulate the effects of missing
data on inferences. (B) A simulated phylogeny with annotated PhILR
balances (n1, n2) used to analyze the simulated dataset. (+) and (−) refers
to taxa in the numerator and denominator of associated balances.
Pseudo-count based (PC) estimates for the multinomial parameters are
obtained by adding 0.65 to all counts and then dividing each count by
the sequencing depth of its associated sample and are shown as
reference in (C-D). (C) Posterior mean and 95% credible interval for the
multinomial parameters η. (D) Posterior mean and 95% credible interval
for the unobserved microbial dynamics θ. PC estimates for the covariance
of the multinomial parameters was obtained as the covariance of the first
difference of the PC parameter estimates and are shown as reference in
(E-F). 100 samples from the posterior distribution of the biological
variation (W, E) and technical variation (V, F) depicted as 95% probability
regions of the Logistic Normal distribution centered at the point in the
simplex where each bacterial taxon is equally abundant. Black points
represent the simulated biological variations (wt). (PDF 9820 kb)
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