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Targeting metabolic reprogramming 
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Abstract 

Metabolic reprogramming, fundamentally pivotal in carcinogenesis and progression of cancer, is considered as a 
promising therapeutic target against tumors. In chronic lymphocytic leukemia (CLL) cells, metabolic abnormali-
ties mediate alternations in proliferation and survival compared with normal B cells. However, the role of metabolic 
reprogramming is still under investigation in CLL. In this review, the critical metabolic processes of CLL were summa-
rized, particularly glycolysis, lipid metabolism and oxidative phosphorylation. The effects of T cells and stromal cells in 
the microenvironment on metabolism of CLL were also elucidated. Besides, the metabolic alternation is regulated by 
some oncogenes and tumor suppressor regulators, especially TP53, MYC and ATM. Thus, the agents targeting meta-
bolic enzymes or signal pathways may impede the progression of CLL. Both the inhibitor of 3-hydroxy-3-methylglu-
taryl coenzyme A reductase (HMGCR) statins and the lipoprotein lipase inhibitor orlistat induce the apoptosis of CLL 
cells. In addition, a series of oxidative phosphorylation inhibitors play important roles in decreasing the proliferation of 
CLL cells. We epitomized recent advancements in metabolic reprogramming in CLL and discussed their clinical poten-
tiality for innovative therapy options. Metabolic reprogramming plays a vital role in the initiation and progression of 
CLL. Therapeutic approaches targeting metabolism have their advantages in improving the survival of CLL patients. 
This review may shed novel light on the metabolism of CLL, leading to the development of targeted agents based on 
the reshaping metabolism of CLL cells.
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Introduction
Chronic lymphocytic leukemia (CLL) is characterized by 
malignant proliferation of mature monoclonal B lympho-
cytes in the blood, bone marrow and lymphoid tissues, 
with heterogeneous outcomes [1]. It is one of the most 
frequent types of leukemia in adults, which is caused 
by a complex balance between unrestrained cell prolif-
eration and apoptotic death [2]. Although small targeted 

agents, for instance, Bruton’s tyrosine kinase inhibitors 
(BTKi), phosphatidylinositol 3-kinase inhibitors (PI3Ki) 
and BH3-only mimetics, improve the prognosis of CLL 
patients, it remains incurable and novel therapeutic 
options are urgently needed [3–8].

Rewiring of tumor cell metabolism, affected by various 
tumorigenic alterations, acts as a pivotal avenue to sat-
isfy their needs of survival, malignant proliferation and 
division [9, 10]. They utilize mass of nutrients and aug-
ment biomass synthesis for satisfying energy demands 
[11, 12]. Metabolic reprogramming of CLL, changing 
with progression, includes the alterations of glucose 
metabolism, lipid metabolism and oxidative phospho-
rylation (OXPHOS) [13, 14]. Of note, recent data have 
suggested that metabolic reprogramming of CLL can be 
affected by extensive metabolic interactions with other 
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nonmalignant cells in the microenvironment [15, 16]. 
Besides, CLL metabolic reprogramming is governed by 
the expression of aberrant oncogenes and tumor suppres-
sor genes, including TP53, ATM and MYC [17].

To identify therapeutic opportunities specifically tar-
geting metabolism, understanding the role of repro-
grammed metabolism in CLL is essential [18, 19]. Herein 
we recapitulate evidence gathered in recent years regard-
ing metabolic reprogramming in CLL cells, and discuss 
promising therapeutic strategies in metabolism.

Intracelluar metabolism
Abundant nutrients, including carbohydrates, fats and 
proteins, represent important drivers of metabolism [20]. 
Metabolic heterogeneities, induced by internal or exter-
nal processes to cancer cells, have been found in human 
cancers, even in distinct regions of the same tumor [18]. 
Thus, we reviewed the metabolic reprogramming of CLL 
(shown in Fig. 1).

Glycolysis
Tumor cells potentiate proliferation by enhancing cellular 
glucose metabolism [21, 22]. The metabolic intermediates 

of glycolysis provide cellular energy and play a pivotal 
role in various macromolecular biosynthesis [19]. Aero-
bic glycolysis is the principal glucose metabolic pathway 
in CLL cells. Different from normal cells depending on 
anaerobic glycolysis in the context of oxygen absence, 
cancer cells following the Warburg effect display a high 
proportion of glycolysis even in the presence of oxygen 
(aerobic glycolysis) [10, 23, 24]. Unlike other rapidly pro-
liferating neoplasms, the energy supply of CLL depends 
on OXPHOS more than glycolysis (shown in Fig. 2). They 
increasingly rely on aerobic glycolysis for energy produc-
tion only under a suitable stimulation, which is activated 
by the Notch-c-Myc axis partly [25–27]. Recent studies 
have shown that the primary function of aerobic glyco-
lysis in CLL cells is to maintain high levels of glycolytic 
intermediates to sustain intracellular anabolic reactions. 
They participate in many biosynthesis processes, such 
as the pentose phosphate pathway (PPP) to generate 
NADPH, ribose-6-phosphate, amino acid, lipids and 
other cellular sources of energy [23, 28].

Besides, overexpression of glucose transporters 
(GLUT) facilitates glucose consumption in cancer cells 
[29, 30]. In glucose metabolism, p53 reduces glucose 

Fig. 1  Metabolic reprogramming in chronic lymphocytic leukemia (CLL). In CLL cells, aerobic glycolysis, lipid synthesis, reductive carboxylation, 
beta-oxidation of fatty acids, and the consumption of glutamine are upregulated. These changes benefit CLL cells as they satisfy their 
demands of proliferation. CLL chronic lymphocytic leukemia, GLUT glucose transporter, G6P glucose 6-phosphate, TIGAR​ TP53-induced 
glycolysis and apoptosis regulator, TCA​ tricarboxylic acid, TG triglyceride, LPL lipoprotein lipase, LCFA-CoAs long-chain fatty acyl coenzyme 
A, HMG-CoA 3-hydroxy-3-methylglutaryl coenzyme A, HMGCR​ 3-hydroxy-3-methylglutaryl coenzyme A reductase, FFA free fatty acid, 
ApoA apolipoprotein A, CPT carnitine palmitoyl transferases, α-KG α-ketoglutarate, CAT-1 cationic amino acid transporter-1, STIM1 stromal interaction 
molecule 1, ROS reactive oxygen species
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uptake by repressing the transcription of GLUT-1 and 
GLUT-4. And p53 suppresses glycolysis by nega-
tively regulating PI3K/AKT signaling [31–33]. In addi-
tion, TP53-induced glycolysis and apoptosis regulator 
(TIGAR) suppresses glycolysis and subsequently pre-
vents intracellular apoptosis reactive associated with oxy-
gen species (ROS). Independently with wild-type p53, the 
overexpression of TIGAR is correlated with the reduc-
tion of spontaneous apoptosis in CLL cells and associated 
with poor clinical outcomes [34]. Potential therapeutic 
targets involved in the high level of glucose metabolism 
need to be further explored.

Lipid metabolism
Previous studies showed that fatty acid biosynthesis was 
significantly increased in cancer cells [35, 36]. CLL cells 
are like adipose cells and muscle cells [37], which can uti-
lize more free fatty acids (FFA) to produce energy com-
pared with normal B-cells or leukemia cells. Lipoprotein 
lipase (LPL), catalyzing the hydrolysis of triglyceride into 
FFA, was found aberrant expression in CLL cells. LPL is 
not expressed in normal lymphocytes, but its expression 

is significantly increased in IGHV unmutated subset 
CLL cells [38, 39]. LPL expression and proliferative phe-
notype in primary CLL B-cells could be induced in the 
leukemic clone, which promotes malignant B-cell growth 
[40]. Increased LPL, induced by the activation of signal 
transducer and activator of transcription-3 (STAT3) or 
downregulation of microRNA-125, mediates lipopro-
tein uptake and FFA utilization in CLL cells [41, 42]. LPL 
could contribute to cancer cell spreading, migration and 
be involved in CLL progression. The LPL inhibitor orl-
istat inhibits LPL induced by stimulation of B-cell recep-
tor (BCR) in CLL cells. Treating primary CLL cells with 
orlistat results in the apoptosis of CLL cells, while no 
apoptosis is induced in the control group [43].

Lipidomics reveals that CLL cells have aberrant phos-
pholipid levels. CLL membrane may have lower fluidity, 
resulting in chemotherapy resistance [44]. In addition, 
carnitine palmitoyl transferases (CPT) support the cell 
metabolism by transporting FFA into mitochondrial 
(Mt). CPT1 and CPT2 are upregulated in CLL cells. 
Perhexiline could inhibit CPT to reduce the cardiolipin, 
resulting in the damage of Mt membranes and clearing 

Fig. 2  Aerobic glycolysis in CLL cells. A In normal cells, glucose is converted to pyruvate, which feeds the tricarboxylic acid (TCA) cycle for 
energy production under normoxia; B Pyruvate predominantly produces energy by lactic acid fermentation, even in the presence of oxygen 
(aerobic glycolysis) in cancer cells. The flux of pyruvate entering TCA cycle is decreased. C CLL cells do not follow the Warburg effect. They are not 
primarily dependent on glycolysis to produce energy, but increasing mitochondrial oxidative phosphorylation (OXPHOS). TCA​ tricarboxylic acid, 
OXPHOS oxidative phosphorylation
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off leukemia cells [45]. Regulation of lipids is a potential 
therapeutic to improve treatment effects.

Mevalonate (MVA) metabolism not only produces 
cholesterol, but also contributes to cancer progression, 
including in the control of cell replication in CLL cells 
[46]. The statins inhibit 3-hydroxy-3-methylglutaryl-CoA 
reductase (HMGCR) in the MVA pathway. SREBP2 is the 
main transcription factor for MVA pathway-associated 
genes [47]. Tumor suppressor p53 leads to upregulation 
of the cholesterol-efflux transporter ABCA1, sequentially 
restricting SREBP2 and repressing the MVA pathway 
[48]. These results unveil that the MVA pathway has a key 
role in CLL. Statins are widely used for the prevention 
and management of cardiovascular disease [49]. In vitro, 
simvastatin decreases the survival of proliferation and 
induces apoptosis of CLL cells specifically [41, 50, 51]. It 
also can enhance the antitumor effect of venetoclax and 
ibrutinib [50]. Low-potency lipophilic statin could reduce 
the risk of CLL patients [49]. But statins negatively inter-
fere with rituximab and other anti-CD20 antibodies. 
The inhibitors of squalene synthase and oxidosqualene 
cyclase inhibiting cholesterol biosynthesis regulate CD20 
expression positively and enhance CLL chemoimmuno-
sensitivity and apoptosis [52]. Preclinical studies have 
indicated that blocking cholesterol synthesis and traffick-
ing blockade could hinder tumor formation and growth 
[53].

In CLL cells, low-density lipoprotein (LDL) can amplify 
signaling pathways, particularly cytokine-signaling [54]. 
Reducing LDL levels inhibits signaling and limits the pro-
liferation of CLL cells. Besides, researchers have reported 
that the level of high-density lipoprotein (HDL) was 
decreased in patients with CLL [55]. Apolipoprotein A 
(ApoA) is one of the main components of HDL. A low 
level of ApoA is related to the advanced stage of CLL 
patients [56]. ApoA1 mimetics could inhibit the pro-
liferation of CLL cells. ApoA5 has been found to play a 
significant function in triglyceride metabolism by stimu-
lating LPL activity [57]. The role of ApoA in CLL requires 
additional investigation.

Amino acid metabolism
Amino acids are widely rewired to obtain the necessary 
energy to satisfy the increased need in cancer cells [58–
61]. The level of isoleucine is decreased, while pyruvate 
and glutamate are increased in CLL patients [62, 63]. 
Among amino acids in  vivo, glutamine (Gln) metabo-
lism is important for cancer cell survival, which is the 
central position in carbon and nitrogen metabolism in 
tumor cells [64]. Previous research indicated the con-
sumption of Gln was increased in CLL [65]. Elevated 
ammonia uptake and Gln synthetase expression are 
found in del11q CLL lymphocytes, favoring de novo Gln 

synthesis [66]. The expression of glutamate dehydro-
genase (GDH) is decreased in del11q CLL cells, which 
benefits transaminase reactions using α-ketoglutarate 
for glutamate synthesis and reduces oxidative deamina-
tion of glutamate. Recent studies have suggested that the 
activity of membrane mechanistic target of rapamycin 
complex 1 (mTORC1) can be stimulated by extracellular 
Gln, which facilitates the transport of mTORC1-activat-
ing amino acids across the plasma. Apart from regulating 
mTOR, L-glutamate regulates translation to coordinate 
cell growth and proliferation [67]. However, ammonia, as 
a by-product of glutaminolysis, stimulates autophagy in a 
mTORC1-independent fashion [68]. Depending on these 
alterations, based on metabolism therapeutic options 
could be developed. Many novel mTOR inhibitors are 
being explored in clinical trials [69]. Affecting glutamine 
metabolism is one of the mechanisms of ibrutinib. Glu-
taminase inhibitor L-asparaginase catalyzes the conver-
sion of Gln to glutamate in CLL cells, especially in those 
with del11q [70]. To conclude, the specific Gln metabo-
lism characteristics in CLL are worth further study.

Besides Gln, arginine also plays an important role in 
CLL. Certain tumors have been verified to lose the ability 
to synthesize arginine independently, which is promising 
to be a therapeutic target [71, 72]. Argininosuccinate syn-
thase (ASS) is not expressed in primary CLL cells, pre-
venting arginine synthesis. As the only arginine importer 
expressed in CLL cells, cationic amino acid transporter-1 
(CAT-1) is a novel target for CLL therapy [73]. The 
abnormal activation of amino acids maintains the meta-
bolic balance in CLL.

Ion metabolism
One of the ion metabolic peculiarities of CLL is Ca2+ 
dysregulation [74]. The level of basal Ca2+ signaling is 
not uniformly increased in CLL cells. Compared with 
normal B cells, basal Ca2+ signaling in CLL cells is 
higher, especially in IGHV mutated CLL (M-CLL) [75]. 
Recent studies have shown a novel Ca2+ entry pathway, 
named constitutive Ca2+  entry (CE), which is consti-
tutive and BCR-independent, is controlled by stromal 
interaction molecule 1 (STIM1) located at the plasma 
membrane [74]. Besides, the surface protein CD38 can 
enhance intracellular Ca2+ levels to promote RasGRP2/
Rap1-mediated CLL cell adhesion and migration [76, 
77]. Pathways associated with calcium ions, such as Rap1 
signaling, may lead to potential therapeutic strategies tar-
geting CLL treatment. Calcium concentration variation 
is directly through the BCR and chemokine receptors, 
or indirectly through co-stimulatory molecules. Trans-
mit information depending on calcium signals is crucial 



Page 5 of 13Nie et al. Experimental Hematology & Oncology           (2022) 11:39 	

to B-cell ontogeny, including specific signaling pathways 
essential for B cells development and activation [78, 79].

In addition, iron plays dual roles in the CLL cells. On 
the one hand, iron is a critical cofactor that is required for 
DNA synthesis [80]. The transferrin receptor (TfR) con-
tributes to iron import and a higher TfR concentration 
has been found in CLL directly reflecting the large tumor 
burden [81]. Leukemia cells harbored TP53 mutation 
need a mass of iron to support rapid proliferation. P53 
plays a role in iron homeostasis and mitochondrial iron 
homeostasis by modulating iron regulators [82]. Cells 
may go into canceration or demise when the homeosta-
sis is disrupted [83]. Ferroptosis, a crucial component of 
p53-mediated tumor suppression, is an iron-dependent 
form of regulated cell death caused by unrestricted lipid 
peroxidation and subsequent plasma membrane rupture 
[84]. The activity of the selenoperoxidase Glutathione 
Peroxidase 4 (GPX4) is the cornerstone of the antiper-
oxidant defence [85]. The expression of GPX4 in ferrop-
tosis depends on the presence of glutathione (GSH) [86]. 
Eprenetapopt, which could reactivate mutant forms of 
p53 and induce ferroptosis by GSH depletion, is currently 
being tested in the clinical trials involving patients with 
acute myeloid leukemia (NCT03931291) [87]. Cysteine 
availability is the main limiting factor in the synthesis 
of GSH. The depletion of extracellular cysteine leads to 
cell death in CLL. Cyst(e)inase, an engineered human 
enzyme, effectively degrades cysteine and induces fer-
roptosis in pancreatic ductal adenocarcinoma [86]. The 
strategy regulating extracellular cysteine levels opens 
up new therapeutic options for CLL patients with TP53 
mutation. Nevertheless, the definitive mechanism that 
p53 modulates iron metabolism in CLL is unclear. Tar-
geting altered iron metabolic pathway is specific to CLL 
patients with TP53 mutation.

Mitochondrial metabolism
Mt plays an important role in cellular metabolism, ATP 
synthesis, oxidative metabolism and the regulation of 
apoptosis [88, 89]. Compared with solid tumor cells, 
aerobic glycolysis is not increased in CLL cells, while the 
level of mitochondrial OXPHOS is elevated. Mt biogen-
esis, such as Mt mass, ATP production, Mt DNA, oxygen 
consumption and the production of ROS, has increased 
in CLL cells. The accumulation of ROS may contribute 
to the metabolic state of oxidative stress in CLL patients 
[90–92].

OXPHOS is upregulated in leukemias, including CLL. 
OXPHOS inhibitors could be used to improve treatment 
outcomes [93]. Recent studies have identified that PI3K/
AKT signaling could be limited by the suppression of 
the expression and activity of the inhibitory phosphatase 
SH2-containing-inositol-5′-phosphatase-1 (SHIP1) in 

CLL cells. Increased Mt respiration and excessive accu-
mulation of ROS lead to CLL cells death [94]. Besides, 
mtDNA mutations elevate the level of nitric oxide (NO), 
which can significantly influence Mt biogenesis. By inhib-
iting the expression of NO synthases (NOS), which can be 
induced by ROS stress, the NO-mediated Mt biogenesis 
in CLL cells can be changed [95]. Previous study verified 
the ability of 22 NOS inhibitors to induce CLL cell apop-
tosis, including L-NAME [96]. In addition, the Ser727-
phosphorylated STAT3 molecule (pSTAT3Ser727) in Mt 
overactivity can enhance the antioxidant defense ability of 
CLL B cells that promotes their survival [97, 98].

Hence, recent studies have shown that combinations 
with mitochondrial targeting agents could be a promis-
ing cancer therapy. Of note, some unanticipated agents 
regulating metabolism also play roles in CLL. The 
OXPHOS inhibitor metformin (NCT01750567) alone 
or in combination with the GLUT4 inhibitor ritonavir 
(NCT02948283) was involved in the current clinical trials 
[70]. Metformin inhibits the OXPHOS of mitochondrial 
in CLL cells, while ritonavir induces CLL cells apopto-
sis [99]. The OXPHOS inhibitor IACS-010759 inhibits 
OXPHOS and diminishes intracellular ribonucleotide 
pools [100]. Berberine (BRB), used for metabolic disor-
ders, induces impairment of OXPHOS and the associated 
increment of oxidative damage, with consequent inhibi-
tion of CLL cell activation and eventual cell death [101]. 
Besides, PK11195, the benzodiazepine derivate, blocks 
OXPHOS and induces apoptosis in CLL [102].

Role of the microenvironment in CLL metabolism
The specific microenvironment can promote the survival 
of CLL cells. In most human cancers, non-malignant 
cells in the microenvironment limit oxygen and nutri-
ent transport to the cancer cells [36, 103]. Lipid metab-
olism in microenvironment plays the paradoxical role 
in anti-tumor and pro-tumor immune responses [104]. 
Therefore, cancer cells transfer their metabolic ability 
and adapt their microenvironment to support cancer cell 
growth and satisfy their biomass demands, even involv-
ing in cancer metastasis [105, 106].

The microenvironment activates and protects CLL 
cells through several mechanisms [107]. CLL cells, pri-
marily existing in peripheral blood and tissues and pro-
liferate mainly in lymph nodes, interact directly with T 
cells, monocyte-derived cells (MDC) and stromal cells 
in proliferation centers. The signals, such as adhesion 
molecules, cell surface ligands, chemokines, cytokines 
and their respective receptors, mediate the interactions 
between CLL cells and the microenvironment. These 
signals promote an immunotolerant milieu in the CLL 
lymph node [108]. Thus, the microenvironment affects 
the metabolism of CLL cells significantly.
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In CLL patients, T cells can activate mitochondrial 
metabolism, enhance chemo-resistance and promote 
cell proliferation. Follicular helper T cells (TFH) popu-
lations expand abnormally and produce a mass of 
cytokines and costimulatory molecules to help CLL 
cells proliferate [109, 110]. Besides, CLL cells express 
high levels of PD-L1 while T cells express PD-1 [111]. 
Blocking PD-1/PD-L1 might restore the glycolysis, 
phagocytosis and BTK signaling of monocytes/mac-
rophages in CLL [112]. Direct contact with CLL cells 
induces T-cell dysfunction [113], such as inducing Rho 
GTPase signaling defects in T cells to evade immune 
recognition [114].

Stromal cells prolong the survival time of CLL cells by 
generating stromal cell-derived factor-1 (SDF-1) [115]. 
The survival signals delivered by stromal cells activate 
different pathways. Mesenchymal stromal cells (MSCs) 
in CLL patients signifcantly promote CLL cell prolifera-
tion compared with the control group [116]. In addi-
tion, MSC-derived extracellular vesicles (EVs) increase 
CLL cell migration and give CLL cell survival advan-
tages [117]. Bone marrow stromal cells take in cystine 
and transform it into cysteine, which is transported 
to CLL cells for glutathione synthesis and enhances 
survival and drug resistance of CLL cells [118]. The 
selective inhibitor of the lipid kinase PI3Kδ idelalisib 
(NCT01539512) promotes apoptosis in primary CLL 
cells, and disrupts interactions between CLL cells and 
endothelial cells/bone marrow stromal cells [119, 120]. 
Bone marrow stromal cells induce the production of 
protein kinase C-β to promote CLL progression [121]. 
Protein kinase C-β lessens mitochondrial stress and 
facilitates glucose absorption. Disrupting this bidirec-
tional communication between CLL cells and stromal 
cells can study novel treatment strategies.

Gene expression of metabolic reprogramming 
in CLL
Aberrant expression of oncogenes and tumor suppres-
sors facilitates the metabolic reprogramming of cancer 
cells to enable increased nutrient acquisition and bio-
synthesis [15]. However, how gene expression affects 
metabolism of CLL cells is less understood. Therefore, we 
summarized the impact of gene expression on metabolic 
reprogramming of CLL cells (shown in Table 1).

The human tumor suppressor gene TP53, located 
on the short arm of chromosome 17, plays key roles in 
cell cycle arrest, apoptosis, DNA repair, autophagy and 
metabolism regulation in CLL [122, 123]. TP53 muta-
tion and/or deletion of chromosome 17 is a poor prog-
nostic biomarker and tailors the therapy in CLL patients 
[124–126]. Importantly, the protein p53, targeting vari-
ous metabolism pathways, enables cells to maintain met-
abolic homeostasis and adapt to stress [127]. Researchers 
have indicated that mutant TP53 could conserve its 
tumor suppressor activity by decreasing reactive oxygen 
production and regulating energy metabolism [128]. In 
lipid metabolism, p53 inhibits fatty acid synthesis and 
even enhances fatty acid oxidation in cells [129]. Besides, 
p53 takes effect on OXPHOS, mitochondrial metabo-
lism, serine metabolism, nucleotide metabolism and iron 
metabolism [129, 130]. In lymphomas, cellular metabo-
lism and metabolic stress influence the activity of p53 
conversely. Metabolic stress induced by glucose depri-
vation leads to cell-cycle arrest and apoptosis. The Gln 
metabolism and glycolysis also affect the transcription 
activity of the p53 protein [131]. Taken together, TP53 is 
a critical gene in CLL cellular metabolism and moderated 
by the metabolic status of the cells.

The MYC oncogene family, including c-MYC, N-MYC 
and L-MYC, encodes a group of nuclear phosphopro-
teins that take effect in cell proliferation, apoptosis and 

Table 1  Oncogenes and tumor suppressor genes participate in the metabolic reprogramming of chronic lymphocytic leukemia (CLL)

Gene Effects on metabolic pathways Relevance to CLL

TP53 Glucose metabolism
Lipid metabolism
OXPHOS
Iron metabolism

TP53 plays key roles in cell cycle arrest, apoptosis, DNA repair and autophagy. The TP53 muta-
tion/deletion is a poor prognostic biomarker in CLL, and tailors the therapy of CLL patients

ATM Glutamine metabolism
Glucose metabolism

ATM mutations predict for shorter time to first treatment irrespective of the IGHV mutation status

MYC Glutamine metabolism
Glucose metabolism

Mutations in MYC have been linked to Richter syndrome. BCR engagement enhances MYC 
expression in a BTK dependent manner as it is abrogated by ibrutinib

SI Carbohydrate metabolism SI participants in metabolic reprogramming in CLL cells

AKT Glucose metabolism Active AKT signaling triggers CLL toward Richter transformation via overactivation of Notch1

EZH2 Glutamine metabolism
Lipid metabolism
Amino acid metabolism

EZH2 upregulates the PI3K/AKT pathway through IGF1R and MYC in aggressive CLL
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progression of cancers [132]. Endogenous and oncogenic 
MYC appears to share target genes involved in several 
facets of intermediary metabolism from glycolysis and 
glutaminolysis to nucleotide and lipid synthesis [133]. 
It was reported that the metabolic genes would be fur-
ther amplified to support the bioenergetic needs of the 
growing cells when MYC is induced. In proliferative 
tumor cells, MYC increases the expression of glutamine 
transporters and glutaminase to promote mitochon-
drial glutamine utilization [134]. Through upregulation 
of enzymes in the PPP, MYC increases the shunting of 
glucose to the PPP in lymphocytes [135]. In addition, it 
regulates lymphocyte serine biosynthesis. Besides, MYC 
activates the expression of the enzymes ATP citrate 
lyase (ACLY), acetyl-CoA carboxylase alpha, fatty acid 
synthase (FASN) and stearoyl-CoA desaturase (SCD), 
involved in fatty acid synthesis from citrate [136, 137]. 
However, whether MYC takes similar effects in CLL 
needs further exploration. The expression of MYC in 
CLL is increased with disease progression, independent 
of other prognostic factors [70]. Richter syndrome (RS) 
is the transformation of CLL into an aggressive lym-
phoma and has a poor prognosis [138]. MYC aberrations 
are common in RS and enhanced glucose metabolism is 
detected in RS [139]. MYC may upregulate the glucose 
metabolism in CLL cells leading to disease progression.

The human tumor suppressor gene ATM, located on 
the long arm of chromosome 11, relates to DNA dam-
age, cell cycle progression, p53 dysfunction and metab-
olism [66, 140]. In CLL, the ATM mutation is a poor 
independent prognostic biomarker for time to first treat-
ment (TTFT) [141]. The underexpression of ATM is 
associated with the deletion of chromosome 11 (del11q), 
while del11q CLL lymphocytes reprogram glutamine 
metabolism and inhibit glucose metabolism [66]. Besides, 
increased expression of insulin receptors is found in 
del11q CLL [142]. Thus, del11q, associated with the 
low expression of ATM, inhibits glucose and glutamine 
metabolism pathways.

Besides the tumor suppressor genes and oncogenes 
above, other genes also take metabolic effects in CLL. 
Sucrase-isomaltase (SI) is a carbohydrate metabolism 
enzyme and SI gene mutations involve in the metabolism 

and development of cancer [143, 144]. In CLL, SI muta-
tions result in metabolic reprogramming of glucose, 
heterocycle and cofactor metabolism. In this respect, SI 
could be an overlooked cancer gene. The oncogene AKT 
stimulates glucose metabolism and lactate production 
without increasing oxygen consumption in glioblastoma 
and hematopoietic cancer cell [145]. Active AKT signal-
ing triggers CLL toward RS [146, 147]. While enhanced 
glucose metabolism is found in RS, the role of AKT plays 
in the glucose metabolic pathway of CLL may need fur-
ther study. Due to the difference in cellular context, 
EZH2 acts as either an oncogene or a tumor suppres-
sor gene [148, 149]. It alters metabolism of cancer cells 
involving glucose, lipid and amino acid metabolism [150]. 
In aggressive CLL, EZH2 upregulates the PI3K/AKT 
pathway through IGF1R and MYC, thus regulating glyco-
lysis, glutaminolysis and mitochondrial biogenesis [151, 
152]. Overexpression of EZH2 is associated with a poor 
prognosis of CLL [153]. Overall, some oncogenes and 
tumor suppressor genes could regulate metabolic repro-
gramming in CLL.

In the last decade, the biological basis of CLL patho-
genesis studies has greatly expanded our knowledge 
of the progression of CLL remarkably, revealing a huge 
number of novel alterations that might drive the evolu-
tion of the disease. Therefore, we summarized the repro-
grammed pathways or biomarkers related to metabolism 
in CLL (shown in Tables 2 and 3).

Other therapies targeting metabolic pathways 
in CLL
As mentioned, CLL cells alter the metabolic pathways 
to satisfy the need for proliferation and survival. In this 
context, metabolism is a novel target for CLL patients 
(detailed information is shown in Table 4).

Besides the treatments discussed above, the poten-
tial agents on the suite of CLL metabolism need more 
research to prove. For instance, a cardiac glycoside is a 
therapy for heart failure and arrhythmia. Ipecac alkaloids 
are used as anti-infective. They both repress hypoxia-
inducible factor-1α (HIF-1α) and disturb intracellular 
redox homeostasis in CLL cells, as well as highly active 
against protected primary CLL cells [154, 155].

Table 2  Reprogrammed signaling pathways associated with metabolism in CLL

Pathways Mechanism of action

NF-κB signaling pathway Constitutively activated and interacts with BCR, Toll-like receptors and CD40 in CLL

PI3K/AKT/mTOR pathway Constitutively activated and plays a pivotal role in the aberrant OXHPHOS and 
glycolysis and involves in CLL cell survival and migration

Notch-c-Myc signaling pathway Increases aerobic glycolysis in CLL cells activated by bone marrow stromal cells

BCR signaling pathways Engages glucose and glycerol metabolism
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Ibrutinib, the BTK inhibitor, is the first choice for CLL 
[125]. In addition to targeting BCR signaling, ibrutinib 
participants in the control of lipid and mitochondrial 
metabolism [70]. Increased HDL level is found in CLL 
patients received ibrutinib therapy [156]. Ibrutinib affects 
Mt metabolism, and curtailing AMPK activity might sen-
sitize ibrutinib-resistant clones to ibrutinib [157]. These 
results indicate that ibrutinib induces bioenergetic stress 
responses.

Metabolic reprogramming in other hematological 
malignancies
Metabolic heterogeneity is found in acute myeloid leu-
kemia (AML) at different stages. Human leukemia stem 
cells (LSC) are dependent on OXPHOS for survival reg-
ulated by AMPK, as well as mTOR. Amino acid uptake, 
steady-state levels and catabolism are elevated in the 
LSC [158, 159]. Ecotropic Virus Integration site 1 pro-
tein homolog (EVI1) induces accelerated OXPHOS prior 
to activation of glycolysis in mixed lineage leukemia-
rearrangement AML, with a higher dependency on Gln 
[160]. On the other hand, fatty acids oxidation (FAO) is 
a key metabolic pathway fostering the survival of chem-
oresistant LSC. Inhibiting very-long-chain acyl-CoA 
dehydrogenase, which supports FAO and OXPHOS in 
the mitochondrial metabolism in AML, is demonstrated 

preclinical activity [161]. In contrast to LSC, bulk AML 
blast cells rely on glycolysis to produce energy, and upon 
glucose deprivation have decreased viability in culture 
[59]. High expression of phosphomannonse isomerase 
(PMI), as a poor prognostic factor of AML, mobilizes 
mannose to glycolysis under glucose starvation in leu-
kemia [162]. In addition, thioredoxin reductase (TrxR) 
directly regulates GAPDH leading to a disruption of gly-
colysis and an increase in flux through the PPP [163]. 
Combined inhibition of TrxR and PPP leads to leukemia 
growth inhibition.

Similar to lymphomas and AML, aberrant glycolysis 
and OXPHOS are the main altered metabolic processes in 
multiple myeloma (MM). Lactate dehydrogenase isoform 
A (LDHA), a key enzyme in glycolysis, is highly expressed 
in MM [164]. In MM, the PPARγ coactivator-1β (PGC1β) 
promotes the transcription of LDHA, thus modulates 
glycolysis and mitochondrial function. Otherwise, MM 
cells with overexpression of PLR-3 have higher aerobic 
glycolytic rate, OXPHOS and ATP production by pro-
moting glucose uptake and lactate excretion, enhancing 
the levels of proteins regulating glycolysis and enzymes in 
the serine/glycine synthesis pathway [165]. Besides, lipid 
metabolism and microenvironment affect the cell prolif-
eration in MM. In bone marrow, MM cells induce lipoly-
sis of adipocytes. Subsequently, released FFA is taken up 

Table 3  Biomarkers in reprogrammed pathways related to metabolism in CLL

Biomarkers Mechanism of action

BTK Involves in CLL cell proliferation and adhesion, BCR signaling, chemokine secretion (CCL3, CCL4)

ZAP-70 Overexpressed in CLL cell and enhances BCR signaling

Spleen tyrosine kinase (SYK) Involves CLL cell survival and migration via BCR and chemokine receptor signaling

Lyn Overexpressed in CLL cell as a major contributor to antigen-independent BCR signaling

Sprouty2 Significantly decreased in CLL cells from poor-prognosis patients and attenuates BCR and 
MAPK-ERK signaling in CLL cell

CD5 Promotes the activation of the PI3K/Akt/mTOR and MAPK-ERK pathway

CD40 Regulates amino acid metabolism, TCA and energy production

Table 4  Possible effects of metabolism-associated agents in CLL

Agents Primary mechanism Possible effects in CLL Identifier

Statins Competitive inhibitors of HMG-CoA reductase Induces apoptosis of CLL cells –

Orlistat LPL inhibitor Induces apoptosis of CLL cells –

Idelalisib Selective inhibitor of the lipid kinase PI3Kδ Promotes apoptosis in primary CLL cells
Disrupt interactions between CLL with endothelial cells 
and bone marrow stromal cells

NCT01539512

Ratonavir GLUT4 inhibitor Induces apoptosis NCT02948283

L-asparaginase Glutaminase inhibition Catalyzes the conversion of glutamine to glutamate, 
especially in del11q CLL cells

–

L-NAME NOS inhibitors Induces CLL cells apoptosis –

Berberine Isoquinoline alkaloid Inhibits CLL cell activation and eventual cell death –
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by myeloma cells through FFA transporter proteins, lead-
ing to growth or lipotoxicity [166].

One of the common metabolic characteristics among 
some B-cell derived lymphomas is the increased 
OXPHOS. According to consensus cluster classification, 
diffuse large B-cell lymphoma (DLBCL) is separated into 
three clusters with distinct metabolic fringerpringts: 
OXPHOS-DLBCL, BCR-DLBCL and host response-
DLBCL [167]. OXPHOS-DLBCL displays a prominent 
mitochondrial component with elevated OXPHOS. 
Quantitative evidence validates marked increased mito-
chondrial FAO and palmitate is a predominant res-
piratory fuel in OXPHOS-DLBCL [168]. In contrast, 
non-OXPHOS-DLBCL is metabolically rewired to aero-
bic glycolysis. In addition, overexpression of transport-
ers of lactate in DLBCL cells, such as monocarboxylate 
transporter 1 (MCT1) and TOMM20, promotes the TCA 
cycle of malignant cells in the process of reverse War-
burg effect [169]. Similarly, Hodgkin and Reed Sternber 
cells with high expression of MCT1 and TOMM20 are 
of increased mitochondrial metabolism, while tumor-
associated macrophages with high expression of MCT4 
present elevated glycolysis in the microenvironment 
[170]. mTOR signaling plays a pivotal role in the aberrant 
OXHPHOS and glycolysis in B-cell derived lymphoma, 
including DLBCL, follicular lymphoma (FL), mantle cell 
lymphoma (MCL) [171, 172]. However, rapalogs, the 
inhibitor of mTORC1, fails to improve the prognosis of 
refractory/relapsed DLBCL, FL and MCL in the clini-
cal studies [171]. mTOR signaling pathway is a potential 
therapeutic target for the B-cell derived lymphomas.

To some extent, the metabolism rewiring of CLL is 
in accordance with partly B-cell derived lymphomas, in 
which the survival and proliferation of cells depend on 
elevated OXPHOS or aerobic glycolysis. Although meta-
bolic alternations of other hematological malignancies 
involve in lipid metabolism, the overexpression of LPL 
is not reported in the hematological malignancies except 
for CLL. Similar to adipocytes, lipid-like vesicles uptaked 
by LPL are detected in CLL cells [42]. Several proteins 
that drive steps in glycolysis and FFA biosynthesis are 
overexpressed, while proteins involved in the citric acid 
cycle are at low levels in CLL cells. This suggests CLL 
cells increase both endogenous lipid synthesis and exoge-
nous lipid uptake [44]. Compared to other hematological 
malignancies, CLL cells are more inclined to rely on lipid 
metabolic pathways to support their survival.

Conclusions
Extensive research over the last decade has provided 
compelling evidence for metabolic reprogramming in 
CLL. Unlike normal cells which rely on aerobic glucose 
metabolism, CLL cells depend on the aberrant lipid 

metabolism and mitochondrial OXPHOS to support sur-
vival and growth. Altered metabolism of amino acids and 
ions contribute to the intracellular signal transduction in 
CLL cells. In addition, the microenvironment, activating 
the metabolism through several mechanisms, plays a vital 
role in the survival of CLL cells. Besides, the process of 
metabolic rewiring in CLL is driven by some oncogenes 
and tumor suppressor genes, especially TP53, MYC and 
ATM. Exploring novel agents with high selectivity and 
specificity by regulating the metabolic activity provides 
an opportunity to benefit CLL patients. Furthermore, the 
synergistic effects of metabolism-regulated drugs with 
targeted therapy need to be tested comprehensively in 
the clinic to facilitate development of novel treatment 
strategies for CLL patients. With improved understand-
ing of CLL metabolic reprogramming, the rise of inno-
vative therapeutic interventions that target metabolic 
pathways is anticipated.
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