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Abstract 

As an important epigenetic modification, DNA methylation is involved in many biological processes such as animal 
cell differentiation, embryonic development, genomic imprinting and sex chromosome inactivation. As DNA methyla‑
tion sequencing becomes more sophisticated, it becomes possible to use it to solve more zoological problems. This 
paper reviews the characteristics of DNA methylation, with emphasis on the research and application of DNA meth‑
ylation in poultry.
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Introduction
The maturation of molecular genetic marker technology 
makes the quantitative trait map of livestock and poultry 
robust systematic and perfect, and provides a new means 
for livestock and poultry improvement. DNA methyla-
tion is a widely used epigenetic modification [1–6]. DNA 
methylation causes the activity of certain genes to be 
turned off, while demethylation induces gene reactivation 
and expression [7, 8]. Under the catalytic action of DNA 
methyltransferase, the two nucleotides of CG in DNA 
are selectively added methyl groups to form 5mC, which 
mostly appears in the 5’-CG-3’ gene sequence [9, 10]. 
Most vertebrate genome DNA contains a small amount 
of methylated C, which is mainly distributed in the non-
coding region at the 5’ end of the gene and exists in clus-
ters [11–14].

DNA methylation has been widely utilized in poultry 
species [15–21]. For example, in the DNA methylation 
map of broilers, there are more hypomethylated regions 
in the genome, and CGIs (CpG islands) has the larg-
est distribution in the gene promoter region, indicat-
ing that the hypomethylation of CGIs methylation and 
muscle developing-related genes is involved in the rapid 
muscle development of broilers. Meanwhile, MyH1-AS, 
a lncRNA (long non-coding RNA) present in the DMRs 
(differential methylation regions) is involved in regulating 
the development of chicken embryonic muscle in chicken 
[22]. In the DNA methylation study of skeletal muscle 
satellite cells, the Wnt signaling pathway was significantly 
enriched in Kyoto Encyclopedia of Genes and Genomes 
database and Gene Ontology, and the methylation sta-
tus of promoter region affected the expression levels of 
Wnt5a, Wnt9a and TGFβ1 genes, suggesting that the 
methylation status of Wnt and TGFβ signals is a key reg-
ulatory factor during skeletal muscle development [23]. 
These markers are of great significance for understanding 
the molecular regulation mechanism and genetic expres-
sion mechanism of important economic traits of poultry 
and promoting poultry genetic breeding.

With the continuous development of sequencing tech-
nology, DNA methylation epigenetic research has been 
widely studied in the fields of biology, medicine, agricul-
ture and forestry. Numerous studies at the genome level 
have been increasing the understanding of the genetic 
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mechanism of important economic traits in livestock and 
poultry, reducing the occurrence of diseases and genetic 
defects in breeding, and making important contributions 
to improving the production efficiency, product quality 
and economic benefits of poultry (Fig.  1). Through the 
review of the relevant research content of poultry DNA 
methylation, we further understand the role of DNA 
methylation in poultry production, which may provide a 
certain theoretical basis.

The application of DNA methylation in poultry 
reproductive traits
Gallus gallus (domestic chickens) are the world’s most 
important commercial source of meat, however, there 
has been less research into chicken epigenetics [15, 24–
26]. One of the important problems in the protection of 
chicken genetic resources is the suppression of chicken 
inbreeding [1, 27, 28].

At present, common epigenetic DNA methylation 
research sequencing methods include MeDIP-Seq (meth-
ylated DNA immunocoprecipitation sequencing), MBD-
Seq (methylated DNA binding domain sequencing) and 

WGBS (whole genome DNA methylation sequencing) 
[29, 30]. Although, few studies have sequenced chicken 
reproductive related tissues by these sequencing meth-
ods. The effects of DNA methylation on chicken repro-
ductive performance were investigated and some key 
molecular markers were found. WGBS was performed 
and 5,948 and 4,593 DMRs were identified in the hypo-
thalamus and ovary of strong and weak inbred Langshan 
chickens, respectively. A large number of DMGs (DMR 
related genes) were enriched in reproductive related 
pathways. A study combined with WGBS and transcrip-
tome data and concluded that two DMRs in the SRD5A1 
and CDC27 genes may be biomarkers of inbred repro-
ductive inhibition in Langshan chickens [31] (Fig.  2a). 
Nevertheless, analysis of the chicken DNA methylation 
mechanism and DNA methylation landscape revealed 
that the overall distribution of DNA methylation was 
similar to that of mammals and sperm DNA showed 
hypomethylation, which was associated with the dele-
tion of DNMT3L cofactors in the chicken genome. In 
addition, the study provided its dynamic regulation at 
transcription factor binding sites, and this information 

Fig. 1  Overview of epigenetic mechanisms in poultry
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was applied to construct chicken DNA methylation 
clocks that can accurately predict the age of broilers [32] 
(Fig.  2b). An important new approach in human medi-
cine and stem cell biology is the production of germ cells 
in vitro [33–35]. By revealing the DNA methylation pat-
terns of individual genes, it was found that certain genes 
such as AKT1 and CTNNB1 precisely regulated by DNA 
methylation were associated with cancer and viral infec-
tions. Chicken-specific markers used to identify male 
germ cells were also revealed. Importantly, this study 
explored the integrated epigenetic mechanisms of male 
germ cell differentiation [36] (Fig. 2c).

DNA methylation is the link between genes and phe-
notypes [17–19, 37, 38], and has been widely used to 
identify environmental influences on poultry growth [16, 

39–41]. DNA methylation has also been studied in ducks, 
not just chickens.

The differences of DNA methylation between breeding 
and protective populations of Shaoxing ducks were inves-
tigated by genome-wide DNA methylation detection. 
Thirty-five differentially methylated genes were identi-
fied and these genes were closely related to production 
performance. In addition, ATP2B1 and ATP2B2 genes 
related to eggshell quality were also identified as differ-
entially methylated, which could be used as molecular 
markers to improve eggshell quality in the future [21]. 
Incubation temperature also has long-term effects on 
bird embryo development and its effect on DNA meth-
ylation was investigated by increasing the incubation 
temperature from 37.8 to 38.8 ºC at ED (embryonic stage) 
1–10, ED10–20 and ED20–27. The results indicated that 

Fig. 2  Application of DNA methylation to reproductive traits in poultry. a Through DNA methylation analysis of the hypothalamus and ovary 
of strongly inbred chickens, the marker genes SRD5A1 and CDC27, which may be the inhibition of inbreeding of Langshan chickens, were found 
in the DMRs region. b Although the overall distribution of DNA methylation was similar to that of mammals, sperm DNA showed hypomethylation, 
which was related to the deletion of DNMT3L cofactor in the chicken genome. And a DNA methylation clock based on LMR was established 
for broiler age prediction. c A comprehensive genome-wide DNA methylation landscape in chicken germ cells was reported. And by revealing 
the DNA methylation patterns of individual genes, it was found that some genes precisely regulated by DNA methylation were associated 
with cancer and viral infections, such as AKT1 and CTNNB1 
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Methyl-CpG binding domain proteins and DNA (cytosine 
5)-methyltransferases may be involved in the thermoe-
pigenetic regulation of early embryonic development in 
ducks [20].

The mechanism of DNA methylation during muscle 
development in poultry
Intramuscular fat  (IMF) is an indispensable factor 
affecting meat quality, which is regulated by nutrition, 
environment and genetics [42–45]. DNA methylation 
plays a crucial role in early muscle development [46]. 

By establishing an intramuscular adipocyte differen-
tiation model, it has been reported that DNA methyla-
tion affects IMF deposition by regulating genes such as 
COL6A1, which regulate the formation of intramuscu-
lar adipocytes [47] (Fig.  3a). In the early development 
of muscles, DNA methylation is a significant factor that 
cannot be ignored [22, 48, 49]. Different studies had 
found that DMGs were significantly related to actin 
filament depolymerization, skeletal muscle satellite 
cell proliferation and muscle organ development while 
CFL2 negatively regulated the proliferation of chicken 

Fig. 3  Mechanism of DNA methylation during muscle and adipose development in poultry. a DNA methylation regulates intramuscular fat 
formation by regulating genes such as collagen, type VI and alpha 1 (COL6A1), thus affecting IMF deposition. b In vitro experiments showed 
that CFL2 negatively regulated the proliferation of chicken skeletal muscle satellite cells and induced cell apoptosis
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skeletal muscle satellite cells and induced cell apoptosis 
[50] (Fig. 3b).

The role of DNA methylation in the development 
of disease in poultry
Avian leukosis virus subgroup J  (ALV-J) and Salmo-
nella enterica serovar Enteritidis  (SE) can cause seri-
ous economic losses in the poultry industry by affecting 
poultry production, and pose a serious threat to pub-
lic health [51, 52]. A growing number of diseases have 
been shown to be associated with alterations in DNA 
methylation [53–56]. Genome-wide gene expression 

and DNA methylation profiles of ALV-J positive and 
negative chicken samples were generated and provided 
by MeDIP-seq and RNA-seq (RNA sequencing) stud-
ies. Six candidate genes were screened by integration 
analysis to identify ALV-J negative chickens with differ-
ences in methylation of promoter region [52] (Fig. 4a). 
The whole genome DNA methylation profile of chicken 
SE reaction was analyzed to reveal the regulatory 
mechanism of methylation in chicken SE reaction. SE 
inoculation can promote DNA methylation in chicken 
cecum and cause methylation changes of genes related 
to immunity and metabolism. Wnt signaling pathways 

Fig. 4  The role of DNA methylation in the development of disease in poultry. a MeDIP-seq analysis was used to identify DMRs and RNA-seq analysis 
was used to identify DEGs in ALV-J positive and negative chicken samples, suggested that TGFB2 may be an indicator for identifying ALV-J infection. 
b SE inoculation can promote DNA methylation in chicken cecum and cause methylation changes of immune and metabolism-related genes. Wnt 
signaling pathways, miRNAs and HOX gene families may play key roles in the regulation of SE methylation in chicken inoculation
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including miRNAs and HOX gene families may play 
key roles in the regulation of SE methylation in chicken 
inoculation [51] (Fig. 4b).

 Cluster of differentiation 8 (CD8) acts as a co-receptor 
of T cell receptors, presenting peptides on the cell sur-
face [57, 58]. CD8A transcription is controlled by several 
cis-and trans-acting elements and DNA methylation. Xu 
et  al.  [59] studied the epigenetic transcriptional regu-
lation mechanism of CD8A expression, such as DNA 
methylation, and found that the CD8A mRNA level was 
negatively releated with the overall methylation status of 
CD8A CpG in ducks thereby suggesting that the hyper-
methylation of CD8A may be related to the hypermeth-
ylation of CD8A and DHV-1 infection in ducks.

 Ferritin heavy polypeptide 1  (FTH1) expression is 
regulated by a variety of pathogens, but its regulatory 
mechanisms remain unclear [60–64]. A duck hepatitis 
virus (DHV-1) infection model was constructed to detect 
FTH1 (duFTH1) mRNA expression in ducks infected 
with DHV-1. The DNA methylation level of duFTH1 
promoter region was detected by BSP (bisulfite sequenc-
ing), and the region was found to be hypomethylated. 
The duFTH1 promoter region was also found to con-
tain a mutation affecting the activity of the region, which 
altered the binding site of the transcription factor NRF1. 
The binding of FTH1 promoter and NRF1 was con-
firmed by further analysis. This study provided molecu-
lar insights into the influence of duFTH1 expression on 
DHV-1 challenges through promoter polymorphism 
rather than DNA methylation [65].

How does DNA methylation affect egg production 
in poultry
Egg production is an important economic trait of poultry 
[66]. It is of great importance for breeders to understand 
the key genes that influence egg production.

It has been reported that the effects of VC (vitamin C) 
feeding on the performance, immune status and expres-
sion of DNA methylation-related genes of broilers at 
embryo age 11 (E11). The results showed that IOF (in 
ovo feeding) of VC at E11 improved the performance and 
immune status of broilers after hatching, and increased 
the antioxidant capacity of broilers to a certain extent. 
The expression of enzyme-related DNA methylation and 
demethylation suggested that the spleen DNA methyla-
tion level may be increased in the VC group, but whether 
the expression fluctuation of anti-inflammatory and pro-
inflammatory cytokines is related to the changes of DNA 
methylation remains to be further studied [67].

The effect of ZP2 promoter methylation on egg pro-
duction in Jinghai Yellow chickens has been investigated. 
By constructing a missing promoter vector of ZP2 gene, 

it was predicted that the core region of ZP2 gene was 
located between −1,552 and −1,348. The methylation of 
mC-20 and mC-21 sites in ZP2 gene promoter region 
was negatively correlated (P < 0.05) with mRNA expres-
sion. Both sites are located at the Sp1 transcription fac-
tor binding site, and the binding of Sp1 to DNA may be 
inhibited, thus affecting the transcription of ZP2 gene 
and egg production [68].

Effect of DNA methylation on foie gras
Foie gras is a popular delicacy. It has a lot of unsaturated 
fatty acids to give it its unique flavor, and it’s loved by 
consumers all over the world [69–71]. Studies established 
control and overfeeding group to evaluate the effects 
of addition of betaine on liver weight and other indica-
tors. The results showed that the expression level of S14α 
mRNA in liver of geese treated with betaine was higher 
than that of control group and overfed geese. A single 
allele in this region (between +374 and −8 base pairs 
relative to the transcription start site) was sequenced 
with sodium sulfite, containing 33 CpG dinucleotides. 
And the overfed group expressing higher S14α tran-
scripts, the average methylation rate of 33 CpGs sites was 
87.9%. In the control group, this contrasted with 69.6% 
that showed lower expression of the S14α gene (P < 0.01). 
However, methylation at the transcriptional start site did 
not change significantly between betaine treated geese 
(82.6%) and overfed geese (87.9%). These results sug-
gested that DNA methylation patterns at the transcrip-
tion start site of S14α genes may be independent of the 
expression of S14α transcripts after betaine addition [72].

C/EBP-β is one of the key regulatory factors of hepatic 
lipid metabolism balance [73]. For futher understand 
the effects of C/EBP-β on lipid accumulation in goose 
liver, few studies had cloned the DNA of C/EBP-β. The 
results showed that betaine did not directly regulate the 
methylation, but decreased the expression of C/EBP-β 
gene in geese. These data can lay a foundation for further 
research on the mechanism of C/EBP-β regulating fat 
metabolism in foie gras and the effect of betaine on the 
molecular level of fat metabolism genes [74].

Dietary methionine  restriction affects growth perfor-
mance and amino acid metabolism. Supplementing the 
methyl donor with betaine prevents this interference 
[75, 76]. The effects of dietary methionine and betaine 
on growth performance, epigenetic mechanism and tran-
scriptome gene expression of methionine-deficient geese 
were examined. The results showed that dietary betaine 
and methionine changed the liver DNA methylation of 
LOC106032502 and affected the transcriptional regula-
tory network of geese [77].
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Conclusion
We mainly reviewed the effects of DNA methylation on 
reproductive traits, muscle and adipose development, 
disease, egg production, etc. And some important DNA 
methylation markers werer mentioned. DNA meth-
ylation plays an important role in poultry. Animal DNA 

methylation involves many aspects such as growth, devel-
opment, environment and nutrition. DNA methylation 
affects the development and differentiation of eukaryotic 
cells by regulating gene expression [78–80]. Numerous 
studies have utilized DNA methylation as biomarkers for 

Table 1  Major markers involved in DNA methylation in poultry

Traits Gene Description Methods Species Chr Pathway Reference

 Production SRD5A1 Steroid-5-alpha-
reductase, alpha 
polypeptide 1

WGBS Langshan chicken 2 Steroid hormone 
biosynthesis

Han et al. [31]

CDC27 Cell division cycle 
protein 27 homolog

27 Progesterone-
mediated oocyte 
matur-ation

WFIKKN1 WAP, follistatin/
kazal, immuno‑
globulin, kunitz 
and netrin domain 
containing 1

MBD-Seq and RNA-
Seq

Chicken 14 Negative regulation 
of transforming 
growth factor beta 
receptor signaling 
pathway

He et al. [36]

GAS7 Growth arrest 
specific 7

18 Protein binding

TMPRSS9 Transmembrane 
protease, serine 9

28 Proteolysis

MDM4 MDM4, p53 regula‑
tor

26 Regulation of cell 
cycle

 Muscle and adi‑
pose develop‑
ment

FASN Fatty acid synthase WGBS and RNA-Seq Chicken 18 Fatty acid biosyn‑
thetic process

Zhang et al. [47]

COL6A1 Collagen type VI 
alpha 1 chain

7 Platelet-derived 
growth factor 
binding

INSIGI Insulin induced 
gene 2

Chicken 7 Negative regulation 
of fatty acid biosyn‑
thetic process

CFL2 Cofilin 2 WGBS and RNA-Seq Chicken 5 Skeletal muscle tis‑
sue development

Ran et al. [50]

 Disease TGFB2 Transforming 
growth factor beta 2

RNA-Seq Chicken 3 Extrinsic apoptotic 
signaling pathway

Yan et al. [52]

HOXA3 Homeobox A3 WGBS Chicken 2 Cell population 
proliferation

Wang et al. [51]

HOXD12 Homeobox D12 7 Regulation 
of DNA-templated 
transcriptio

CD8A Cluster of differen‑
tiation 8

RT-qPCR Duck 4 - Xu et al. [59]

FTH1 Ferritin heavy poly‑
peptide 1

WGBS Duck 5 Cellular iron ion 
homeostasis

Xu et al. [65]

 Egg production ZP2 Zona pellucida 2 qRT-PCR Jinghai yellow 
chickens

14 Structural constitu‑
ent of egg coat

Zhang et al. [68]

 Foie gras S14α Thyroid hormone-
responsive Spot14

RT-PCR Landes goose Unknow Unknow Su et al. [72]

C/EBPβ CCAAT/enhancer-
binding protein β

Bisul fite sequenc‑
ing PCR

Landes goose Unknow Unknow Yu et al. [74]

LOC106032502 Pantetheinase-like 
[Anas Platyrhyn‑
chos]

RNA-Seq Geese Unknow Unknow Yang et al. [77]

HDAC7 Histone deacety‑
lase 7

Unknow Unknow
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disease recognition and diagnosis, animal growth trait 
markers, ketone body trait markers, etc. (Table 1).

However, from the existing studies, there were few 
studies on DNA methylation related to ducks and 
geese, while there were more studies on chickens. And 
current research still faces many challenges, such as 
obtaining samples of certain diseases and animal tis-
sues due to dynamic nature and relative instability of 
DNA methylation. More so, it is difficult to establish a 
stable reference model of DNA methylation. We are of 
the opinion that with the establishment of DNA whole 
genome methylation bioinformation database and the 
development of DNA methylation detection technol-
ogy, the research on poultry DNA methylation will be 
more and more comprehensive, more DNA methyla-
tion markers will be discovered and applied to practi-
cal production, and these problems will be gradually 
solved.
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