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Abstract 

Economic losses and market constraints caused by bacterial diseases such as colibacillosis due to avian pathogenic 
Escherichia coli and necrotic enteritis due to Clostridium perfringens remain major problems for poultry producers, 
despite substantial efforts in prevention and control. Antibiotics have been used not only for the treatment and 
prevention of such diseases, but also for growth promotion. Consequently, these practices have been linked to the 
selection and spread of antimicrobial resistant bacteria which constitute a significant global threat to humans, ani-
mals, and the environment. To break down the antimicrobial resistance (AMR), poultry producers are restricting the 
antimicrobial use (AMU) while adopting the antibiotic-free (ABF) and organic production practices to satisfy consum-
ers’ demands. However, it is not well understood how ABF and organic poultry production practices influence AMR 
profiles in the poultry gut microbiome. Various Gram-negative (Salmonella enterica serovars, Campylobacter jejuni/
coli, E. coli) and Gram-positive (Enterococcus spp., Staphylococcus spp. and C. perfringens) bacteria harboring multiple 
AMR determinants have been reported in poultry including organically- and ABF-raised chickens. In this review, we 
discussed major poultry production systems (conventional, ABF and organic) and their impacts on AMR in some 
potential pathogenic Gram-negative and Gram-positive bacteria which could allow identifying issues and opportuni-
ties to develop efficient and safe production practices in controlling pathogens.
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Introduction
Poultry meat is an important animal protein and one of 
the most popular meat consumed by humans worldwide. 
Its consumption is projected to increase 17.8% by 2030 
according to the OECD-FAO; the highest increase among 
all types of animal meats [1]. This significant increase 
is due to the rapidly growing poultry industry (annual 
global production of about 120 million tons) through 
genetic selection and the adoption of various measures to 
improve birds’ health and performance. Intensive poultry 

production driven by consumer’s demand continue to 
increase, especially in South America, Asia and Africa, 
possibly due to their recent change in diets for a more 
animal protein option [2]. Antibiotic use in the poultry 
industry revolutionized the therapeutic and economical 
gains by improving meat yield, bird’s health, and cost-
efficient production. However, the growing concerns 
of the increasing prevalence of antimicrobial resistance 
(AMR), particularly against antibiotics of human impor-
tance have led to restrictions of antimicrobial use (AMU) 
in poultry in several countries. Despite these restric-
tions and the use of alternative production practices to 
reduce AMR in poultry, there have been multiple reports 
of AMR bacteria associated with poultry which present 
food safety concerns [3–5].
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The gastrointestinal tract (GIT) plays a crucial role 
in poultry health as it provides the first-line of defense 
against foreign pathogens while also allowing nutrient 
absorption [6]. In addition to maintaining the homeo-
stasis and nutrient processing, populations of different 
bacteria including Lactobacillus, Clostridium, Rumino-
coccus, Salmonella enterica serovars, Enterococcus spp., 
and E. coli inhabit the GIT to constitute the gut micro-
biota. Through horizontal gene transfer of mobile genetic 
elements such as transposons and plasmids, the gut 
microbiota can be a reservoir for antimicrobial resistance 
genes (ARGs). The addition of antibiotics to poultry diets 
can modulate the gut microbiota by decreasing the path-
ogenic bacteria load, increased the intestinal nutrient 
absorption, and ultimately improved growth parameters 
[7]. Thus, it is important to understand how dietary prac-
tices modulate the poultry gut microbiome [6, 8].

Necrotic enteritis (NE) caused by a Gram-positive 
anaerobic spore-forming bacterium C. perfringens is 
one of the major poultry diseases costing $6 billion per 
year to the global poultry industry [9]. This bacterium, 
representing also a food safety issue, is widespread and 
commonly found in the environment and in the gut of 
humans and animals [10]. Sub-clinical NE lead to pro-
duction losses associated with reduced weight gains 
and poor feed conversion ratios [11]. Intestinal dam-
ages induced by C. perfringens give bacteria access to 
the bile duct and blood stream, consequently damaging 
additional organs in birds [12]. Typical antibiotics such 
as avilamycin and bacitracin methylene disalicylate are 
used to prevent NE in poultry. Therefore, with the AMU 
restrictions in poultry, controlling this pathogen has 
become highly imperative not only for poultry gut health, 
but also from a food safety perspective [9]. Coccidiosis is 
also a major poultry intestinal disease caused by Eimeria 
spp. parasites which, invade and replicate in the intestine 
[13]. This parasitic disease causes annual losses greater 
than $600 million in the United States and $3.2 billion 
worldwide [13, 14]. Eimeria infections have also been 
associated with the promotion of NE [15, 16].

In poultry production, the type of feeding program 
is extremely important to ensure nutrient and health 
requirements are met. Feeding programs are selected 
based on cost efficiency, effectiveness to improve health 
and growth. Conventional feeding programs relied on 
AMU to improve growth performance while simultane-
ously preventing infectious diseases. However, increas-
ing concerns over AMR resulted in the development and 
adoption of alternative productions known as antibiotic-
free (ABF) productions, also called no antibiotic ever 
(NAE) or raised without antibiotic (RWA) and organic 
productions. Harmonization of the definitions used for 
the terms ABF, NAE and RWA is necessary, so “ABF” will 

be used for consistency in this review. Research on the 
effectiveness of alternative feeding programs to reduce 
AMR is needed to identify best production practices 
in preserving gut heath [17–19]. Substantial efforts are 
needed to not only understand the underlying mecha-
nisms behind alternative feeding programs but also to 
understand their true impacts on AMR profiles in the gut 
microbiota.

In this review, we will discuss the significance of con-
ventional, ABF and organic poultry productions by out-
lining the AMU concerns and the use of alternatives to 
antibiotics. Moreover, a summarization of some impor-
tant antimicrobial agents and alternative products in 
poultry production is presented to highlight pathogenic 
bacteria of concern and opportunity for improvements 
for their efficient control while highlighting that AMR 
issues should be addressed by a “One Health” approach.

Poultry feeding and production practices
Feed is a significant component in poultry production. 
Feed quality, nutrient composition, and consumption 
rate by birds are critical parameters to monitor for their 
health and productivity. Nutrients of poultry feed can 
be categorized into five different groups: carbohydrates, 
lipids, proteins, minerals and vitamins. High quantity and 
quality water is also essential. Each feed ingredient plays 
a vital role in either, energy acquisition and utilization, 
metabolism or health of poultry. For several years, sub-
therapeutic levels of antibiotics have been used in broiler 
feed to maximize their productivity [20]. This practice 
contributed to meet the rapidly increasing chicken meat 
demands of the growing world population. However, 
AMR concerns led to alternative poultry feeding pro-
grams and production practices to be adopted. These 
alternative feeding programs include ABF and organic 
production which, in definition may vary by country 
around the world. However, organic and ABF poultry 
production requires alternative solutions to maintain 
or improve health. Moreover, the impact of alternative 
poultry feeding program on AMR deserve to be explored 
further.

Conventional production
Conventional production practices were widely adopted 
to shape the livestock industry to what it is today. One 
key difference between conventional production and 
ABF or organic production is the use of antibiotics in 
healthy animal during conventional production. Justifi-
cations of antibiotics used in poultry production include 
growth promotion and prevention of important diseases. 
The World Health Organization (WHO) created a global 
critically important antibiotics (CIA) list that catego-
rize antibiotics into three different classes based on their 
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importance in human medicine; important, highly impor-
tant, and critically important [21]. In addition to WHO, 
CIA lists were created by different countries with varying 
discrepancies in antibiotic classification. For example, the 
Public Health Agency of Canada CIA’s list classify anti-
biotics in four categories (I, II, III, and IV), where agents 
in category I are “very high importance” and those in cat-
egory IV have “low importance” in human medicine. The 
Chicken Farmers of Canada (CFC) progressively elimi-
nated the preventive use of Category I to III antibiotics 
by 2020. Accordingly, about 60% of broilers were raised 
without antibiotics in the United State of America in 2019 
[22]. The trend to remove antibiotics from poultry pro-
duction slowly increased in the past years, but concerns 
about bird’s health and cost-efficiency remain to be issues 
in the development of antibiotic replacements.

Organic production
Organic production typically raise animals naturally 
while maintaining optimal health, welfare and living 
conditions. More and more poultry producers are opt-
ing for organic production due to the sustainability and 
harmony with the environment. Each country has their 
own standards and regulations of organic production 
systems, such as the United States Department of Agri-
culture’s National Organic Program and the Standards 
Council of Canada’s CAN/CGSB-32-Organic Production 
Systems [23, 24]. Despite slight differences on the defini-
tion of organic production by country, the common rule 
of thumb requires free range systems (outdoor access on 
pasture), ecological sustenance, and compliance with all 
applicable regulatory requirements of substances [24]. 
However, the organic production requirements place 
heavy limitations that reintroduce health and manage-
ment issues. For example, access to the outdoor pasture 
increases the risk of exposure to environmental microbes 
such as Salmonella, Campylobacter and C. perfringens 
[25], which are food safety and bird’s heath concerns. 
There is a perception among consumers that organically 
produced foods are more “natural” and therefore health-
ier than conventionally produced ones [26, 27]. How-
ever, organic broiler production costs were estimated to 
be 70%–86% higher than those of conventional produc-
tion which consequently increased retail market costs of 
poultry products [28]. Furthermore, in organic produc-
tion there is a high risk of colonization by pathogens that 
can cause diseases such as NE and coccidiosis in chicken 
(chicken health) and salmonellosis in human (food safety) 
[26]. Colonized pathogenic bacteria consequently may 
contaminate meat during processing. For example, it 
has been reported that organic broiler meat, at the end 
of processing after chilling, was more frequently con-
taminated with Campylobacter spp. than conventional 

broiler carcasses, possibly due to the organic bird’s free 
access to pasture where they could be more exposured to 
environmental of bacterial pathogens [29]. These authors 
also reported relative risks of 1.7 times increased risk of 
Campylobacter illnesses following consumption of con-
taminated organic broiler meat, compared to conven-
tional broiler meat in Denmark. These reports on organic 
poultry production indicate that investigation are needed 
to develop cost-efficient methods to improve the gut 
health, reduce risks to consumers, and minimize negative 
impacts of production on the environment.

Antibiotic‑free production
Antibiotic-free production is similar to conventional pro-
duction, with the exception of AMU as a prophylactic 
and for growth promotion. Thus, the potential health and 
production issues in ABF production requires alternative 
solutions (Section  Alternatives to antibiotics in poultry 
production). Consumer perception and rising concerns 
about the food attributes direct attention to ABF-based 
poultry production; they are willing to pay premium prices 
for these products. However, the general consumer’s 
understanding of ABF is limited to positive advertisement 
and method of communication and do not discuss the 
negative issues of ABF production. According to Agri-Stats 
data in 2018, the mortality rate in ABF and conventionally 
raised birds were reported to be approximately 4.2% and 
2.9%, respectively [30]. Growth promoting properties of 
antibiotics are used to evaluate the efficacy of alternatives 
products in controlling coccidiosis, NE and maintaining 
gut health [31]. In ABF production, vaccinations, high-
quality feed and water, and heightened control of produc-
tion environments are required to decrease stresses in 
birds while maintaining their health and performance [32, 
33]. Despite these efforts, health and growth performance 
issues could arise due to ineffective prevention of diseases 
and the potential of negative side effects from antibiotic 
alternatives [17, 19, 32]. Moreover, even if these problems 
could be surmounted, it would be at the cost of expense 
[17]. For the prevention of coccidiosis, ABF production 
rely on vaccinations or chemically synthesized non-anti-
biotic coccidiostats [19]. However, studies indicated that, 
when compared to ionophores, chemical coccidiostats 
could promote the development of anticoccidials drug 
resistance and are typically more expensive than iono-
phores [19]. Surprisingly, it has also been observed that 
some chemical coccidiostats without the co-administra-
tion with antibiotics could induce NE [19].

Alternatives to antibiotics in poultry production
Many different alternatives to antibiotics have been inves-
tigated in poultry production at an attempt to replicate 
their multifunctions. A list of alternatives investigated 
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and/or used in poultry production include probiotics, 
prebiotics, organic acids, phytochemicals, vaccines, in-
feed enzymes, and essential oils (Table 1). A description of 
each antibiotic alternative, their benefits in poultry health, 
and their effective function are briefly described below.

Probiotics
They are live microbial feed additives to help maintain 
intestinal microbial balance and benefit the host’s health 
[34–37]. Mostly identified as Gram-positive and some 
Gram-negative, Khan and Naz [37] reviewed commonly 
used probiotics including various Lactobacillus spp. (L. 
bulgaricus, L. plantarum, L. acidophilus, L. helveticus, 
L. lactis, L. salivarius, L. casei, L. reuteri), Enterococcus 
faecium and E. faecalis, Streptococcus thermophilus, and 
Bacillus subtilis in poultry. They function by interfering 
with the colonization of the gut by pathogenic bacteria 
through competitive exclusion [35–37]. Moreover, probi-
otics stimulate the immune system as shown by various 
studies correlating probiotic administration with elevated 
humoral and cellular immune responses by increasing T 
cell, CD+, B cells, and anti-inflammatory cytokine pro-
duction [37, 55, 56]. Probiotics have been reported to 
improve body weight and feed-conversion ratio in com-
mercial broilers [55]. However, the effectiveness of pro-
biotics seems strain-dependent [36]. Probiotics naturally 
produce volatile fatty and organic acids and assist in 
digestion by breaking down insoluble fibers and improve 
nutrient absorption metabolism as well as lowering the 
pH of the gut to levels affecting pathogenic bacteria such 

as E. coli and Salmonella spp. [37]. Moreover, dietary 
probiotic B. subtilis was found to improve hen’s perfor-
mance and egg quality at a lower dose while improving 
the protein quality in the eggs at a high dose [57]. In con-
trast, Sohail et al. [58] did not observe a positive impact 
on beneficial gut bacteria when investigating the effects 
of probiotics on the cecal and tracheal microbiota.

Prebiotics
They are carbohydrate-based polymers such as fructooli-
gosaccharides (FOS), galactooligosaccharides, and man-
nanoligosaccharides (MOS) that function to promote 
beneficial bacteria in the gut, aid in digestion, and inhibit 
colonization by pathogenic bacteria [38]. Prebiotics are 
not utilized by the host but, they could be substrates for 
gut bacteria such as Bifidobacterium and other lactic 
acid bacteria. The prebiotic FOS indirectly alters the gut 
microbiota community through increased production 
of short-chain fatty acids (SCFA), some of which favour 
fermentation. The SCFAs are important in the GIT 
and immune function but, they also elicit acid stress to 
pathogenic bacteria [35, 38]. However, MOS can directly 
affect adhesion of pathogens such as E. coli and Salmo-
nella to intestinal cells by binding to their flagella, which 
are important in their motility and attachment to intes-
tinal epithelial cells [38]. Poultry cannot digest prebi-
otics because they are resistant to digestive enzymatic 
actions [38]. A study conducted by Ricke [39], indicated 
the potential of FOS as a beneficial prebiotic with its fer-
mentation being limited to certain lactic acid bacteria. 

Table 1  Different categories of alternatives to antibiotics in poultry production

Product Dosage range Function Reference

Probiotics 104–109 CFU bacteria • Improve homeostasis of bacteria in intestinal microbiota
• Inhibit pathogenic bacteria colonization
• Improve growth performance of broilers
• Improve/Strengthen immunity

[34–37]

Prebiotics 1–10 g/kg feed • Inhibit pathogenic bacteria colonization
• Improve digestibility
• Catalyze the growth of healthy bacteria

[35, 38, 39]

Organic acids 0.5–3 kg/t feed; acidify water 
@ 5%

• Improve beneficial bacteria populations
• Reduce pH to aid in digestion and reduce pathogenic bacteria

[18, 40–44]

Phytochemicals 0.3–60 g/kg feed • Antioxidant
• Antimicrobial
• Antifungal
• Anti-inflammatory
• Anti-parasitic

[8, 45–47]

Vaccines Varies by vaccine type • Significantly improves immunity
• Target-specific immunity

[19, 48]

In-feed enzymes 300–500 g/t feed
0.5–1 g/L water

• Improve digestibility, performance
• Improve feed intake and body weight gain

[49–52]

Essential oils 0.1–0.5 g/kg feed • Improve digestion
• Improve blood circulation
• Exhibit antioxidant properties
• Reduce prevalence of pathogenic bacteria

[53, 54]
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Prebiotics have been also reported to dose-dependently 
improve mineral absorption and immune function in 
poultry with minor adverse side effects [35].

Organic acids
These compounds have acquired a favourable reputation 
in the poultry industry due to their strong nutritional 
and antimicrobial properties. Moreover, organic acids 
have already been applied for feed preservation and per-
formance enhancement in livestock production. These 
compounds have a carboxylic acid (R-COOH) group in 
common, in the simple monocarboxylic (formate, ace-
tate, butyrate and propionate), hydroxyl (tartrate, citrate, 
lactate, and malate), or short-chain (fumarate, sorbate) 
form [19]. They acidify through lowering the pH of the 
gut to inhibit pathogenic bacterial growth, thus decreas-
ing their prevalence and product contaminations while 
improving nutrient digestibility [40–42]. Butyrate and 
propionate have positive effects on the gut microbiota, 
such as down-regulation of the Salmonella pathogenicity 
islands which are important virulence-encoding genes in 
Salmonella. However, lactate has been identified to fuel 
Salmonella growth due to the utilization of the lactate-
degrading respiratory lactate dehydrogenases LldD (con-
verts L-lactate into pyruvate) and Dld (oxidates D-lactate 
to quinones) [59]. Moreover, acetate restored barA gene 
function in mutant S. typhimurium barA−; this gene 
encodes for the BarA sensor kinase important in the 
interaction with SirA to shift Salmonella from mobility to 
virulence [60].

Phytogenics
The immune-stimulatory potential of fruit products in 
poultry have been recently reviewed [61]. Berry fruit 
pomace, a major solid by-product from the juice indus-
try, contains phenolic compounds such as flavonoids 
[45]. These compounds have antioxidant properties, 
which have been positively correlated with their antimi-
crobial activity [8, 46]. Islam et al. [8] investigated effects 
of low-bush blueberry pomace (LBBP) on gut microbiota 
of free-range birds when administered through feed and 
reported that Lactobacillus population in LBBP-fed birds 
were more abundant than those fed a control diet from 
21 to 42 days old birds. Moreover, Das et al. [46] reported 
significant improvements of body weight along with 
improved intestinal health when supplementing feed 
with cranberry and blueberry by-products. These authors 
also reported that dietary cranberry products modulated 
the innate immune genes (caspase 1, apoptosis–related 
cysteine peptidase, chemokine receptor-5, interferon 
gamma, myeloid differentiation primary response gene 
88, and Toll-like receptor 3) and suppressed proinflam-
matory cytokines in broilers [46].

Essential oils
They are known to have antioxidant and antimicrobial 
properties [53]. With the increasing demand for ABF pro-
duction, essential oils as feed additives in poultry produc-
tion have become more popular. Dietary cinnamaldehyde 
(Cinnamomum) and citral (3,7-dimethyl-2-6-octadienal) 
were found to reduce the severity and incidence of NE and 
coccidiosis [54], and the proportion of antibiotic resistant 
E. coli while improving the intestinal digestibility, the over-
all performance and the meat quality in broilers [54, 62]. 
Broilers fed a natural blend of essential oils (basil, caraway, 
lemon, laurel, sage, thyme, oregano, tea) showed a signifi-
cant increase in weight gain and feed-to-gain ratio, with an 
overall increase in carcass weight, breast weight, and rela-
tive percentage of breast meat [63].

Enzymes
These biological catalysts are typically administered to 
assist in digestion of certain feedstuffs [49]. Enzymes 
for poultry feed are mostly derived from fungi and bac-
teria, with xylanase and glucanase constituting majority 
(> 80%) of the global market for carbohydrase [49]. In-
feed enzymes are more recently investigated in broiler 
production due to the rising costs of feed ingredients 
such as soybean meal and corn, so cheaper feed alter-
natives that contain non-starch polysaccharides (NSP) 
were considered. Since NSP are not completely digest-
ible in broilers, in-feed enzymes are added in response to 
the adverse effects of NSP [64]. The impacts of enzymes 
on ruminant performance and health have been studied 
extensively but such extensive studies are lacking in non-
ruminants including poultry. However, it is well under-
stood that feed enzymes are required to fully degrade 
certain chemical bonds of feedstuffs allowing access to 
amino acids and minerals where the host normally could 
not access alone [50]. One naturally available enzyme in 
poultry is phytase, which hydrolyzes phytic acids allow-
ing the host to have a better access to phosphorus; which 
is one of the most expensive nutrients of feed [51]. Con-
trasting studies conflict on the effect of enzymes on 
growth rate and feed intake, but other studies all agreed 
on an increased nutrient digestibility when administering 
in-feed enzymes [65, 66].

Several health and economic challenges arise when 
implementing ABF productions using the alternative 
products. Despite promised beneficial activities, the 
efficacy of antibiotic alternatives is quite variable by 
study. It is hypothesized that combination of these indi-
vidual alternatives may provide optimal activities. This 
probably could explain in the decrease of overall perfor-
mance (average daily gain, feed conversion ratio, meat 
yield, mortality, etc.) with a single alternative prod-
uct when compared to traditional antibiotics [17, 19]. 
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Requiring more feed, time, and space to mitigate these 
deficits will be more costly compared to antibiotics, as 
well as increased carbon foot-printing. Nevertheless, 
assuming that all of these factors were somehow man-
aged, readjustment of production practices would result 
in higher costs than conventional production which will 
affect the price of broiler meat in retail markets. Fur-
thermore, the impacts including AMR, of these alterna-
tives to antibiotics in production deserve investigations 
under a “One Health” perspective.

Antimicrobial use and concerns
Antimicrobials significantly contribute to the treatment 
and prevention of infectious diseases, the improvement 
of poultry performance, and overall yield [67–69]. How-
ever, concerns arose regarding the excessive AMU with 
the most significant issues being the emergence and 
spread of AMR among bacteria [70, 71] through selection 
of antibiotic resistant strains and dissemination of genes 
conferring AMR by horizontal gene transfer [72–74]. 
Antimicrobial resistance causes loss in therapeutic effi-
cacy of antibiotics resulting in increased morbidity and 
mortality rates due to infectious diseases in both animals 
and humans [70, 75, 76] thus constituting significant 
socio-economic and public health issues.

Several studies reported links between AMU in food 
animal production and the prevalence of AMR in bac-
teria [77, 78]. The prevalence of AmpC-like β-lactamase 
blaCMY-2 genes harboring Salmonella enterica and E. 
coli from infected humans were positively correlated to 
ceftiofur-resistant Salmonella and E. coli from chicken 
meat [79]. Action plans to decrease AMR are being 
implemented under a “One Health” approach in several 
countries. Moreover, WHO responded with a Global 
Action Plan, outlining important objectives to succeed 
in the fight against AMR. However, it was reported that 
73%–80% of all antibiotics sold worldwide were used 
specifically for food animal production [2, 80]. Due to 
the AMR crisis, several poultry producing countries 
including Canada, United States of America, Brazil, 
China and the European Union have restricted the use 
of antibiotics as growth promoters and for disease pre-
vention in animal production [81, 82].

Some antimicrobials used in conventional poultry
Typical conventional broilers are raised in barns from 
hatching to 36–42 d during which each bird can consume 
3.2 to 4.0 kg of feed to reach a body weight of about 1.8 
to 2.2 kg [7]. Conventional broiler feeds which, are gener-
ally formulated according to the growth phases (starter, 
grower and finisher), are mainly grain-based to which 
protein, minerals and vitamins are added for nutritional 

requirements along with antibiotics. Major antibiotics 
used for therapy in poultry feed include aminoglycosides 
(gentamicin, neomycin, spectinomycin, and streptomy-
cin), β-lactams (penicillin and amoxicillin), sulfonamides 
and tetracyclines [83]. Antibiotics that have been used 
for disease prevention and growth promotion in poultry 
include glycolipids (bambermycin), polypeptides (baci-
tracin), ionophores (salinomycin), streptogramin (virgin-
iamycin), and orthosomycin (avilamycin). However, the 
accurate estimates for the number and amount of antibiot-
ics used in poultry production systems globally are lacking 
[2, 84]. Some common antimicrobials used for disease pre-
vention and growth promotion in broiler production are 
discussed below.

Avilamycin
Is an orthosomycin antibiotic from Streptomyces viri-
dochromogenes, targeting Gram-positive bacteria such as 
C. perfringens to prevent NE in broiler chickens [85]. It 
has been used as a growth promoter in poultry produc-
tion [67, 68]. Avilamycin is unclassified in the WHO list 
of critically important antimicrobials for human medicine 
(WHO CIA), justifying its use in current poultry produc-
tion [21]. Avilamycin inhibits bacterial protein synthesis 
by binding to their 50S ribosomal subunit’s helices 89 and 
91 interfering thus, with tRNA and initiation factor 2 [85, 
86]. Resistance to avilamycin can be mediated by muta-
tions in helix 89 and 91 of the 23S rRNA [86] or in the 
ribosomal protein L16 [87, 88]. Various avilamycin resist-
ance bacteria such as Enterococcus faecium have been 
reported in broiler fecal from several farms in Denmark 
and France [89, 90].

Bambermycin
Is also known as flavomycin, flavophospholipol or moen-
omycin. This phosphoglycolipid antibiotic originating 
from various strains of Streptomyces including S. bamber-
giensis and S. ghanaensis is not categorized in the WHO/
CIA list as important in human medicine, but used in 
poultry production [91]. Targeting primarily Gram-
positive, bambermycin inhibits peptidoglycan synthe-
sis through disruption of the penicillin-binding proteins 
(PBPs) transglycosylase activities, affecting bacterial cell 
wall production [67, 92]. Resistance mechanisms against 
bambermycin are not fully understood. However, due to 
its similar mechanism of actions to β-lactam (targeting 
PBPs), mechanism of actions for resistance to bamber-
mycin could be related to β-lactam resistance.

Bacitracin
This cyclic polypeptide antibiotic produced by Bacil-
lus licheniformis and B. subtilis strains is categorized as 
important in the WHO/CIA list [93]. Primarily targeting 
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Gram-positive bacteria, bacitracin interferes with the 
dephosphorylation function of C55-isoprenyl pyrophos-
phate which is a lipid carrier involved in bacterial pep-
tidoglycan synthesis [93, 94]. Dephosphorylation of 
C55-isoprenyl pyrophosphate results in the prevention of 
transport of N-acetylglucosamine (NAG) and β-(1–4)-
N-acetylmuramic acid (NAM) to build the peptidogly-
can wall [95]. Bacitracin is widely used for prevention of 
NE in broiler production. It is typically administered in 
the form of bacitracin methylene disalicylate (BMD) or 
zinc-bacitracin (BACN-Z) [95, 96]. Bacitracin resistance 
has been correlated with the presence of the bcrR gene 
encoding a unique membrane-bound one-component 
system through a putative ATP-binding cassette (bcrAB) 
transporter [97, 98].

Monocarboxylic polyether ionophores
Salinomycin, narasin, and monensin belonged to this 
group and are unclassified in the WHO/CIA list [21]. 
They are produced by Streptomyces albus, S. aureofa-
ciens, and S. cinnamonensis, respectively. Salinomycin 
use dates back to its discovery in 1974, demonstrating 
effectiveness against Gram-positive bacteria and coc-
cidiosis [99]. Salinomycin has been reported to improve 
bird’s performance and prevent infectious diseases pre-
sumably by altering the composition and activities of 
intestinal microflora in broiler. Historically, salinomy-
cin was considered less important in human medicine, 
however, it is now a well-known inhibitor of human can-
cer stem cells and has been suggested to suppress the 
growth of colorectal cancer by disrupting the β-catenin/
TCF complex [100]. Ionophores facilitate the transport 
of cations into target organisms such as Eimeria spp. by 
disrupting their osmoregulation [101]. The mechanisms 
of resistance against ionophores are not fully under-
stood, but ionophores are suspected to be excluded from 
cell membranes by an extracellular polysaccharide called 
glycocalyx [102].

Mechanisms in poultry
Antibiotics and their alternatives on livestock or poul-
try may have complex direct or indirect mechanism of 
actions [103]. Antibiotics in broiler diets can alter the 
composition and activities of the bird’s gut microflora 
by killing, inhibiting or promoting bacteria resulting 
in improved health and advantageous economic out-
comes [67]. More research is needed to systematically 
evaluate effects of specific antibiotics on the overall 
dynamics of gut microflora as well as on the distribu-
tion of ARGs among bacteria in chicken. Justifications 
for certain antibiotics used for growth promotion (i.e. 
avilamycin and bambermycin) need to be established 
as concerns for cross-resistance and co-selection to 

traditional antibiotics important in human medicine has 
been legitimated. An example includes bacteria showing 
resistance to avilamycin and cross-resistance to evern-
imicin, an antibiotic which inhibits the 50S ribosomal 
subunit formation in Staphylococcus aureus cells and 
are used to treat humans [86, 90, 104, 105]. Isolates of 
S. enterica serovar Heidelberg showed resistance to the 
third-generation cephalosporin ceftiofur (used in animals 
only) and ceftriaxone (very important in treating bacte-
rial infections in human) [79]. This raised significant con-
cerns to human health due to possible cross-resistance 
between third-generation cephalosporins such as cefti-
ofur, ceftriaxone and cephamycin [106, 107].

Antibiotics may also have important effects on animal 
physiology that are not studied in detail despite their 
significant effects against bacteria. Thus, it is important 
to study their effects on host’s physiology and immunol-
ogy to better understand their interactions and design 
better alternative production practices. An example of 
this interaction was reported with bacitracin, showing 
modulation of the poultry blood serum metabolite pro-
files through increasing the alanine aminotransferase and 
decreasing albumin/globulin ratio levels (Fig. 1) [46]. The 
reduced albumin/globulin ratio in bacitracin-fed birds 
could indicate acute or chronic inflammatory processes 
due to an elevated globulin level or other uncharacter-
ised mechanisms. Interestingly, Das et  al. [47] reported 
a 22.55-fold, 12.34-fold, and 7.97-fold expression in 
CATH2, MPO, and IL-5 genes respectively, in immune 
organs of bacitracin-fed birds compared to a control diet 
(Fig.  1). Understanding the mechanisms of how other 
health management practices such as how prebiotics, 
probiotics and vaccines interact with broilers is critical 
in the development of improved production systems [90, 
108].

Poultry production systems and AMR bacteria
Various studies have been conducted on the AMU 
in food animals and their consequences on AMR in 
foodborne bacteria [4, 7, 90, 97, 109–111]. Here, the 
impacts of conventional and alternative production sys-
tems on AMR are presented to clarify concerns moving 
from conventional to ABF or organic production and 
the consequential effect on AMR in the birds and their 
products. The most common AMR reported in poul-
try pathogenic bacteria such as S. enterica serovars, 
Campylobacter jejuni, E.  coli, Staphylococcus aureus, 
and C. perfringens are discussed (Table  2). Antibiotic-
resistant non-typhoidal S. enterica serovars, E. coli, or 
Campylobacter spp. can infect humans through contact 
or consumption of contaminated food (food safety). A 
positive association between consumption of antibiot-
ics in poultry and corresponding antibiotic resistance 
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in some bacteria has been reported in Europe [83]. It 
is clear on how conventional production affects AMR; 
however, it is unclear on how organic or ABF produc-
tion affects AMR. There are limited studies on AMR 
in organic and ABF systems. A summary of antibiotic-
resistant E. coli, Salmonella spp., and Campylobac-
ter spp. reported worldwide in poultry is presented in 
Fig. 2 and a schematic overview of mechanisms of AMR 
in bacteria is presented in Fig. 3. Organic and ABF pro-
duction practices have been adopted to reduce AMU; 
however, various multi-drug resistant (MDR) bacteria 
from poultry raised from these alternative production 
practices have been reported (Table 3). Understanding 
on how these production practices truly affect the AMR 
profiles of the poultry gut microbiome (resistome) need 
to be established.

AMR in Gram‑negative bacteria
A wide variety of Gram-negative bacteria can cause 
diseases in poultry (E. coli, Salmonella Pullorum/Gal-
linarum, Gallibacterium anatis, Pasteurella multocida, 
Klebsiella spp.) and foodborne illness in human (S. 
enterica serovars and Campylobacter jejuni/coli). The 
complexity of the Gram-negative bacterial cell surface 
provides intrinsic resistance against various antibiotics 
[149]. Antibiotics such as cephalosporins, carbapenems 
and fluoroquinolones are effective against Gram-negative 

bacteria, however, Gram-negative bacteria resistant to 
these antibiotics have been reported (Fig. 2). Resistance 
in Gram-negative bacteria can be acquired and/or intrin-
sic, with an overview of mechanisms of resistance being 
presented in Fig. 3.

Escherichia coli
Escherichia coli is a commensal bacterium of the gastro-
intestinal microflora. Some strains of this bacterium are 
known to cause diseases such as colibacillosis, cystitis, 
pyelonephritis, sepsis/meningitis, and gastroenteritis in 
both humans and animals due to the presence of vari-
ous virulence factors [150]. The extraintestinal patho-
genic E. coli (ExPEC) strains are epidemiologically and 
phylogenetically distinct from both intestinal pathogenic 
and commensal strains [151]. Avian pathogenic E. coli 
(APEC) is an ExPEC responsible for significant economic 
losses in the poultry industry [152] and was suggested to 
cause urinary tract infections and meningitis in humans, 
highlighting their safety risks [153].

In conventional poultry production, AMU has been 
correlated to the increased prevalence of AMR in E. 
coli [7, 62, 150, 154]. Antibiotics belonging to cepha-
losporins, quinolones, aminoglycosides and sulfona-
mides are used against E. coli infections. Multiple 
resistance to amoxicillin–clavulanic acid, ceftiofur, 
ceftriaxone, cefoxitin, gentamicin, sulfonamide and 

Fig. 1  Bacitracin effect on broiler chicken cecal microbiota, blood metabolites, and immune gene modulation. ALP: Alkaline phosphatase; AGR: 
Albumin-globulin ratio; AMY: Amylase; CATH2: Cathelicidin antimicrobial peptide; MPO: Myeloperoxidase; CASP1: Caspase 1; MX1: Myxovirus 
resistance 1; CCR4: Chemokine receptor 4; CRP: C-reactive protein; JAK2: Janus kinase 2 "Updated from Das et al. [47]"
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tetracycline in commensal and APEC isolates have 
been documented in poultry [7, 62, 150, 154]. Anti-
biotic resistance genes blaTEM, blaSHV, blaCMY-2, aac 
(3)-Via, aadA1, aph (3)-Ib, aph (6)-Id, sul1, sul2, tet(A) 
and tet(B), were observed in corresponding resist-
ance phenotypes. Mobile genetic elements including 
pAPEC-O2-R, IncA/C2 and IncI1 plasmids as well as 
Class I integrons carrying antibiotic resistance genes 
tet(A), sul1, and blaTEM able to be transferred to a 
recipient bacterium have been also observed in E. coli 
from broilers [150]. Dietary bambermycin, penicillin, 
salinomycin, and bacitracin or a combination of salin-
omycin plus bacitracin in broiler resulted in a higher 
incidence of ceftiofur, spectinomycin, and gentamicin 
resistance in E. coli isolates than those from the non-
medicated feeds [7]. Interestingly, these authors 
observed a higher prevalence of sul1, aadA, and Class 
1 integrons in salinomycin-fed chickens than in control 
or other treatment groups [7]. Regardless of antimicro-
bial feeding, they also noted multiple antibiotic-resist-
ant E. coli isolates harboring corresponding genes 
such as blaCMY-2, blaTEM, tetB, sul1, and aadA [7]. Oral 

administration of tetracycline was not found to sig-
nificantly induce changes in the chicken cecal bacte-
rial community, however, population of tetracycline 
resistance E. coli harboring tet(A) or tet(B) increased 
[155]. Extended-spectrum β-lactamase-producing E. 
coli and Klebsiella pneumoniae were reported in local 
and imported chicken meat [156]. From conventional 
commercial broiler chickens, E. fergusonii harboring 
resistance to ampicillin, streptomycin and tetracycline 
were isolated, but the antibiotic usage from the studied 
farm was unknown [157]. These authors reported that 
94.5% of the ampicillin-resistant E. fergusonii isolates 
tested contained the β-lactam (blaCMY-2), aminoglyco-
side (aadA1, strA, strB), trimethoprim (dfrV, dfrA1), 
tetracycline (tet(A), tet(B), tet(C), tet(E)), and sulfona-
mide (sul1, sul2) resistance genes [157].

As organic and ABF poultry production systems 
are becoming popular, their efficacy to reduce AMR 
deserves investigations. Recently, the prevalence of anti-
microbial resistant commensal E. coli was found to be 
lower in organic and ABF broilers compared to conven-
tionally produced ones [117]. However, E. coli isolated 

Table 2  Important antimicrobial-resistant bacteria reported in conventional poultry

Bacterial species Disease Antimicrobial resistances Reference

Salmonella spp. Salmonellosis, gastroenteritis, bacteremia, enteric fever 
fowl typhoid, pullorum disease

Streptomycin, tetracycline, sulfamide [112]

Ampicillin, amoxicillin-clavulanic acid, ceftiofur, 
cefoxitin, ceftriaxone

[113]

Amoxicillin, ceftiofur [110]

Campylobacter jejuni Campylobacteriosis, gastroenteritis, bacterial diarrheal, 
Guillain-Barré syndrome

Ampicillin, nalidixic acid, tetracycline [114]

Quinolone, tetracycline, amoxicillin [115]

Escherichia coli Colibacillosis, bacteremia, UTI, meningitis, pneumonia, 
cholecystitis, diarrhea, cholangitis, septicemia, pericardi-
tis, airsacculitis, salpingitis, peritonitis, cellulitis

Tetracycline, streptomycin, sulfonamides 
(sulfisoxazole), trimethoprim, ampicillin

[112]

Tetracycline, nalidixic acid, ciprofloxacin, sulfonamides, 
chloramphenicol, quinolones and fluoroquinolones, 
β-lactams, ampicillin

[116]

Ampicillin, cephalothin, ciprofloxacin, doxycycline, 
streptomycin

[27]

Tetracycline, amoxicillin, ceftiofur, spectinomycin, 
sulfonamides

[7]

Amoxicillin, ceftiofur, tetracycline [110]

Ampicillin, cephazolin, streptomycin, tetracylines [117]

Staphylococcus aureus Pulmonary infections, heart/bone/joint infections, 
gastroenteritis, osteomyelitis, septic arthritis, abscesses, 
furuncles, cellulitis, meningitis, UTI arthritis, tenosynovitis, 
osteomyelitis, omphalitis

Clindamycin, doxycycline, oxacillin [27]

Methicillin, amoxicillin, ampicillin, oxacillin, penicil-
lin, ceftiofur, oxytetracycline, tetracycline

[118]

Clostridium perfringens Necrotic enteritis, clostridial myonecrosis/gas gangrene Tetracycline, bacitracin [119, 120]

Enterococcus faecium Endocarditis, UTI, prostatis, intra-abdominal infection, 
cellulitis, wound infection, bacteremia

Lincomycin, bambermycin, bacitracin, tetracycline, 
ciprofloxacin, erythromycin, kanamycin, penicillin, 
tylosin, streptomycin, vancomycin, gentamycin, 
streptogramins, avilamycin

[4, 88]

Enterococcus faecalis Endocarditis, UTI, prostatis, intra-abdominal infection, 
cellulitis, wound infection, bacteremia
septicaemia, endocarditis, salpingitis, arthropathy, 
amyloidosis

Lincomycin, quinupristin/dalfopristin, tetracycline, 
bacitracin, erythromycin, tylosin

[4]
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Fig. 2  Antibiotic resistance in Salmonella, E. coli and Camplylobacter spp. reported in major poultry production countries from 2000 to 2020. 
Information obtained from: Brazil [41, 121–129], Europe [130–132], USA [133–139], China [140–143]

Fig. 3  Schematic representation of Gram-positive and Gram-negative antimicrobial resistance mechanisms. 1. Decreased permeability of 
antibiotics due to outer membrane, 2. Increased expression of efflux pumps, 3. Modification/mutation of target sites (i.e. topoisomerases, ribosomes, 
penicillin-binding proteins (PBPs), fluoroquinolones, etc.), 4. Inactivation and modification of antibiotics via inactivating enzymes (i.e. β-lactamases, 
tetracycline-inactivating enzymes)
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from organic, ABF and conventional production sys-
tems demonstrated high frequencies of resistance 
(> 50%) to ampicillin, cefazolin, sulfonamides, strepto-
mycin and tetracycline [117]. It has been reported that 
E. coli isolates from conventional poultry meat were 
more MDR than those from organic poultry meat [27]. 
Even though the possible effectiveness of organic acids 
as an alternative to antibiotics have potential, some 
bacteria such as E. coli and Lactobacilli can survive in 
acidic environments due to their innate acid resistance 
properties [158]. Davis et  al. [133] reported no signifi-
cant difference between conventional, RWA and organic 
productions for the overall prevalence of antimicrobial 
resistant E. coli in chicken and turkeys, although differ-
ences were noted in specific antibiotic resistant pheno-
types. Moreover, a higher prevalence of resistant E. coli 
to ampicillin, ampicillin-sulbactam, cefazolin, cefoxi-
tin, ceftriaxone, and trimethoprim-sulfamethoxazole 
was found in conventionally raised turkeys compared 
to organic and RWA produced ones [133]. However, 
Sanchez et al. [134] reported a 56.2% and 60.7% resist-
ance to ampicillin in E. coli when fed conventional and 
ABF, respectively [134]. In the Netherlands, extended-
spectrum β-lactamase (ESBL)-producing E. coli harbor-
ing blaCTX-M-1 and blaCMY-2 genes have been isolated 
from commercial organic broilers [147].

Non‑typhoidal Salmonella enterica (NTS)
In food production animals, NTS induces diarrhea with 
fever, anorexia, and dehydration. However, poultry can 
be asymptomatic carriers of these pathogens and expo-
sure to antimicrobials could promote AMR isolates that 
may be transmitted to humans [5, 159]. It has been esti-
mated that NTS causes 1.35 million infections (212,500 
infections due to AMR isolates), 26,500 hospitalizations, 
and 420 deaths each year in the United States, resulting 

in about $400 million in direct medical costs [160]. Most 
cases of human salmonellosis (diarrhea) do not require 
antibiotic treatments. However, severe cases in elderly, 
children, or those with underlying comorbidities may 
require antimicrobial treatment, such as invasive infec-
tion resulting in life-threatening bloodstream infections. 
Recommended antimicrobials to treat NTS include cip-
rofloxacin, ceftriaxone, trimethoprim/sulfamethoxazole, 
or in last resort cases, amoxicillin and carbapenem. Sev-
eral NTS serovars from conventional poultry farms show-
ing resistance to ampicillin, amoxicillin-clavulanic acid, 
ceftiofur, cefoxitin, and ceftriaxone were reported [113]. 
Moreover, genes associated with aminoglycoside (aadA1, 
aadA2, strA), β-lactams (blaCMY-2, blaSHV, blaTEM), tet-
racycline (tet(A), tet(B)) and sulfonamides (sul1) were 
detected in these Salmonella isolates [113]. Fosfomycin 
is an antibiotic approved to treat urinary tract infection 
cases, but its use is restricted in poultry production. 
However, a fosfomycin resistance gene, fosA7, was identi-
fied in S. enterica serovar Heidelberg isolated from con-
ventional broilers [161]. In China, it has been reported 
that 60.1% of all non-duplicate Salmonella isolated from 
retail raw poultry meats were MDR to at least three dif-
ferent classes of antimicrobials, which included nalidixic 
acid, ampicillin and streptomycin [140]. Co-resistance to 
ciprofloxacin and ceftriaxone was most prevalent (84.1%) 
in S. enterica serovar Indiana [140]. A clonal group of S. 
enteritidis known as SE86, a frequently identified poultry 
Salmonella isolate in Brazil associated with foodborne 
outbreaks, has been reported to be resistant to ciproflox-
acin (41.9%) and sulfafurazole (75%) [121]. A persistent 
septicemia causing S. enteritidis (SE_TAU19) resistant to 
nalidixic acid and sulfadimethaxine was reported [162]. 
Quesada et al. [130] found the mcr-1 gene (colistin resist-
ance) in E. coli and S. enterica from poultry and swine. 
From commercial poultry farms, Liljebjelke et  al. [135] 

Table 3  Important antimicrobial resistant bacteria reported in organic poultry

Bacterial species Antimicrobial resistances Reference

Salmonella spp. Streptomycin, tetracycline, kanamycin [144]

Amoxicillin/clavulanic acid, ampicillin, azithromycin, cefoxitin, ceftiofur, ceftriaxone, chloram-
phenicol, nalidixic acid, streptomycin, sulfisoxazole, tetracycline, trimethoprim/sulfamethoxa-
zole

[145]

Campylobacter spp. Tetracycline [146]

Escherichia coli Ampicillin, cephazolin, streptomycin, tetracycline [117]

Ampicillin, erythromycin [134]

β-lactams [147]

Staphylococcus aureus Clindamycin, oxacillin [27]

Clostridium perfringens Not available

Enterococcus spp. Streptomycin, erythromycin [148]
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reported MDR Salmonella resistant to streptomycin, 
gentamycin, sulfadimethaxine, trimethoprim, and tetra-
cycline. A recent report from Europe indicated no asso-
ciations between consumption of cephalosporins and 
quinolone in poultry and resistance to these antibiotics in 
Salmonella isolates from humans [83].

A few studies on AMR Salmonella have been con-
ducted in organic and ABF poultry production systems 
[144, 145, 163, 164]. The prevalence of amoxicillin-cla-
vulanate, ampicillin, cefoxitin, ceftiofur, and ceftriaxone-
resistant Salmonella isolates from large-scale organic 
poultry production farms was significantly lower than 
isolates from conventional broiler production [144, 163]. 
In contrast, a significantly higher AMR Salmonella iso-
lates were found in ABF broiler than in those from con-
ventional production [145]. Salmonella isolated from US 
conventional retail poultry meat showed 2.6 times higher 
resistance prevalence compared to those from organic 
retail meats [164].

Campylobacter spp.
Campylobacter spp. (C. jejuni and C. coli) are impor-
tant foodborne pathogenic bacteria associated with 
poultry. These bacteria are microaerophilic and certain 
environmental stresses such as exposure to air, drying, 
low pH, and prolonged storage can be detrimental to 
their survival. In humans, these pathogens cause a self-
limiting diarrheal disease from improperly prepared 
or contaminated food, including poultry products. In 
the United States, Campylobacter are responsible for 
an estimated 2 million cases of gastroenteritis annually. 
Antibiotics belonging to the macrolides (erythromy-
cin), fluoroquinolone, tetracyclines and aminoglycosides 
(gentamicin) classes are used against Campylobacteri-
osis [165]. Despite an interprovincial observed difference 
in the AMR profile, a Canadian study suggested that 
AMR observed in Campylobacter isolates from chicken 
could be originated from upstream [166]. These authors 
reported more quinolone-resistant Campylobacter iso-
lated in British Columbia, while those isolated in Que-
bec and Ontario provinces were predominantly resistant 
to tetracyclines, macrolides, ketolides, and lincosamides 
[166]. The emergence of fluoroquinolone resistance 
among Campylobacter from poultry led to the restriction 
or ban of sarafloxacin and enrofloxacin used in poultry 
[167]. An extremely high (88.6%–100%) prevalence of 
resistance to macrolides, tetracyclines, quinolones, and 
chloramphenicol was found in Campylobacter spp. iso-
lated from conventionally-raised broiler chickens [168]. 
Moreover, it was reported that majority of the Campylo-
bacter spp. isolated from turkeys were resistant to over 
seven antimicrobials [169]. Correlation between the 
prevalence of macrolide-resistant Campylobacter and the 

use of macrolides along with a trend of increasing preva-
lence of erm(B) gene in isolates were observed in poultry 
[170, 171].

Limited studies investigated the presence of antibiotic 
resistant Campylobacter in ABF and organic poultry 
productions. However, a study reported a significantly 
lower fluoroquinolone resistant Campylobacter preva-
lence (< 2%) in organic than in conventional (46%) poul-
try farms [136]. Susceptibility test of 157 Campylobacter 
isolates from organic (n = 77) and conventional (n = 80) 
chickens showed that all organic isolates were sensitive 
to all antibiotics, except two that were resistant to tetra-
cycline, while resistance to quinolones and tetracycline 
were observed among the 80 isolates from conventional 
chickens [172]. Despite limitations, fecal, carcasses, 
equipment, water and air sample analyses from organic 
and conventional processing methods suggested that 
raising birds without the use of antimicrobials is not 
effective in decreasing the incidence of AMR Campy-
lobacter in poultry products [146]. However, effects of 
Canadian AMU reduction on AMR in major poultry-
associated foodborne pathogenic Gram-negative bac-
teria (Salmonella, Escherichia coli, and Campylobacter) 
showed the potential for progressive transitions from 
conventional to antibiotic-free broiler production [173]. 
The above review indicated the lack of studies investi-
gating AMR in different production and alternative gut 
health management practices in poultry.

AMR in Gram‑positive bacteria
Gram-positive bacteria including Enterococcus spp., 
Staphylococcus spp., and C. perfringens are common in 
poultry and can be commensal or pathogenic. According 
to a meta-analysis performed by Cardinal et al. [174], the 
most frequently used antibiotics in broiler during the last 
30 years predominately targeted Gram-positive bacteria. 
As shown in Fig. 3, these bacteria lack an outer membrane 
which is compensated by a thicker (30–100 nm) pepti-
doglycan cell wall [175]. Examples of major AMR Gram-
positive bacteria of concerns include methicillin-resistant 
S. aureus (MRSA), vancomycin-resistant S. aureus (VRSA), 
MDR Streptococcus pneumoniae, and vancomycin-resist-
ant E. faecium (VRE). Several MDR Gram-positive bacte-
ria have been isolated from conventional, organic and ABF 
poultry productions [4, 27, 97, 176, 177].

Enterococcus spp.
They were initially described as Micrococcus and fecal 
streptococci more than 113 years ago [178] belonging 
to the Firmicutes phylum of Bacilli class, Lactobacillales 
order, Enterococcaceae family, and Enterococcus genus 
(more than 40 species). Enterococcus spp. particularly E. 
faecalis, E. faecium and E. cecorum have been associated 
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with diseases in both human and poultry [179, 180]. 
Therapeutic options of enterococcal infections include 
a combination of penicillin (ampicillin or penicillin) and 
aminoglycoside (gentamicin or streptomycin), vancomy-
cin and quinupristin-dalfopristin (for E. faecium only). 
Newer antibiotics (linezolid, daptomycin, tigecycline 
and 5th-generation cephalosporins) or older antibiotics 
(chloramphenicol, doxycycline, minocycline and nitro-
furantoin) have been also considered to fight against 
Enterococcus. However, these bacteria are characterised 
by intrinsic resistance to important antibiotic classes and 
to tolerate low concentrations of β-lactams, quinolones, 
aminoglycosides, and lincosamides, as well as being able 
to metabolise preformed folic acid (trimethoprim and sul-
phonamides). Furthermore, Enterococci have developed a 
high ability to acquire exogenous resistance genes via con-
jugative transposons and plasmids [181]. In conventional 
production, AMU has been associated with increased 
AMR Enterococci isolates and a potential zoonotic trans-
mission of AMR isolates has been suggested [97, 182]. 
Association between the use of virginiamycin and vir-
giniamycin-resistant E. faecium was reported in a sur-
veillance study conducted by Aarestrup et  al. [183]. 
Subsequent studies reported a strong correlation between 
the presence of streptogramin resistance genes in E. fae-
cium in humans and the use of virginiamycin [81]. A 
case-control study in France determined a significant 
correlation (risk factor of 2.3) between the prevalence of 
avilamycin-resistant E. faecium and avilamycin use dur-
ing broiler production [90]. Avilamycin-resistant E. fae-
cium has also been reported to be cross-resistance to 
evernimicin [86, 90, 104, 105] and demonstrated MDR to 
other antibiotics such as penicillin, tetracycline, strepto-
mycin and erythromycin [111]. All avilamycin-resistant 
E. faecium isolates contained the emtA gene encoding a 
methyltransferase which inhibits avilamycin and evern-
imicin function [111, 184]. Such emtA positive E. faecium 
has also been found to harbor vancomycin, gentamicin, 
tetracyclines, and erythromycin and streptogramin resist-
ance genes in chickens [88]. Enterococcus faecium isolated 
from broiler chickens treated with virginiamycin demon-
strated resistance to quinupristin-dalfopristin, supporting 
previous observations on the induction of quinupristin-
dalfopristin resistance from the use of virginiamycin [185, 
186]. Ciprofloxacin, macrolides, penicillin and tetracy-
cline resistant E. faecium strains were isolated from broil-
ers fed bambermycin, penicillin, salinomycin, bacitracin, 
or a salinomycin/bacitracin combination [4]. Moreover, 
MDR E. faecium and E. faecalis isolates showing resist-
ance phenotypes and genotypes against bacitracin, eryth-
romycin, tylosin, lincomycin, streptomycin, gentamycin, 
tetracycline and ciprofloxacin were reported in commer-
cial broiler [97].

As there are a limited number of studies that investi-
gated resistance profiles of important Gram-positive 
bacteria in organic and ABF poultry production, it is 
imperative to broaden this topic of research. Miranda 
et  al. [176] reported lower prevalence of resistant Ente-
rococcus spp. from organic chickens compared to con-
ventional chickens. Moreover, prevalence of MDR 
Enterococcus spp. was higher in conventional chickens 
compared to organic chickens [176]. In South Korea, 
organically-produced poultry demonstrated less preva-
lence of resistance to ciprofloxacin and erythromycin 
(commonly used in veterinary medicine) compared to 
conventionally-produced poultry [187]. Interestingly, 
Kilonzo-Nthenge et  al. [148] reported increased total 
Enterococcus spp. but less AMR Enterococcus spp. in 
organic chicken compared to conventional chickens, 
predominantly showing resistance to streptomycin and 
erythromycin.

Staphylococcus spp.
Staphylococci are widespread in nature and comprise of 
coagulase-positive and coagulase-negative species able 
to induce minor and major infections in poultry and 
human [188]. The coagulase-positive Staphylococcus 
aureus can cause infections such as omphalitis, pneumo-
nia and arthritis [189]. The treatment of S. aureus infec-
tions becomes difficult due to the emergency of multiple 
antibiotic resistant isolates including MRSA resulting 
from AMU in both animal and human. In Belgium, 
MRSA also resistant to antimicrobials including tylosin, 
amoxicillin, trimethoprim-sulfamethoxazole, lincomy-
cin, tetracycline, and colistin were isolated from broiler 
[190]. Penicillin, tetracycline and ciprofloxacin-resistant 
S. aureus strains have been reported in different conven-
tional broiler production operations in Korea along with 
four MRSA isolates from three different operations [191]. 
South Africa investigations of antibiotic resistance by 
Amoako et al. [192] in S. aureus from poultry and their 
products using the “Farm to Fork” approach showed a 
prevalence of 31.25% (n = 120/384) of S. aureus in ana-
lyzed samples: farm (40), transport (15), abattoir (30), and 
retail point (35) [192]. The authors reported that isolates 
were resistant to tetracycline (61.7%), penicillin (55.8%), 
erythromycin (54.2%), clindamycin (43.3%), doxycycline 
(36.7%), ampicillin (34.17%), moxifloxacin (30.8%), ami-
kacin (30.83%), trimethoprim-sulfamethoxazole (30.0%), 
and levofloxacin (23.3%) with 100% of isolates being sus-
ceptibility to tigecycline, teicoplanin, vancomycin, nitro-
furantoin, chloramphenicol, and linezolid [192]. In 2006, 
S. aureus isolated from poultry demonstrated increased 
resistance against antibiotics compared to S. aureus iso-
lates from 1970s [193]. Multidrug-resistant S. aureus 
strains in farm could contaminate chicken meat during 
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processing. Accordingly, MDR S. aureus isolated from 
raw poultry meats were reported, with a highest resist-
ance prevalence being observed towards β-lactams, mac-
rolides, quinolones, and fluoroquinolones [177]. There 
was significantly more doxycycline-resistant S. aureus 
from conventional poultry meat than from organic poul-
try meat [27]. From conventional bioaerosols, coagulase-
negative S. xylosus isolates resistant to nalidixic acid, 
novobiocin, penicillin, oxacillin, ampicillin, lincomycin, 
tetracycline, erythromycin, bacitracin, and streptomycin 
were observed [194]. These resistant isolates harbored 
tetK (tetracycline), linA (lincomycin), ermB (erythromy-
cin) and blaZ (β-lactam) genes.

Clostridium perfringens
Isolates of C. perfringens resistant to bacitracin, peni-
cillin, streptomycin, tetracyclines and gentamicin have 
been reported in poultry [195]. Moreover, C. perfringens 
isolated from conventionally produced broilers dem-
onstrated resistance to tetracycline and bacitracin, and 
intermediate resistance to lincomycin [196]. Bambermy-
cin resistance also was observed in C. perfringens from 
poultry, pig, and cattle in Belgium farms [197]. Antimi-
crobial resistance in Clostridium including C. perfringens 
and other anaerobes has been reviewed recently [198]. 
High prevalence of AMR were reported in C. perfringens 
isolated from broiler chickens in Egypt, namely neomy-
cin, colistin, pefloxacin, trimethoprim-sulfamethoxazole, 
gentamicin, streptomycin, lincomycin, oxalinic acid, 
erythromycin and spiramycin [199]. Despite the impor-
tance of C. perfringens on poultry health, there are a lack 
of studies that investigated the prevalence of AMR C. 
perfringens in organic and ABF poultry production. Thus, 
more research is warranted to better understand the 
impact of organic and ABF poultry production on AMR 
in C. perfringens.

Conclusion
The poultry industry is rapidly growing due to market 
and consumer’s demand. However, adopting alternative 
poultry production practices to improve bird health 
and performance while decreasing AMU is impera-
tive due to AMR concerns. In poultry production sys-
tems, complex environmental and genetic factors could 
contribute to the prevalence and spread of AMR and 
their related ARGs despite existence of correlations 
between AMU and AMR. In ABF and organic poultry 
productions, several antibiotic alternatives and vac-
cines are currently being applied. However, cost-effec-
tive benefits for most of the alternatives to antibiotics 
in poultry remain to be established. These alternative 
products appear to have pleotropic activities includ-
ing antimicrobial, antioxidant, immune stimulatory and 

anti-inflammatory actions indicating that more investi-
gations are required to determine their mechanism of 
action both against bacteria including their AMR pro-
files and birds. Overall this review indicates that AMR 
was present in poultry production systems that did not 
use any antimicrobials but a significant lower preva-
lence than in conventional poultry. However, more 
studies to investigate AMR in organic/ABF poultry 
production need to be done. Furthermore, understand-
ing how feeding programs impact the commensal gut 
microbiota, pathogenic bacteria, and AMR will help 
guide dietary and bird health management practices. 
Accordingly, extensive efforts using integrative One 
Health approaches are imperative to breakdown the 
emergence and spread of AMR in poultry.
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