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Abstract 

Background:  A comprehensive landscape of chromatin states for multiple mammalian tissues is essential for 
elucidating the molecular mechanism underlying regulatory variants on complex traits. However, the genome-wide 
chromatin accessibility has been only reported in limited tissue types in pigs.

Results:  Here we report a genome-wide landscape of chromatin accessibility of 20 tissues in two female pigs at ages 
of 6 months using ATAC-seq, and identified 557,273 merged peaks, which greatly expanded the pig regulatory ele-
ment repository. We revealed tissue-specific regulatory elements which were associated with tissue-relevant biologi-
cal functions. We identified both positive and negative significant correlations between the regulatory elements and 
gene transcripts, which showed distinct distributions in terms of their strength and distances from corresponding 
genes. We investigated the presence of transposable elements (TEs) in open chromatin regions across all tissues, 
these included identifications of porcine endogenous retroviruses (PERVs) exhibiting high accessibility in liver and 
homology of porcine specific virus sequences to universally accessible transposable elements. Furthermore, we prior-
itized a potential causal variant for polyunsaturated fatty acid in the muscle.

Conclusions:  Our data provides a novel multi-tissues accessible chromatin landscape that serve as an important 
resource for interpreting regulatory sequences in tissue-specific and conserved biological functions, as well as regula-
tory variants of loci associated with complex traits in pigs.
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Background
Eukaryotic genomes are usually packed into nucle-
osomes, which comprise of 147 bp DNA wrapping around 
a histone octamer, forming the structural units of chro-
matin. Chromatin is categorized as active euchromatin or 

inactive heterochromatin based on its accessibility [1, 2], 
which is linked to fundamental cellular processes includ-
ing gene transcription, DNA replication and repair [3]. 
The accessible chromatin often reflects binding of tran-
scriptional machinery to cis-regulatory elements such 
as promoters and enhancers [4–8]. Profiling the accessi-
ble chromatin in different tissues could help to interpret 
regulatory basis underlying spatiotemporal transcription 
of genes [9–11], as well as genomic variants causing dis-
eases susceptibility and complex trait variations [12–15].

Open Access

†Tao Jiang, Ziqi Ling contributed equally to this manuscript.

*Correspondence:  binyang@live.cn; hjz813813@163.com

State Key Laboratory of Pig Genetic Improvement and Production 
Technology, Jiangxi Agricultural University, Nanchang 330045, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40104-022-00767-3&domain=pdf


Page 2 of 17Jiang et al. Journal of Animal Science and Biotechnology          (2022) 13:112 

Over the past decades, several chromatin accessibility 
profiling methods including DNase I hypersensitive site 
sequencing (DNase-seq), micrococcal nuclease sequenc-
ing (MNase-seq) and assay for transposase-accessible 
chromatin using sequencing (ATAC-seq) have been 
developed. Among these, ATAC-seq has become increas-
ingly popular because of its simplicity, high sensitiv-
ity and low cell number requirement [16], and has been 
applied to construct regulatory elements landscapes in 
human and mouse [17–20]. The international consor-
tiums like, Encyclopedia of DNA Elements (ENCODE) 
[21], Roadmap Epigenomics projects [22] and the Func-
tional Annotation of Animal Genomes (FAANG) [23] 
have played important roles in generating the epigenetic 
data in multiple species. There have been efforts to pro-
file accessible chromatin in pigs [24–26]. However, only 
few tissues including fat, cerebellum, cortex, heart, liver, 
muscle, spleen, lung and hypothalamus were covered in 
these studies. Moreover, studies have investigated chro-
matin states of TEs including LINE, SINE, LTR and DNA 
transposons in human and mouse [27–29], allowing bet-
ter understanding the regulatory function of TEs. How-
ever, the chromatin landscape of pig genomic TEs has 
not been explored yet. In particular, the PERV, as a type 
of TE, whose sequences are inserted into the pig genome, 
can be transmitted to humans after xenotransplantation, 
causing disease risk [30, 31].

Here, we performed ATAC-seq on 40 samples from 
20 tissues in 2 female Duroc-Landrace-Yorkshire (DLY) 
commercial pigs, including 10 tissues (medulla spinalis, 
bronchia, parotid gland, pharynx, stomach, small intes-
tine (SI), kidney, ovary, cervix, thymus) that have not 
been investigated in previous studies. We inferred the 
open chromatin regions displaying tissue-specific or tis-
sue-conserved accessibility. By integrating transcriptomic 
data (RNA-seq), we revealed open chromatin regions that 
significantly correlated with gene transcription. In addi-
tion, we examined TEs including the PERVs and different 
TEs in the open chromatin regions, providing insights 
into the regulatory role of the TEs and their evolutionary 
history. The data and analyses in this study provide vital 
resources to explore the function of cis-regulatory ele-
ments in determining tissue-specific biological functions 
and complex traits in pigs.

Methods and materials
Sample collection
The pigs used in this study were obtained from a slaugh-
ter house in Nanchang, Jiangxi province. 20 tissues (brain, 
cerebellum, hypothalamus, medulla spinalis, lung, bron-
chia, parotid gland, pharynx, stomach, small intestine, 
liver, kidney, cervix, ovary, heart, thymus, longissimus 
dorsi, semimembranosus, backfat, leaf fat) was collected 

from 2 healthy commercial sows at age of 6 months. After 
slaughter, tissue samples were collected in sterile tube and 
stored at − 80 °C.

ATAC‑seq library preparation and sequencing
ATAC-seq libraries were prepared as previously 
described with minor modifications [16]. Briefly, samples 
were ground to powder with liquid nitrogen using mor-
tar. Then, we homogenized the tissue powder in 2 mL 
ice-cold homogenization buffer (10% NP40, 500 mmol/L 
EDTA, 1 mol/L sucrose, 100 mmol/L PMSF, 14.3 mol/L 
β-mercaptoethanol, 1 mol/L CaCl2, 1 mol/L Mg(Ac)2, 
1 mol/L Tris [pH 7.8], nuclease-free H2O) using a 7-mL 
Dounce homogenizer for 20 strokes. We filtered the 
solution through a 70-μm cell strainer and gradient cen-
trifugation with different concentrations of iodixanol. 
After that, approximately 60,000 nuclei from each sample 
were collected, centrifuged at 500 ×  g for 5 min at 4 °C, 
washed the pellet with 1 mL ATAC-RSB (5 mol/L NaCl, 
1 mol/L MgCl2, 1 mol/L Tris-HCl [pH 7.4], nuclease-free 
H2O) containing 0.1% Tween-20, centrifuged at 500 × g 
for 10 min at 4 °C; and resuspended the pellet in 50-μL 
of tagmentation reaction mix (2 × Tagmentation buffer, 
10 × PBS, 0.5% Digitonin, 10% Tween20, Tn5 transposase 
and nuclease-free H2O), incubated for 30 min at 37 °C. 
Libraries were prepared using active motif kit (ATAC-Seq 
Kit #53150) as previously described [32]. The ATAC-seq 
DNA was sequenced in the 150 bp paired-end sequenc-
ing mode with a NovaSeq 6000 platform. Two biological 
replicates were performed per tissue.

ATAC‑seq processing
According to the Fig.  1b, the raw data with sequence 
adapters and low-quality reads were trimmed with Trim 
Galore v0.6.6 [33] using default parameters. The high-
quality reads were then aligned to the pig genome (Sus 
scrofa 11.1) using Bowtie2 v2.3.5.1 [34]. Duplicate align-
ments were removed using Picard toolkit v1.119 [35] and 
alignments with low mapping quality (mapq < 30) and 
mitochondrial DNA were removed with SAMtools v1.9 
[36]. We used MACS2 v2.1.1 [37] to generate the acces-
sible chromatin regions (peaks) for each sample with the 
parameter --qvalue 0.01 --nomodel --shift − 100 --extsize 
200 -B -SPMR --keep-dup all, and then we merged peaks 
across all samples within the same tissue in two individu-
als overlapping peaks using BEDTools merge [38]. We 
recalculated the number of reads in each merged peak 
using SAMtools bedcov [36] and peaks per kilobase mil-
lion values were determined to measure the peak inten-
sity using R program v3.5.1 [39]. The clustering of the 
samples based on peak intensity were performed using 
hcluster function with ward. D method in R program 
v3.5.1 [39], and visualized using R package circlize [40] 
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Fig. 1  Experimental design and statistical analysis for constructing the landscape of chromatin accessibility. a Schematic diagram showing tissues 
assayed in this study. The ring colors represent different organ systems. Starting with the location of the brain tissue, clockwise around the circle, 
corresponding to the nervous system (brain, cerebellum, hypothalamus, medulla spinalis), respiratory system (lung, bronchia), digestive system 
(parotid gland, pharynx, stomach, liver, small intestine (SI)), urinary system (kidney), reproductive system (ovary, cervix), circulatory system (heart), 
lymphatic system (thymus), locomotor system (longissimus muscle (LD), semimembranosus (SM)), endocrine system (backfat and leaf fat). b The 
workflow of analysis in this study. Please refer to the Methods and materials for details
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and dendextend [41]. Genomic annotation for peaks was 
performed with Genomic Association Tester [42]. And 
tissue-specific peaks are defined as peak intensity in spe-
cific tissue at least twice higher than in the others.

RNA‑seq library preparation, sequencing and processing
Total RNA was extracted from 40 frozen samples using 
Trizol and sequenced using MGI-2000 system with 
paired end and strand specific. RNA-seq reads of each 
sample were mapped to pig genome (Sus scrofa 11.1) 
using STAR v2.7.1a [43]. Expression level of each gene 
was determined with StringTie [44] and featureCounts 
[45] and transcript per million (TPM) normalization 
was performed using R program. Only genes expressed 
(TPM > 0) across the 40 samples in more than 2 samples 
were included in the subsequent analyses. The cluster-
ing of the samples based on gene expression levels were 
performed using hcluster function with ward.D method 
in R program, and visualized using R package circlize 
[40] and dendextend [41]. And two samples (stom-
ach_sample1 and backfat_sample2) with poor clustering 
were discarded. And tissue-specific genes are defined as 
expression level in specific tissue at least twice higher 
than in the others.

Gene ontology enrichment analysis
The gene ontology enrichment analysis was performed 
using ClueGO [46]. The P-values for the enrichment of 
Gene Ontology (GO) terms were corrected using Benja-
mini-Hochberg approach.

Transcription factor motifs
We tested for enrichment of vertebrates known tran-
scription factor motifs in peaks using HOMER [47] with 
default parameters.

Correlation of peaks with gene expression
To clarify the regulatory relationship between peaks 
and genes, three other data were used in this study. The 
first study was from Kern et al. [26]. A total of 16 sam-
ples were collected from 8 tissues (fat, cerebellum, brain, 
hypothalamus, liver, lung, muscle and spleen) of york-
shire with 2 biological replicates per tissue. The second 
was designed by Zhao et al. [48], which include 5 tissues 
(muscle, liver, fat, spleen, heart) of MeiShan, LargeWhite, 
Enshi and Duroc with 1–2 biological replicates per tis-
sue. And the last one was executed by Yang et  al. [49], 
which we downloaded and only included one tissue (skel-
etal muscle) of Luchuan and Duroc pigs with 3 biologi-
cal replicates per breed (Additional  file 1: Table  S3). In 
total, combined with our own data, there were 85 sam-
ples of ATAC-seq and corresponding RNA-seq. After the 
above uniform ATAC-seq process analysis, we identified 

796,506 peaks with P-value less than 10−5, and 14 sam-
ples with poor tissue clustering were discarded. And then 
527,718 peaks exist in at least 2 samples were retained. 
For RNA-seq, after uniform RNA-seq process analysis 
above, 24,974 genes were identified, then, we selected 
17,634 genes with TPM > 1 in at least 10% samples for 
further analysis. Using 527,718 peaks and 17,634 genes 
across 71 samples, we predicted target genes for peaks 
by implementing correlation between peak intensity and 
gene expression. Genes whose transcription start sites 
(TSSs) were within 500 Kb from the center of peaks were 
considered. We identified 827,942 significant correlations 
at q-value less than 0.01.

Spatial correlation between peaks and TEs
The data of TEs from pig (Sus scrofa 11.1) were analyzed 
by RepeatMasker v2.9.0 [50] with parameter -s. And cor-
related interval sets between peaks and TEs were calcu-
lated by GenometriCorr (Genometric Correlation) [51] 
which was used to calculate the spatial correlation of 
genome-wide interval datasets. The permutation tests 
with 100 times were performed to verify whether TEs 
enriched in the regulatory elements or not.

Identification of accessible TEs
As previously reported [52], accessible TEs were identi-
fied by the overlapping between TEs and peaks, and the 
evaluation criterion is that at least 50% of the overlap 
should be TE while at least 20% of the overlap should be 
peak region. Accessible TEs that were only identified in 
one tissue was defined as tissue-specific accessible TEs 
while accessible TEs that were identified in all tissues was 
defined as shared accessible TEs. GO enrichment analy-
sis of tissue-specific accessible TEs and shared accessible 
TEs were performed using ClueGO [46].

Multiple sequence alignment
Virus sequences were obtained from a study (unpub-
lished) by self-assembly and comparison with the data-
base [53]. The conserved accessible TEs sequences and 
viral sequences were put together. Then, we used MAFFT 
v7.407 [54] with the automatically detected param-
eters (--auto)  to identified sequence homology. FastTree 
v2.1.11 [55] was used to infer approximately-maximum-
likelihood phylogenetic trees from alignments of nucleo-
tide sequences. Finally, experiment visualization features 
in FigTree v1.4.4 [56].

The enrichment of GWAS signals
The pig GWAS data of fatty acid was collected from a 
published study [57]. A total of 191 significant GWAS 
loci were obtained. Then, the enrichment analysis of 
these loci was performed with regulatory elements.
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Results
Mapping the open chromatin states of 20 pig tissues
To map genome-wide regulatory elements in pig, we 
performed ATAC-seq and RNA-seq on 40 samples rep-
resenting 20 tissues, namely, brain, cerebellum, hypo-
thalamus, medulla spinalis, lung, bronchia, parotid 
gland, pharynx, stomach, liver, SI, kidney, ovary, cervix, 
heart, thymus, longissimus muscle (LD), semimem-
branosus muscle (SM), backfat and leaf fat from two 
female DLY pigs at 6 months (Fig. 1a), representing two 
biological replicates per tissue. The data was subjected 
to analysis following the workflow shown in Fig. 1b.

After quality control, we obtained a total of 2.43G 
uniquely mapped reads from the 40 samples (Addi-
tional file  1: Table  S1). The reads showed enrichment 
around TSSs and a periodical fragment size distribution 
corresponding to the nucleosome-free regions (NFR) 
(< 100 bp) and mono-, di-, and tri-nucleosomes (~ 200, 
400 and 600 bp, respectively) (Additional file 2: Fig. S1a, 
S1b). Furthermore, we computed quality related statis-
tics FRIP (fraction of reads in peaks), TSS score, library 
complexity (NRF (Non-redundancy Fraction), PBC1 and 
PBC2 (PCR Bottlenecking Coefficient 1 and 2)) and cross 
correlation (NSC and RSC) (Additional file 1: Table S1). 
These statistics suggested that the data generated hereby 
are of good quality. We identified an average of 77,096 
peaks with average size of 448 bp per tissue (Additional 
file 2: Fig. S1d). Peaks from all samples were merged into 
557,273 non-redundant peaks, among which 363,638 
(65.25%) overlapped with peaks identified in Kern et  al. 
[26] (Fig. 2c), while the rest of peaks were newly identified 
owing to more tissue types were profiled in this study.

To obtain a set of peaks with higher confidence, 
we only kept peaks that were evidenced in both bio-
logical replicates for each tissue, and finally retained 
267,836 merged peaks for further analysis. Most of the 
267,836 peaks located in intronic (54.23%) and inter-
genic (36.75%) regions, meanwhile, 4.23%, 2.59% and 
2.20% peaks were evidenced in CDS, 5′UTR and 3′UTR 
regions (Fig. 2e). Similar to the results obtained in the 
previous study [25], we found that accessible chroma-
tin regions vary greatly across tissues (range: 9729 to 
94,946), covering 0.56% to 3.21% sequences of the refer-
ence genome (Fig. 2b), with a good overlap with those 
reported in independent studies by tissues (Additional 
file 1: Table S4).

Hierarchical clustering based on the peak intensity 
clearly separated different tissue types (Fig. 2a), indicat-
ing that the peak intensities largely reflect tissue iden-
tity. We grouped the 267,836 peaks into 20,488 proximal 
peaks (within 1 Kb of TSS) and 247,248 distal peaks 
(away from TSS 1 Kb). As expected, the distal peaks dis-
played stronger tissue specificity comparing to proximal 

peaks (Fig.  2d and Additional file  2: Fig. S1c), agree-
ing with the reported characteristics of promoters and 
enhancers [58].

To investigate the effect of regulatory elements on gene 
expression, RNA-seq was successfully performed on 38 
out of the 40 ATAC-Seq samples. The summary statistics 
of each RNA library is listed in Supplementary Table 2. A 
total of 17,624 genes were identified. The reproducibility 
of the 38 RNA-seq data was verified by hierarchical clus-
tering of gene expression (Additional file 2: Fig. S2a).

Tissue specificity of the open chromatin peaks
To explore the key regulatory elements that determine 
specialized functions of tissues, we defined peak whose 
average intensity was at least two folds in the target tis-
sue relative to any other tissues as tissue-specific peak, 
and identified 16,704, 7887, 6742, 5960, 5286, 4278, 3089, 
884, 649, 407, 326, 277, 261, 177, 118, 84, 21, 16, 6 and 
3 tissue-specific peaks in cerebellum, kidney, liver, heart, 
parotid gland, cervix, thymus, leaf fat, stomach, brain, 
SI, LD, pharynx, SM, ovary, hypothalamus, medulla spi-
nalis, lung, backfat and bronchia, respectively (Fig.  3a, 
b). We exemplified a liver specific peak located close to 
ARG1 (Fig. 3c and Additional file 2: S2e), a protein cod-
ing gene expressed primarily in the liver and involved in 
the urea cycle [59]. The genes locate closest to the tissue-
specific peaks were enriched in tissue-specific pathways, 
such as the heart and circulatory system development for 
heart specific peaks (Additional file 2: Fig. S2f ), such as 
heart development and circulatory system development 
in heart. Given that the numbers of tissue-specific peaks 
were largely affected by the inclusion of physiologically 
similar tissues, we further determined peaks that specific 
to a certain tissue system using a similar rule applied on 
the individual tissues, and identified 11,114, 434, 310, 
28, 5053 and 50 specific peaks for locomotor system, 
reproductive system, endocrine system, respiratory sys-
tem, nervous system and digestive system, respectively, 
located close to genes with functions matching the biol-
ogy of corresponding tissues (Fig. 3a). For example, genes 
expressed specifically in nervous system were signifi-
cantly involved in synaptic membrane (q-value = 1.39E-
32), while those expressed specifically in locomotor 
system were significantly associated with muscle struc-
ture development (q-value = 5.68E-28) (Additional file 2: 
Fig. S2d).

Next, we investigated enrichment of TF binding motifs 
in the tissue-specific peaks using HOMER [47]. We 
defined the TF motifs with enrichment strength (−log 
(P-value)) in one tissue were at least two folds relative 
to the other tissues as tissue-specific, and identified 205 
tissue-specific TF motifs (Fig. 3d). These included motif 
of ATOH1 which controls primary cilia formation that 
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Fig. 2  Identifying the landscape of chromatin accessibility via ATAC-seq in pigs. a Hierarchical clustering of samples using ATAC-seq signal intensity. 
b Distribution of the peak number and genome coverage in each tissue. c Venn plot showing the overlap of peaks identified in this study with 
those reported in Kern et al. [26]. d Pearson correlation heatmaps of 20 tissues by density of ATAC-seq distal peaks (left) and ATAC-seq proximal 
peaks (right). e Pie chart represents the proportion of peaks located in introns, intergenic, 5′UTR, 3′UTR and CDS regions

Fig. 3  Functional annotation of system-specific peaks. a Intervene plot showing the number of system-specific peaks and tissue-specific peaks. 
b Heatmap of tissue-specific peaks in 20 tissues. Each row of the heatmap shows normalized density of read-depth at one peak. c Representative 
examples of liver specific peaks which located close to ARG1(A protein coding gene expressed primarily in the liver and involved in the urea cycle). 
d Enrichment of tissue specific transcription factor motifs in each tissue (left). The columns represent 20 tissues. The rows represent motifs. The 
P-values were generated by HOMER. Representative examples of tissue specific transcription factor motifs were displayed (right). e Representative 
examples of tissue conserved peak. f Top 5 transcription factors with binding motifs enriched in tissue conserved peaks

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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facilitates SHH-Triggered granule neuron progenitor 
proliferation [60] was evidenced to be cerebellum spe-
cific, and motif of MEF2C which controls cardiac mor-
phogenesis [61] was enriched in heart.

Ubiquitously accessible chromatin peaks
Meanwhile, we also identified 8734 peaks that consist-
ently active in at least 90% of investigated tissues (Fig. 3e). 
The genes locate nearest to the conserved peaks were 
enriched for pathways like cytoskeleton and mitotic cell 
cycle that have housekeeping functions (Additional file 2: 
Fig. S2d). The top 5 enriched TF motifs (SP1, NFY, SP5, 
ELK4 and KLF3) (Additional file 1: Table S5) participate 
in chromatin remodeling and transcriptional activation 
(Fig. 3f ), which are indispensable transcription factors in 
growth and development [62].

Tissue‑specific gene expressions
We applied similar approach to investigate tissue specific-
ity of gene expressions, and identified 135, 528, 439, 711, 
228, 181, 117, 467, 40, 75, 469, 486, 94, 581, 124, 117, 411, 
34, 336 and 1590 tissue-specific genes that were found 
to be specific in backfat, brain, bronchia, cerebellum, 
cervix, heart, hypothalamus, kidney, LD, leaf fat, liver, 
lung, medulla spinalis, ovary, parotid gland, pharynx, SI, 
SM, stomach and thymus, respectively (Additional file 2: 
Fig. S2b). For example, MYH7, a gene described to be 
responsible for hypertrophic cardiomyopathy, was highly 
expressed in heart than in other tissues (Additional file 2: 
Fig. S2c). The GO analysis showed these tissue-specific 
genes were associated with tissue-specific biological pro-
cesses (Additional file  2: Fig. S2b). For example, genes 
significantly expressed in cerebellum were related to the 
function of synaptic signaling, and genes significantly 
expressed in thymus were related to the function of T cell 
activation (Additional file 2: Fig. S2b).

Joint profiling of chromatin accessibility and gene 
expression
To investigate the regulatory elements that link to gene 
transcription, we examined correlations of gene expres-
sions with intensities of ATAC peaks within 500 Kb 
from the TSSs of corresponding genes, as majority of 
promoter-anchored chromatin interactions were within 
500 Kb [63, 64]. The analysis was performed on the inte-
grated dataset of 527,718 peaks and 17,634 genes from 
71 samples, including 33 samples from public datasets 
(Additional file 1: Table S3, Additional file 2: Fig. S3). We 
identified a total of 827,942 significant peak - gene asso-
ciations (q-value < 0.01) that involves 255,166 peaks and 
17,493 genes (Additional file 2: Fig. S4). Majority of the 
significant correlations (406,896/827,942, 49.15%) are 
positive only, while we also identified 10.54% negative 

correlations only. For example, a peak (chr5:10,663,155-
10,664,871) has high intensity in liver showed posi-
tive correlation with TMPRSS6 (Spearman r2 = 0.77, 
q-value = 6.43E-12) (Fig.  4f ), which encodes a type II 
transmembrane serine protease exclusively produced by 
liver [65]. We also exemplified negative peak - gene cor-
relation where a peak (chr1:128,083,325-128,085,034) 
show strong negative correlation with expression lev-
els of PDIA3 (Spearman r2 = − 0.60, q-value = 1.42E-6) 
(Fig.  4g). In addition, there are 40.31% peak - gene cor-
relations showed both positive and negative correlations, 
indicating that the identity of regulatory elements was 
mutable.

On average, there were 2.87 genes per peak and 35.86 
peaks per gene in positive correlations while 2.13 genes 
per peak and 14.49 peaks per gene in negative corre-
lations (Fig.  4a, c). Interestingly, we observed that the 
strength of positive and negative correlations showed dis-
tinct distribution against peak - gene distances (Fig. 4b). 
The positive correlations were enriched around the TSSs 
of genes, while the negative correlations appeared to be 
underrepresented in TSS regions (Fig. 4d). We identified 
1786 tissue-specific genes were associated with 38,574 
tissue-specific peaks within 500 Kb from the TSS regions 
(Fig.  4e, h and Additional file  2: Fig. S4), suggesting 
important roles of tissue-specific chromatin accessibil-
ity in driving the tissue-specific genes expression thereby 
encoded tissue-specific biological functions.

Open chromatin states of transposable elements 
in different pig tissues
Over 40% of the sequences in the non-coding regions of 
the mammalian genome are TEs whose functions were 
largely unexplored. To understand the functions of TEs 
in pig tissues, we examined the chromatin accessibility of 
genome wide TEs. We found 26.91% of the 267,836 open 
chromatin regions were overlapped with at least one TE.

The spatial correlation analysis between TEs and open 
chromatin  regions calculated by GenometriCorr [51] 
suggested underrepresentation of ratio of TEs located 
in the open chromatin regions than random expecta-
tion, indicating that TEs are tend to be epigenetically 
silenced. Despite this, each tissue contains an average of 
17.96% peaks that were overlapped with at least one TE, 
range from 9.49% to 22.33% (Fig.  5a). The SINE, LINE 
and LTR accounted for approximately 40%, 30% and 23% 
of the accessible TEs, respectively, across the 20 tissues 
(Fig. 5b). We found over 50% of these TEs existed in a sin-
gle tissue were located close to genes involved in tissue-
specific functions (Fig. 5c, d). For example, we observed 
enrichment of T cell receptor signaling pathway enriched 
in thymus while muscle system process enriched in LD 
(Fig.  5d). These results suggested that accessible TEs 
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existed in one tissue exhibit strong tissue-specific regu-
latory roles, which was consistent with the previous 
reports [66, 67]. Meanwhile, we observed approximate 
0.19% of accessible TEs were commonly accessible in all 
20 tissues (Fig.  5c). The conserved accessible TEs were 
more associated with housekeeping functions (e.g., ribo-
some assembly) (Fig. 5d).

Mounting evidence suggests that specific TEs in pigs, 
especially PERV, could potentially lead to immuno-
deficiency and tumorigenesis, making it difficult for 
xenotransplantation [68, 69]. Upon further inspection, 
we found a total of 10 unique PERVs overlapped with 13 

peaks (Additional file 1: Table S6). For example, the PERV 
(sPERV-JX2like-12-23.0 M) was overlapped with the peak 
(chr12:22,990,219-22,991,950) which showed high inten-
sity in liver (Fig. 5e), significantly correlated with multi-
ple genes (NEUROD2, ENSSSCG00000017507, CACNB1, 
PLXDC1, PIP4K2B). Among them, PIP4K2B, which par-
ticipates in 1-phosphatidylinositol-4-phosphate 5-kinase 
activity and IP6 [70], the product of 1-phosphatidylinosi-
tol-4-phosphate 5-kinase, can facilitates assembly of the 
immature HIV-1 Gag lattice [71], shows highly correla-
tion (Fig.  5f ), suggesting potential role of the PERVs in 
facilitating virus infection.

Fig. 4  Characterizing the correlations between peak intensity and gene expression of nearby genes. a and c The number of genes regulated by 
one peak, and the number of peaks regulated one gene. The X-axis of the histogram represents different groups that were classified according to 
the associated gene (peak) numbers per peak (gene), and the Y-axis represents the gene (peak) count for each group. Positive peak - gene pairs and 
negative peak - gene pairs are distinguished by different colors. b Bar plot of the relationship between the correlation and distance of peak - gene 
pairs. d Distribution of the distance for significant positive peak - gene pairs and negative peak - gene pairs. e and h Heatmap of tissue-specific 
peaks (genes) from all significant peak - gene pairs. f Representative examples of a significant tissue-specific peak - gene pair which peak and gene 
are both tissue-specific. The dots represent peak intensity and gene expression from each sample. Different colors indicate different tissue types. g 
An representative examples of a significant conserved peak - gene pair. The peak and gene are both expressed ubiquitously across tissues. The dots 
represent peak intensity and gene expression from each sample. Different colors indicate different tissue types
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Fig. 5  Accessible transposable elements (TEs) in 20 pig tissues. a Distribution of ATAC-seq peaks identified in 20 pig tissues associated with TEs. b 
TE class distribution of accessible TEs in 20 pig tissues. c Distribution of accessible TEs among 20 pig tissues. d Functional enrichment of genes for 
4 tissue-specific and tissue-conserved accessible TEs based on Gene Ontology (GO) biological processes. e Comparison the tracks of peak activity 
across all tissues; Y-axis corresponding to the normalized read depths of ATAC-seq data. f Scatter plot showing the correlation between the intensity 
of peak at chr12:22,990,219-22,991,950 and the expression of PIP4K2B gene
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Besides this, we also focused on the functions of other 
genes regulated by PERVs. For example, GTPBP8 [72], 
BCKDK [73], IDH3B [74] and IDH1 [75] were related to 
the function of mitochondrion; CD2BP2 [76] and FUS 
[77] involved in mRNA splicing; BOC [78] and FZD5 
[79] participated in signal transduction pathway. Taken 
together, these results suggested that PERV which act 
as regulatory element involved in a variety of biological 
functions.

In this study, we identified a total of 162 TEs that are 
accessible in all investigated tissues. To trace the origin 
or evolutionary history of these ubiquitously accessible 
TEs, we calculated sequence similarity between 124 viral 
sequences (Additional file 1: Table S8) and 162 conserved 
accessible TEs sequences, and constructed a phylogenetic 
tree to reconstruct evolutionary history. Interestingly, we 
observed some conserved accessible TEs sequences were 
grouped with some viruses whose host was pig (Fig.  6), 

Fig. 6  Phylogram of 124 viruses and 162 accessible TEs sequences. Color-highlighted clusters indicate pig virus sequences. PBoV: porcine bocavirus; 
TTSuVK2a(b): Torque teno sus virus k2a(b); PADV-A: porcine mastadenovirus; PoBuV: Protoparvovirus Zsana/2013/HUN; PPV7: Porcine parvovirus 7; 
PoCIV21: Po-Circo-like virus 21. The red branches mark peaks that clustered with viruses
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such as PBoV, TTSuVK2a, TTSuVK2b, PADV-A, PoBuV, 
PPV7 and Po-Circo-Like Virus 21 (Additional file  1: 
Table  S9). We performed GO and KEGG enrichment 
analysis of all genes associated with conserved accessible 
TEs, and found that the biologic process of mitochondrial 
depolarization was highly enriched (Additional file  1: 
Table  S10), which indicated that accessible TEs derived 
from viral sequences have a potential regulatory function 
in clearance of excess or impaired mitochondrial. Alto-
gether, these evidences suggested that some special viral 
sequences have been integrated into the host genome and 
retained as regulatory elements that could play constitu-
tive regulatory functions.

An annotation resource for regulatory mechanisms 
in complex traits
To demonstrate the utility of such resource in annotat-
ing candidate casual variants for complex traits, we 
examined overlap of 191 significant variants for fatty 
acid composition identified in a genome sequence 
based imputation GWAS [57] with the ATAC-seq peak 
regions identified in this study. A total of 22 variants 
were found to be coincident with the ATAC-seq peaks 
(Additional file  1: Table  S7). Among these, a lead SNP 
(chr2:9,736,686, P = 2.10E-10) for C20:3n-6/C18:2n-6 
was located in an ATAC-seq peak (chr2:9,736,357-
9,737,907) that showed high intensity in brain and mod-
erate intensity in muscle (Fig.  7a). This peak showed 
significant correlation with three genes (FADS1, FADS2 
and RAB3IL1) (Additional file 1: Table S7). Among them, 
FADS1 (q = 1.56E-4) which exhibited strongest corre-
lation (Fig.  7b), encodes delta-5 desaturase, one of the 
rate-limiting enzymes in the endogenous synthesis of 
polyunsaturated fatty acids (PUFAs) [80]. FADS2 which 
converts linoleate and alpha-linolenate into PUFAs, is 
one of the key limiting enzymes in the lipid metabolic 
pathway [81] (Fig.  7c). In addition, several other genes 
related to fatty acid have been identified. Osteoglycin 
(OGN) is involved in matrix assembly, cellular growth, 
and migration. Previous study showed that OGN was 
associated with fat acids composition traits to some 
extent [82] and regulated lipid differentiation through 
the Wnt/β-catenin signaling pathway [83]. TEAD3 which 
participates in the fatty acid, triacylglycerol, and ketone 
body metabolism pathway from the Reactome Path-
ways database [84], is a member of the transcriptional 
enhancer factor (TEF) family of transcription factors. 
Further experiment is needed to validate effect of the 
variants on the accessibility of the peaks, and in turn the 
expression of relevant genes and fatty acid composition 
phenotypes.

Discussion
Regulatory elements are crucial for gene expression regu-
lation, which involved in the initiation and regulation of 
transcription in different tissues and organs and provided 
precise control of genes and restrict gene expression to 
certain cells and tissues throughout life [85]. Activation 
of regulatory elements needs ‘pioneer’ factor opening the 
compacted chromatin to recruit transcription coactiva-
tors and chromatin remodeling proteins [86, 87]. Regu-
latory elements usually contain multiple transcription 
factors binding sites (TFBS) which recognized by TFs. 
Genetic variations in regulatory elements affect gene 
expression usually through disrupting TFBS [88]. There-
fore, the generation of multi-tissues atlas of open chro-
matin enabled exploration of gene expression regulation 
and non-coding genetic variations.

In this study, we performed ATAC-seq and RNA-seq 
across 20 tissues in pig at the same development stage 
to characterized chromatin state landscape, uncovering 
extensive tissue-specific regulation of gene expression. 
However, not a single study until now, as far as we are 
aware, has comprehensively and systematically investi-
gated chromatin accessibility in multi-tissues by ATAC-
seq and conjunction with transcriptomic analysis. In our 
study, we observed that the patterns of TSS proximal reg-
ulatory elements were more similar across tissues while 
distal regulatory elements were more tissue-specific, 
reflecting the architecture and function of distal regula-
tory elements have strong tissue specificity [89].

Consistent with the previous reports that regula-
tory elements mediate specific differentiation of tissues 
or cells [90, 91], we identified a large number of tissue-
specific open chromatin regions which regulate the 
genes with function matching the biology of correspond-
ing tissues. In addition, we identified tissue-specific TF 
motifs based on the enrichment of their cognate bind-
ing motifs, such as ATOH1 enriched in cerebellum and 
FOXA1 enriched in liver. And we acknowledge that TF 
motifs enrichment analysis needs to verify using other 
approaches such as ChIP-seq for specific TFs.

Connecting peaks to their target genes remains 
challenge given that Hi-C data is not available for 
the samples under study, particularly for distal peaks 
which are far from target genes, and regarding genes 
nearest to peaks as targets is error prone [92–94]. To 
solve this problem, we combine other published data 
to reveal the association between peak intensity and 
gene expression, which has been proved effective 
[90]. We observed significant negative peak - gene 
pairs showed strikingly different peak - gene distances 
compared to that in positive correlation pairs, which 
suggested that positive and negative correlation pairs 
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may have different regulatory mechanism. To further 
understand tissue-specific regulatory relationships 
between peak intensity and gene expression, we fil-
tered for tissue-specific correlation pairs (Additional 
file 2: Fig. S4). Our results suggest tissue-specific genes 
expression may occur through the activation of tissue-
specific regulatory elements. Whereas, the above pre-
dictions require further support using 3D chromosome 

conformation data or validated through CRISPRi 
experiments.

To deepen our understanding of regulatory elements, 
here we performed profiles in TEs as they can provide 
binding sites for TFs and behave as alternative promot-
ers and enhancers [95]. In this study, we observed a small 
proportion of accessible TEs, which were in good accord-
ance with the classical polarization theory that TEs 
promote genetic innovation but also threaten genome 

Fig. 7  Overlap with GWAS SNPs. a The GWAS signal for fatty acid located within a peak in intergenic region. b Scatter plot showing the correlation 
between the peak at chr2:9,736,357-9,737,907 with expression of FADS1 gene. c Scatter plot showing the correlation between the peak at 
chr2:9,736,357-9,737,907 with expression of FADS2 gene
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stability [96]. Similar to previous study [52], we observed 
most of accessible TEs only present in one tissue. And 
tissue-specific accessible TEs were enriched in tissue-
specific biological pathways, which support the findings 
of previous studies [52, 97–99]. Endogenous retroviruses 
(ERVs) are LTR retrotransposons (class I of TEs), which 
originated from exogenous retroviruses that infected the 
germ line throughout evolution [100, 101], which could 
manifest their function across multiple organs in an ani-
mal, thereby could have fundamental functional impact. 
In order to trace the potential source of accessible TEs, 
we performed multiple sequence alignments between 
the viral sequences and the conserved accessible TEs 
sequences, and found some candidate viral sequences 
(PBoV, TTSuVK2a, TTSuVK2b, PADV-A, PoBuV, PPV7 
and Po-Circo-Like Virus 21) might be the source of con-
served accessible TEs.

The annotation of regulatory elements has proven 
highly effective for the identification of candidate 
causative variants and screening candidate genes for 
complex traits [88, 102, 103]. Similarly, our results 
demonstrated that variants of fatty acid were enriched 
in active regulatory elements annotated by this study. 
Specifically, we speculate that a potential causative 
SNP (chr2:9,736,686, P = 2.10E-10) that was associ-
ated with C20:3n-6/C18:2n-6 and found within a tis-
sue-conserved promoter, may regulate the expression 
of FADS1 which encodes the Δ5 desaturase enzyme 
- one of the rate-limiting enzymes in the endogenous 
synthesis of polyunsaturated fatty acids (PUFAs) [104]. 
Taken together, our data unveiled the chromatin land-
scapes for studying the regulation of gene expression, 
provided potential sources of chromatin accessibility 
and deconstructed underlying mechanisms of com-
plex traits in pig. Further investigations with additional 
complementary data—such as single cell and different 
development stage data—are warranted to fully dissect 
biological mechanisms of gene expression.

Conclusions
We performed an integrated analysis of transcriptome 
sequencing and transposase-accessible chromatin with 
high throughput sequencing and provided a compre-
hensive understanding of tissue-specific accessible 
chromatin regions and tissue-specific TF motifs. Then, 
we constructed the relationship between regulatory ele-
ments and their target genes. This large regulatory net-
work will serve as a foundation for understanding the 
precise regulatory mechanisms in different tissues of 
pig. We also analyzed accessible TEs which act as can-
didate regulatory elements. In addition, we analyzed 

the sequence characteristics of regulatory elements, 
and found some virus sequences similar to regulatory 
element sequences, which provided a certain basis for 
the essential characteristics of regulatory elements. 
Finally, the regulatory elements identified in this paper 
were used to annotate the GWAS loci that affect fatty 
acid traits, providing a reference for genetic analysis of 
complex traits.
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top 5000 highly variable genes were used for the analysis. Fig. S4. The 
flowchart and outcomes from the correlation between peak intensity and 
gene expression.
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