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Abstract

Background: NANOG is a core transcription factor (TF) in embryonic stem cells (ESCs) and primordial germ cells
(PGCs). Regulation of the NANOG gene by TFs, epigenetic factors, and autoregulatory factors is well characterized in
ESCs, and transcriptional regulation of NANOG is well established in these cells. Although NANOG plays a key role in
germ cells, the molecular mechanism underlying its transcriptional regulation in PGCs has not been studied.
Therefore, we investigated the mechanism that regulates transcription of the chicken NANOG (cNANOG) gene in
PGCs and ESCs.

Results: We first identified the transcription start site of cNANOG by 5"-rapid amplification of cDNA ends PCR
analysis. Then, we measured the promoter activity of various 5' flanking regions of cNANOG in chicken PGCs and
ESCs using the luciferase reporter assay. cNANOG expression required transcriptional regulatory elements, which
were positively regulated by POU5F3 (OCT4) and SOX2 and negatively regulated by TP53 in PGCs. The proximal
region of the cNANOG promoter contains a positive transcriptional regulatory element (CCAAT/enhancer-binding
protein (CEBP)-binding site) in ESCs. Furthermore, small interfering RNA-mediated knockdown demonstrated that
POUS5F3, SOX2, and CEBP played a role in cell type-specific transcription of cNANOG.

Conclusions: We show for the first time that different trans-regulatory elements control transcription of cNANOG in
a cell type-specific manner. This finding might help to elucidate the mechanism that regulates cNANOG expression
in PGCs and ESCs.
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Background

Gene transcription is mainly regulated by transcription
factors (TFs) that bind to specific DNA sequences
(called muotifs) located in the promoter regions of genes
[1]. Many TFs contribute to tissue- and cell type-specific
gene transcription according to their recognition specifi-
city [2-4]. In addition, TFs generally initiate and guide
cell fate such as lineage progression and control the
stability of cell differentiation [5]. Therefore, identification
of regulatory elements within the promoter region is
considered crucial to understand the mechanism under-
lying transcriptional regulation in specific cell types. A germ
cell-specific gene regulatory network is required to main-
tain the unique properties of primordial germ cells (PGCs)
for transmission of genetic information to the next gener-
ation [6]. Many studies have investigated germ cell-specific
gene promoters to understand their regulatory mecha-
nisms. In many species, germ cells have a unique mechan-
ism of transcription initiation that uses alternate forms of
core promoter elements [7—10]. Also, germ cells reorganize
different type of core promoter TFs under the control
of germ cell-specific TFs during germ cell differenti-
ation [11-13].

In mammals, core TFs such as NANOG, OCT4, and
SOX2 control maintenance of pluripotency. Core TFs
play an important role in establishing control of gene ex-
pression programs that define the identity of embryonic
stem cells (ESCs) [14-16]. In particular, the NANOG
gene is important for acquisition of pluripotency by
ESCs and embryonic germ cells (EGCs) [17-19]. Several
earlier studies identified the regulatory elements of
NANOG that are required to maintain the self-renewal
and pluripotency of ESCs [20-22]. The major regulators
of NANOG expression are Octamer- and Sox-binding
elements present at the upstream of transcription start
site (TSS) in its promoter region, and these elements are
positively regulated by binding of OCT4 and SOX2 in
ESCs [20, 23]. Direct binding of ZFP143 to the proximal
region of the NANOG promoter regulates NANOG ex-
pression by modulating OCT4 binding [24]. In addition,
TE-binding cis-regulatory elements of NANOG, including
SP1/SP3-, SALL4-, and BRD4-binding sites, have been
identified as positive regulators [25-27]. On the other
hand, P53-binding sites negatively regulate NANOG ex-
pression to induce differentiation of ESCs [28]. Therefore,
regulation of NANOG expression plays a critical role in
determining the fate of pluripotent cells.

PGCs express several pluripotency-related TFs such as
NANOG, POUSF3, and SOX2, and their expression
controls transcription of germness-related genes in these
cells [11, 29]. NANOG plays an essential role during
early germ cell development as a key TF required for the
formation of PGCs and maintenance of early germ cells
[30, 31]. NANOG-deficient PGCs reportedly undergo

(2021) 12:40

Page 2 of 14

apoptotic death [32]. It was recently reported that
NANOG regulates PGC-specific epigenetic programming
and global histone methylation [33, 34]. NANOG is evolu-
tionarily conserved in mammals and most of the lower ver-
tebrate species, including chicken. In particular, NANOG
orthologs from chicken, zebrafish, and axolotl are highly
conserved [35—37]. Similar to mammals, NANOG is crucial
to maintain pluripotency and self-renewal of chicken ESCs
[35]. NANOG is expressed during chicken intrauterine em-
bryonic development and is exclusively expressed in PGCs
from Hamburger and Hamilton stage 5 (HH5) to HHS.
Therefore, NANOG is also important to maintain pluripo-
tency and cell proliferation in chicken intrauterine embryos
and PGCs [31, 35, 38].

Despite the exclusive expression of NANOG in chicken
PGCs, the molecular mechanism that regulates its
transcription in these cells has not been fully clarified.
This study investigated enhancers and suppressors of the
proximal promoter region of the chicken NANOG (cNA-
NOG) gene in PGCs and ESCs. Furthermore, we investi-
gated transcriptional control of cNANOG expression via
trans-regulatory elements and TFs, which are important
for its cell type-specific expression.

Methods

Experimental design, animals, and animal care

This study investigated the cis- and trans-regulatory ele-
ments that are important for modulating transcription of
the NANOG gene in chicken PGCs using the dual lucifer-
ase assay and transcriptome analysis. The management of
White Leghorn (WL) chickens was approved by the
Institute of Laboratory Animal Resources, Seoul National
University, Korea (SNU-190401-1-1). The chickens were
housed according to standard procedures at the University
Animal Farm, Seoul National University, Korea.

5' Rapid amplification of cDNA ends (5-RACE) PCR
analysis

To determine the TSS of the cNANOG gene (Gene ID:
100272166), 5'-RACE PCR was performed using a
GeneRacer Kit (Invitrogen, Carlsbad, CA, USA) follow-
ing the manufacturer’s instructions. Gene Racer RNA
Oligo-ligated mRNA was reverse-transcribed into cDNA.
Single-stranded ¢cDNA served as the template in nested
5-RACE PCR using the GeneRacer 5° Primer and
reverse gene-specific primers (GSPs). The cNANOG re-
verse GSP was 5'-GTC TGC AGT AGG GCT AGT
GGC AGA GTC T-3'. The RACE products were identi-
fied by DNA sequencing analysis. To confirm the quality
of adapter-ligated RNA, 5'-RACE PCR was performed
with a chicken B-actin reverse GSP, which was 872 bp in
size and contained 828 bp of B-actin and 44 bp of the
GeneRacer RNA Oligo.
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Table 1 List of primer sequences used to clone the NANOG
promoter

Primer name Primer sequence (5' — 3)

cNANOG — 3550 bp_F AAGCTTTGTCCTTTTCTTGACC
cNANOG — 3375 bp_F CTGGAGTCAAGGGCTGTGG
cNANOG — 3154 bp_F TGGGCCCCTCGTTACAGCT
cNANOG — 2928 bp_F CCAGCAGTACAAGCTCCGAA
cNANOG — 1988 bp_F GCGACACGTGGAACA
cNANOG — 945 bp_F CATGGGGGTGTCTGCTC
cNANOG — 627 bp_F CTTCTTTGTGCTCCTCC
cNANOG — 442 bp_F CTGCAGTCTGCAATGC

AATGTCCCGGGGGGGTCTCTGG
CCATTCTTTGTACTTGGGTGGGGACCGATGAG
CGAGGGCGGGGGTGCCAGCCCAG

CNANOG — 407 bp_F
cNANOG — 377 bp_F
cNANOG — 312 bp_F

cNANOG — 250 bp_F CTGCAGTCTGCTCCTCC
cNANOG - 210 bp_F CTGCAGTCTGCAATGC
cNANOG — 170 bp_F CCAAAGGGGGAAGCTGC
c¢NANOG - 130 bp_F ACTCTCCGAATATCCCCATAGC
cNANOG - 69 bp_F TCGTGACAATCTCTTG
cNANOG promoter_R GGTCGGGACGACACCT

Construction of NanoLuc luciferase expression vectors
derived from the cNANOG promoter

To construct NanoLuc luciferase expression vectors, the
5" flanking region of the ctNANOG gene was amplified
using genomic DNA extracted from adult chicken blood
and inserted into the pGEM-T Easy vector (Promega,
Madison, WI, USA). Primer sets were used to clone
differently sized fragments of the ¢cNANOG promoter
(Table 1). Then, different lengths of the 5’ upstream
region of the cNANOG gene were inserted between the
KpnlI and Xhol sites of the pNL1.2 vector (Promega).

Luciferase reporter assay

The Nano-Glo Dual Reporter Assay System (Promega)
was used to assess cNANOG promoter activity. Prepared
cells were seeded in a 96-well plate and co-transfected
with the pGL4.53 firefly luciferase (Fluc) and pNL1.2
(NlucP/cNANOG RE) NanoLuc luciferase (Nluc) plas-
mids using Lipofectamine 2000 (Invitrogen). After
transfection for 24 h, cells were lysed with lysis buffer
containing Fluc substrate. Fluc signals were then
quenched, followed by reaction with Nluc substrate.
Signals in arbitrary units (AU) of Nluc and Fluc were
measured using a luminometer (Glomax-Multi-Detection
System; Promega). Promoter activities were calculated by
determining the ratio of Nluc/Fluc signals in AU. pNL1.2,
an empty vector, was used as a negative control. All
reporter assays were repeated at least three times.
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Culture of chicken PGCs, ESCs, and DF-1 cells

WL PGCs were maintained and sub-passaged in KnockOut
DMEM (Thermo Fisher-Invitrogen, USA) supplemented
with 20% fetal bovine serum (Hyclone, South Logan, UT,
USA), 2% chicken serum (MilliporeSigma, Burlington, MA,
USA), 1x nucleosides (MilliporeSigma), 2 mmol/L L-glu-
tamine, 1x nonessential amino acids, p-mercaptoethanol,
10 mmol/L sodium pyruvate, 1x antibiotic-antimycotic
(ABAM; Thermo Fisher-Invitrogen), and 10 ng/mL human
basic fibroblast growth factor (MilliporeSigma). PGCs were
sub-cultured onto mitomycin-inactivated mouse embryonic
fibroblasts at an interval of 5-6 d via gentle pipetting.

Chicken ESCs were generously provided by Dr. Bertrand
Pain (INSERM-INRAE). These cells were maintained and
sub-passaged as previously described [39]. Briefly, ESCs
were cultured in 50 mL of DMEM/F12 (GIBCO, Grand
Island, NY, USA) supplemented with 10% fetal bovine
serum (Hyclone), 1x nonessential amino acids, 10 mmol/L
sodium pyruvate, p-mercaptoethanol, 1x ABAM (Thermo
Fisher-Invitrogen), 5 ng/mL insulin-like growth factor 1, 1
ng/mL stem cell factor, 1 ng/mL interleukin 6, 1 ng/mL
soluble interleukin 6 receptor a, and 1000 U/mL human
leukemia inhibitory factor. ESCs were sub-cultured onto
mitotically inactivated STO cells.

Chicken DF-1 cells (CRL-12203; American Type Culture
Collection, USA) and chicken embryonic fibroblasts (CEFs)
were cultured as negative controls. Chicken DF-1 cells were
maintained and sub-passaged in DMEM (Hyclone) supple-
mented with 10% fetal bovine serum (Hyclone) and 1x
ABAM (Thermo Fisher-Invitrogen). CEFs were derived
from 6-day-old WL embryos and maintained in DMEM
(Hyclone) supplemented with 10% fetal bovine serum
(Hyclone) and 1x ABAM (Thermo Fisher-Invitrogen). All
chicken cells (PGCs, ESCs, DF-1 cells, and CEFs) were cul-
tured in an incubator at 37 °C under an atmosphere of 5%
CO, and 60-70% relative humidity.

Table 2 List of siRNA sequences targeting each transcription
factor for knockdown analysis

Target siRNA sequence (5' — 3')

gene Sense Antisense

POU5F3  UGGCUCAAUGAGGCAGAGA  UCUCUGCCUCAUUGAGCCA
SOX2 AACCAAGACCCUGAUGAAG  CUUCAUCAGGGUCUUGGUU
TP53 UCAUGGACCUCUGGAGCAU  AUGCUCCAGAGGUCCAUGA
CEBPA GCGAGGAGGAGGAGGUGA UUCACCUCCUCCUCCUCGC

CEBPB GCGCAAGAGCCGCGACAAA UUUGUCGCGGCUCUUGCGC
CEBPD ACGAGAAGCUGCACAAGAA  UUCUUGUGCAGCUUCUCGU
CEBPG AAAUUAAGCUCCUGACCAA  UUGGUCAGGAGCUUAAUUU
CEBPZ GAGAAAAGCAAGAAGGAAA  UUUCCUUCUUGCUUUUCUC
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Table 3 List of primer sequences used for quantitative real-time
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PCR

Gene Primer sequence (5' — 3)

symbol Forward Reverse

CEBPA CCCACCTGCAGTACCAGATC  TCTTTTTGGATTTGCCGCGG
CEBPB CGCCCGCCTTTAAATCCATG GGGCTGAAGTCAATGGCTCT
CEBPD ~ ACTTCTACGACGCCAAGGTG  CTCTCGTCCTCGTACATGGC
CEBPG CCCACAGCTAACGTGTCAGT  GGACGGGCTCTTCTTTGACA
CEBPZ CGCTGTTCACAGTCTCCACT GGACGCTGTGAGAAAGACCA
SOX2 AAACCGAGCTGAAACCTCCC  TGTGCATCTTCGGGTTCTCC
SOX3 CGGCTCAGCAGACTCGATAC  TCGCCGTGGCTTAAGAACTT
POUSF3  TGAAGGGAACGCTGGAGAGC — ATGTCACTGGGATGGGCAGAC
TP53 CCGTGGCCGTCTATAAGAAA  ACAGCACCGTGGTACAGTCA
NANOG ~ AGTGGCAGAGTCTGGGGTAT ~ ACTACTACTGGCCCTCTCCG
GAPDH  GGTGGTGCTAAGCGTGTTAT ~ ACCTCTGTCATCTCTCCACA

Prediction of putative TF-binding elements

TE-binding sites were predicted by Matlnspector, a
Genomatix program (http://www.genomatix.de/) using
TRANSFAC matrices (vertebrate matrix; core similarity
1.0 and matrix similarity 0.8), and PROMO 3.0, which
uses TRANSFAC version 8.3 (http://alggen.lsi.upc.es/
cgi-bin/promo_v3/promo/promoinit.cgi?dirDB=TF_8.3).
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Small interfering RNA (siRNA)-mediated knockdown of
predicted TFs

siRNAs targeting predicted TFs were designed using siRNA
Target Finder (http://www.ambion.com) (Table 2). Com-
mercially available control siRNA (sense: 5'-CCU ACG
CCA CCA AUU UCG U-3’) was purchased from Bioneer
Corporation (Daejeon, Korea). To validate the knockdown
efficiency of predicted TFs, PGCs or ESCs were transfected
with 50 pmol of siRNAs targeting CCAAT/enhancer-bind-
ing protein (CEBP) genes, including CEBPA, CEBPB,
CEBPD, CEBPG, and CEBPZ, and TP53 using Lipofecta-
mine 2000 (Invitrogen). After siRNA transfection for 24 h,
the knockdown efficiencies of the predicted TFs and the
effects on ¢cNANOG gene transcription were measured by
quantitative reverse-transcription PCR (RT-qPCR).

Analysis of gene expression by RT-qPCR

Total RNA was extracted from test samples using TRIzol
reagent (Molecular Research Center, USA) in accordance
with the manufacturer’s protocol and reverse-transcribed
using the Superscript III First-Strand Synthesis System
(Invitrogen). The PCR mixture contained 2puL of PCR
buffer, 1 uL of 20x EvaGreen qPCR dye (Biotium, Hayward,
CA, USA), 04 puL of 10 mmol/L. dNTP mixture, and 10
pmol each of gene-specific forward and reverse primers
(Table 3). RT-qPCR was performed in triplicate. Relative

cNANOG

150 bp

Exon 3|—| |— 3

Exon 4

5 Exon 1|—\\—| Exon 2
~—

Reverse GSP

0
Marker e/do

+1

GTATCTCCGTGCAGTAGGCGCGTATGCAACCAGCTCACCG
CCAGCAACGGCTGGAGGTGTCGTCCCGACGCGCT
CACCTGGCCATGCCGTCCTACGGCTCTGTTAGGTGCGGAC
ACTACTACTGGCCCTCTCCGGGCAGCATGGATAGCGCGTC
TGCCGCGGAAGCTCCAGCAGCAGACCTCTCCTTGACCACA
GAGCAGAAAACGCCCTGCCACCCAGATGCCTCTCCAGCTT
CTTCCAGCTCTGGGACACTCATTCAGTATACCCCAGACTCT
GCCACTAGCCCTACTGCAGACCACCCATCTCACCGCCCCA
CTTTTGAAGGTTAAGGATAAAGGTGAGAGTGGGACAAGGA
AGGCCAAGAGCCGCACAGCTTTCTCCCAGGAGCAGCTGCA
GACCCTGCACCAGCGGTTTCAGAGCCAGAAGTACCTCAGC

CCCCATCAGATCCGGGAGCTGGCTGCTGCTCGGGCT
Reverse GSP
Fig. 1 Identification of the transcription start site (TSS) of the chicken NANOG (cNANOG) gene by 5"-rapid amplification of cDNA ends (RACE)
analysis. a After performing 5-RACE, the PCR product was analyzed and its size was determined by agarose gel electrophoresis. Scale bar =150
bp. b The 5-RACE product was cloned into the pGEM-T vector and sequenced. The TSS of the cNANOG gene is located 70 bp upstream of the
translation start codon ATG. + 1 indicates the potential TSS of the cNANOG gene
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500 bp —»
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Fig. 2 Promoter variants reduce activity of the chicken NANOG (cNANOG) gene in a cell type-dependent manner. a Schematic diagram of
deletion of the cNANOG gene promoter (—3550/+ 70 bp). Relative luciferase activity in chicken primordial germ cells (PGCs) (b), chicken
embryonic stem cells (ESCs) (c), and DF-1 cells (d). Luciferase activity was normalized against firefly luciferase expression (pNL1.2-Basic) to control
for variation in the transfection efficiency. Significant differences are indicated as ns (no significance), ** P < 0.01, and *** P < 0.001. Error bar
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target gene expression was quantified after normalization
against chicken glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) expression as an endogenous control.

Statistical analysis

Statistical analysis was performed using GraphPad Prism
(GraphPad Software, La Jolla, CA, USA). Significant dif-
ferences between groups were determined by a one-way
analysis of variance with Bonferroni’s multiple compari-
son test and the unpaired t-test. A value of P < 0.05 indi-
cated statistical significance.

Results

Identification of the TSS of the cNANOG gene

To better understand transcriptional regulation of the
c¢cNANOG gene, we first determined the TSS of this gene
by 5'-RACE PCR analysis. A 470bp PCR product was
obtained using a reverse GSP that targeted exon 2 of the
¢NANOG gene (Fig. 1la and b). Sequencing analysis
identified the TSS of the ¢cNANOG gene located 70 bp
upstream of the ATG start codon (Fig. 1b).

Characterization of the cNANOG core promoter in PGCs
and ESCs

To investigate the proximal region of the core promoter of
the ¢cNANOG gene, we generated a series of 5’ deletion

luciferase reporter constructs of the 6— region, which were
randomly designed based on the —3550/+ 70 bp sequence
(Fig. 2a). Luciferase activity derived from differently sized
fragments of the cNANOG promoter was examined in
PGCs, ESCs, and DF-1 cells transfected with the constructs
for 24 h using Lipofectamine 2000. Luciferase activity was
4-fold higher in PGCs transfected with the — 3550/+ 70 bp
fragment than in PGCs transfected with the — 250/+ 70 bp
fragment (Fig. 2b). On the other hand, the —250/+ 70 bp
fragment did not exhibit luciferase activity in ESCs (Fig.
2¢). None of the cNANOG promoter fragments were ac-
tive in DF-1 cells (Fig. 2d). These results suggest that
transactivation level of the complete promoter (- 3550/+
70 bp sequence) was similar between PGCs and ESCs but
c¢cNANOG transcription was differentially regulated in
PGCs and ESCs by the proximal enhancer.

POUS5F3 and SOX2 regulate constitutive expression of
cNANOG in PGCs

To further examine PGC-specific ¢ctNANOG promoter
activity and binding to the proximal enhancer, we gener-
ated four constructs harboring fragments of the — 250/+
70 bp region of the cNANOG promoter via deletion of
the 5" upstream region. Among the four constructs, the -
210/+70bp, -170/+70bp, and - 130/+70bp fragments
still showed promoter activity in PGCs, while the — 69/+ 70
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Fig. 3 Verification of the proximal enhancer of the chicken NANOG (cNANOG gene) in chicken primordial germ cells (PGCs). a-b Schematic
diagram of the constructed cNANOG promoter vectors and luciferase activity in PGCs (a) and DF-1 cells (b). ¢ Prediction of transcription factor
(TF)-binding sites in the cNANOG promoter region located from — 250 to + 70 bp. d Multiple alignment of the putative cNANOG proximal
enhancer with transcriptional regulatory elements of NANOG genes from mouse, rat, human, cattle, sheep, pig, and chicken. Prediction of mostly
conserved POU5F3- and SOX2-binding sites in chicken. e Mutation analysis of putative POU5F3- and SOX2-binding sites in PGCs. f Luciferase
activity of the —130/+ 70 bp cNANOG promoter fragment compared with that of mutated promoter constructs. Significant differences are
indicated as ** P<0.01 and *** P<0.001. Error bar represent the SEs for five replicate reactions

Relative Luciferase Units

bp fragment did not (Fig. 3a). None of the cNANOG pro-
moter fragments were active in DF-1 cells (Fig. 3b). These
results suggest that a positive transcriptional regulatory
element is located between — 130 and - 69 bp in PGCs.
Based on the findings regarding ¢cNANOG promoter
activity described above, we predicted TFs with binding
sites located between — 130 and - 69 bp of the cNANOG
promoter using two software programs (PROMO and
MatlInspector). Several TF-binding sites, including AIRE-,
NFY-, CMYB-, ISL1-, E2F-, and OSNT (OCT4/ POU5F3,
SOX2, NANOG, and TCF3)-binding sites, were identified in
this region (Fig. 3c). Sequence alignment of this

c¢cNANOG promoter region from six vertebrate species
showed that the POUSF3- and SOX2-binding regulatory
elements are highly conserved in mammalian species
(Fig. 3d). To determine the functional contributions of
the POUSF3- and SOX2-binding sites to constitutive
expression of ¢NANOG, site-directed mutagenesis,
which can disturb the recruitment of TFs, was
performed (Fig. 3e). Mutation of the POUSF3/SOX2-
binding sites in the 200bp fragment (- 130/+ 70 bp)
significantly reduced relative luciferase activity in PGCs.
Moreover, relative luciferase activity was reduced sig-
nificantly more by mutation of the SOX2-binding site
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alone than by mutation of the POUSF3-binding site  130/+ 70 bp fragments than in PGCs transfected with
alone in PGCs (Fig. 3f). Taken together, these results the —250/+ 70 bp fragment (Fig. 3a). These results sug-
suggest that POUSF3 and SOX2 play a role in transcrip-  gest that a negative transcriptional regulatory element is
tion of cNANOG by directly binding to the 5" upstream  located between - 250 and —210bp. To investigate the

promoter region in PGCs. suppression of cNANOG promoter activity, we predicted
TFs that have binding sites within this region using two
TP53 suppresses cNANOG gene expression in PGCs software programs (PROMO and Matlnspector) (Fig. 4a).

Luciferase activity was at least 3-fold higher in PGCs Among the predicted TFs, TP53 is a suppressor of
transfected with the — 210/+ 70 bp, — 170/+ 70 bp, and -  NANOG transcription, while ZIC2/3 and CEBP are

ZIC2 CEBP FACB Zic2/3
cNANOG ) r/l H 2
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\ /
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L 1 | 1 |
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b
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C

cNANOG promoter in cPGCs
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T T T T
0 5 10 15 20 25

Relative Luciferase Units
Fig. 4 Negative regulation of chicken NANOG (cNANOG) gene expression by TP53 in chicken primordial germ cells (PGCs). a Prediction of
transcription factor (TF)-binding sites in the cNANOG promoter region from — 250 to =210 bp. b Mutation analysis of putative TP53-binding sites
in PGCs. ¢ Luciferase activity of pNL-NANOG — 250/+ 70 and TP53-binding site-mutated (pNL-NANOG — 250/+ 70 TP53 mutation) vectors. pNL1.2-
Basic was used as a control. Significant differences are indicated as ns (no significance) and *** P < 0.001. Error bar represent the SEs for five
replicate reactions
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Fig. 5 Verification of the proximal enhancer of the chicken NANOG (cNANOG) gene in chicken embryonic stem cells (ESCs). a-b Schematic
diagram of the constructed cNANOG promoter vectors and luciferase activity in ESCs (@) and DF-1 cells (b). ¢ Prediction of transcription factor
(TF)-binding sites in the cNANOG promoter region from — 442 to — 250 bp. d Mutation analysis of putative CCAAT/enhancer-binding protein
(CEBP)-binding sites in ESCs. e Luciferase activity of the —442/+ 70 bp ¢tNANOG promoter fragment compared with that of the mutated promoter.
Significant differences are indicated as ns (no significance) and *** P < 0.001. Error bar represent the SEs for five replicate reactions

positive regulators of NANOG transcription [28, 40, 41].
We further examined whether TP53 affects ctNANOG
promoter activity in PGCs by performing site-directed
mutagenesis and comparing the mutant with the wild-
type —250/+70bp fragment (Fig. 4b). Deletion of the
TP53-binding site in the cNANOG promoter region sig-
nificantly increased luciferase activity in PGCs (Fig. 4c).
These results demonstrate that TP53 suppresses ¢NA-
NOG transcription in PGCs.

CEBP transactivates the cNANOG promoter in ESCs

To further investigate the potential transcriptional regu-
latory elements in ESCs, we generated four constructs
harboring fragments of the —442/+70bp region of the
¢NANOG promoter via deletion of the 5’ upstream re-
gion. Among the four constructs, the —407/+ 70 bp, -
377/+70bp, and — 312/+ 70 bp fragments exhibited sig-
nificantly reduced cNANOG promoter activity in ESCs
(Fig. 5a). None of the ¢cNANOG promoter fragments
were active in DF-1 cells (Fig. 5b). These results suggest
that a positive transcriptional regulatory element is
located between — 442 and - 407 bp in ESCs.

We analyzed the -442/+70bp fragment using two
software programs (PROMO and Matlnspector) to iden-
tify important TF-binding sites that maintain the basal
activity of the cNANOG gene in ESCs. Only a CEBP-
binding site was identified between -442 and - 407 bp
(Fig. 5¢). To examine the effect of the CEBP-binding site
on promoter activity, we constructed vectors containing
mutations of this site in the — 422/+ 70 bp fragment (Fig.
5d). Mutation of the CEBP-binding site in the —442/+
70bp region dramatically reduced relative luciferase
activity in ESCs compared with the wild-type construct
of the same region (Fig. 5e). Taken together, these re-
sults suggest that CEBP positively regulates transcription
of ctNANOG by directly binding to the 5" upstream pro-
moter region in ESCs.

Effects of predicted TFs on cNANOG gene transcription

To confirm that the predicted TFs are expressed in
PGCs and ESCs, we conducted RT-qPCR using RNA
prepared from PGCs, ESCs, DF-1 cells, and CEFs. Ex-
pression of chicken CEBP genes (CEBPA, CEBPB,
CEBPD, CEBPG, and CEBPZ) was significantly higher in
ESCs than in other cells. By contrast, expression of
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POUSF3 and SOX2/3 was significantly higher in PGCs
and ESCs than in DF-1 cells and CEFs. Expression of
POUSF3 and SOX3 did not differ between PGCs and
ESCs, while SOX2 was significantly upregulated in PGCs.
Additionally, expression of TP53 was significantly higher
in PGCs than in other cells (Fig. 6).

We further examined whether these TFs affect the
transcription of ¢tNANOG in PGCs and ESCs using a
siRNA-mediated knockdown assay. Knockdown of TP53
significantly increased ctNANOG expression in PGCs, in-
dicating that TPS53 decreases ¢cNANOG transcription
(Fig. 7a). Knockdown of CEBPA, CEBPB, CEBPD,
CEBPG, and CEBPZ significantly decreased ¢cNANOG
gene expression in ESCs (Fig. 7b—f). We also examined
the luciferase activities driven by ¢cNANOG promoter
containing wild type binding sites after the knockdown
of predicted TFs in PGCs and ESCs (Fig. 8). Knockdown
of POUSF3 and SOX2 significantly reduced the activity
of the cNANOG promoter fragment (- 130/+ 70 bp) con-
taining wild type binding sites, whereas, knockdown of
TP53 is significantly increased the activity of the cNA-
NOG promoter - 250/+ 70 bp fragment in PGCs (Fig. 8a
and b). Knockdown of CEBPA, CEBPB, CEBPD, CEBPG,
and CEBPZ in ESCs dramatically reduced the activity of
the cNANOG promoter - 442/+ 70 bp fragment contain-
ing wild type CEBP binding site (Fig. 8c). These results
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indicate that these TFs control transcription of cNANOG
by directly interacting with its promoter in a cell type-
specific manner.

Discussion
The homeodomain TF NANOG is important to maintain
pluripotency in mammalian pluripotent cells during em-
bryonic development [17]. Therefore, many studies have
been conducted to determine how NANOG expression
is regulated by core factors in mammalian stem cells [20,
22, 23]. In addition, its expression is required for the for-
mation of germ cells [30] and maintained in proliferating
PGCs during the migration [42]. It has been recently re-
ported that regulatory elements of NANOG transcrip-
tion in PGCs are different from the ES cells in mice but
key regulatory factors have not yet been identified [43].
In chicken, NANOG was also important for maintaining
the pluripotency in PGCs and ESCs [31, 35, 38, 44].
However, the molecular mechanisms that regulate tran-
scription of the NANOG gene in chicken PGCs and
ESCs remain unclear. In this regard, we characterized
the structure of cNANOG and analyzed its promoter ac-
tivity in chicken PGCs and ESCs.

We successfully transcribed ctNANOG under the con-
trol of the proximal regulatory region located within
130 bp upstream of the TSS in PGCs. Furthermore, we
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Fig. 6 Quantitative expression analysis of predicted transcription factors (TFs) in various cell types. Expression of predicted TFs in chicken
primordial germ cells (PGCs), embryonic stem cells (ESCs), DF-1 cells, and chicken embryonic fibroblasts (CEFs) was analyzed by
quantitative reverse-transcription PCR (RT-gPCR). Error bars indicate the standard deviation of triplicate analyses. Significant differences are
indicated as ns (no significance), * P < 0.05, ** P < 0.01, and *** P<0.001
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J

identified the regulatory region of ¢cNANOG located
within 442 bp upstream of the TSS in ESCs. Moreover,
we showed that TP53 suppresses cNANOG transcription
in PGCs. These results suggest that the cNANOG pro-
moter functions in a cell type-specific manner. Similarly,
Yeom et al. reported that the mouse Oct4 gene contains
two separate regulatory elements [45]. The distal regula-
tory element is specifically active in mouse ESCs and
EGCs, while the proximal enhancer is active in the epi-
blast. Thus, transcription of the mouse Oct4 gene is reg-
ulated in a stage-specific manner. Our findings indicate
which elements are critical for gene expression in PGCs.
This is the first report of a transcriptional regulatory fac-
tors of NANOG that is differentially active in a cell type-
specific manner in chicken.

Many researchers have studied mammalian ESCs to
determine which core factors regulate the NANOG gene.
Most of the positive regulation of NANOG transcription
has been discovered in the proximal region, which en-
compasses OCT3/4 and SOX2 in mouse ESCs. This re-
gion is strongly conserved in various mammalian species
[20, 23]. Mutation of Octamer- and Sox-binding sites
dramatically reduces transcription of NANOG.

Therefore, OCT3/4 and SOX2 play an important role in
regulation of the NANOG gene promoter in mammalian
ESCs [23]. Also, these TFs such as POUSF3, SOX2/3,
KLF2, and SALL4 are highly expressed in chicken ES
cells and PGCs [46]. According to the comparison of
genomic sequence elements, core pluripotency factors of
the mouse are not conserved with chicken [47]. In the
present study, mutation of POUSF3- and SOX2-binding
sites in the proximal region significantly reduced cNA-
NOG promoter activity in PGCs. Although the DNA se-
quences of POUSF3 and SOX2, which are recognized by
mouse core pluripotency factors, are not well conserved
in chicken, POUSF3 and SOX2 are key regulators of
c¢cNANOG transcription. Further investigation by the
electrophoretic mobility shift assay and chromatin im-
munoprecipitation sequencing is required to determine
the core TFs in chicken PGCs.

Programmed death of PGCs is essential to remove
abnormal, misplaced, and excess cells during PGC devel-
opment and this is important to establish the next gen-
eration. In Drosophila melanogaster, TP53 is reportedly
involved in elimination of excess PGCs during PGC de-
velopment [48] and, mouse PGCs are regulated by p53
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to process the PGCs apoptosis [49]. In addition, TP53
binds to the NANOG promoter and suppresses NANOG
expression for maintenance of genome stability in ESCs
[28]. Interestingly, our results showed that the TP53-
binding site negatively controlled NANOG transcription
in chicken PGCs. Therefore, we propose that TP53 plays
important roles in the regulation of NANOG transcrip-
tion to maintain genome stability in PGCs.

CEBPB interacts with p300 to modulate histone acetyl-
ation [50], and p300 is a co-activator that binds to
NANOG for maintenance of pluripotency in ESCs [51].
In our study, CEBPA, CEBPB, CEBPD, CEBPG, and
CEBPZ were significantly upregulated in chicken ESCs.

In addition, knockdown of these TFs dramatically de-
creased transcription of ¢NANOG in chicken ESCs.
These results suggest that CEBP in chicken ESCs partici-
pate in regulation of cNANOG transcription by directly
interacting with putative binding sites in the ¢cNANOG
promoter.

As described above, transcription regulation of c¢NA-
NOG is conserved in mammals, although DNA se-
quences of regulation factors differ between chicken and
mammals. Typically, mammalian PGCs can be induced
by cell signaling [52]. Interestingly, mouse Nanog is key
regulator of PGCs-like cells independent of BMP4 and
Wt signals by activating the expression of germ cell-
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Fig. 9 A model illustrating regulation of chicken NANOG (cNANOG) gene transcription in chicken primordial germ cells (PGCs) and embryonic
stem cells (ESCs). cNANOG gene expression requires transcriptional trans-regulatory elements that are positively controlled by POU5F3 and SOX2
and negatively controlled by TP53 in PGCs. On the other hand, CCAAT/enhancer-binding protein (CEBP) positively regulates cNANOG gene

specific TFs [33]. On the other hand, chicken germ cells
may be specified by maternally inherited factors like
VASA and DAZL in germ plasm [53, 54]. Recently, the
epigenetic regulation of NANOG in chicken PGCs has
been investigated by our group to understand the mo-
lecular mechanisms involved in the specification of germ
cells [34]. However, the regulation of cNANOG in
chicken germ cell specification is still unclear. In this
study, we shown that chicken NANOG has differential
regulatory roles in PGCs and ESCs, even though cNA-
NOG promoter region sharing the common transcrip-
tion factor binding sites. These finding provided insights
into germ cell and stem cell-specific transcriptional
regulatory mechanisms.

Conclusion

This study demonstrated that the proximal regulatory
region of the cNANOG gene differs between PGCs and
ESCs. We showed that the cNANOG gene is positively
regulated by POUSF3 and SOX2 and negatively regulated
by TP53 in PGCs, while it is positively regulated by
CEBP in ESCs. Collectively, these findings aid under-
standing of transcriptional regulation of the ¢cNANOG
gene in PGCs and ESCs (Fig. 9).
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