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Abstract 

Background:  Groundwater quality is among the most important environmental issues as a result of heavy metals 
contamination from anthropogenic sources. Concentrations of heavy metals in hand-dug wells from Ejisu-Juaben 
Municipality were studied to understand the levels of heavy metals and their source of pollution.

Results:  The results show that the average abundance of heavy metal concentration in the groundwater samples 
are in the order: Fe > Zn > Mn > Pb > Cu > Cd. The non-carcinogenic risk indicates that the groundwater is safe and 
therefore poses no health risks; however, the carcinogenic risk exceeds the acceptable limit of 10−6. Principal compo-
nent analysis extracted two components, which explained 64.24 % of the total variance. Cd suggests that 63 % of the 
samples are highly polluted (Cd > 3), whereas HPI indicates that all the samples are above the critical limit (HPI > 100).

Conclusion:  Our findings concluded that lithogenic and anthropogenic activities are the main source of contamina-
tion influencing the water quality.

Keywords:  Degree of contamination, Anthropogenic, Heavy metal evaluation index, Hand-dug wells, Heavy metal 
pollution index, Non-carcinogenic
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Background
Groundwater quality is important to human health, agri-
culture, aquaculture and industry (Vanloon and Duffy 
2005). In the last decades, groundwater resource has 
become the potential source of domestic water supply in 
Ghana and the world at large (Hynds et al. 2014). Inter-
estingly, many public health surveys and water quality 
analysis has shown that groundwater is not immune to 
contaminants such as waterborne pathogens, toxic ele-
ments (Asamoah and Amorin 2011).

Over the last few years, surface water and groundwa-
ter resources are among the most important environ-
mental issues due to heavy metals contamination and 
human industrial activities (Vodela et  al. 1997; Öztürk 
et al. 2009; Marcovecchio et al. 2007; Khodabakhshi et al. 
2011; Ghasemi et  al. 2011). Some of the heavy metals 
are essential for growth, development and health, whiles 

others are categorized as toxic species on living organ-
isms (Underwood 1956). Heavy metal contamination has 
become a significant problem in several community and 
agricultural areas over the years due to the application 
of commercial agrochemicals on agricultural production 
(Vodela et  al. 1997; Rattan et  al. 2005). However, heavy 
metals originating from anthropogenic sources have been 
found in all components of the environment (Idris et al. 
2007; Idris 2008; Ayni et al. 2011). In recent years more 
attention has been devoted to pollutants in the environ-
ment due to increase in anthropogenic contribution by 
heavy metals (Edmund et al. 2003; Marengo et al. 2006). 
Heavy metals can eventually dispersed and accumulated 
in the soil as well as surface and groundwater and may 
therefore impact adverse human health effect to living 
organisms (Rashed 2010; Chotpantarat et al. 2011; Chot-
pantarat and Sutthirat 2011; Taboada-Castro et al. 2012).

Groundwater quality, water type and sources of con-
taminants have been explored using Piper, Stiff plots and 
multivariate statistical techniques (Affum et  al. 2015). 
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Multivariate statistical techniques has extensively been 
used in literature to characterise and assess groundwa-
ter sources (Hussain et  al. 2008; Shihab and AbdulBaqi 
2010; Mahmood et al. 2011; Okogbue et al. 2012; Narany 
et  al. 2014; Masoud 2014; Uddameri et  al. 2014; Yadav 
et al. 2014; Asare-Donkor et al. 2015). However, the use 
of multivariate statistical technique and pollution evalu-
ation index to assess the safety and quality of hand-dug 
well water in the Ejisu-Juaben Municipality is lacking.

Ejisu-Juaben Municipality is an agricultural region 
and have a high density of farmers that uses agrochemi-
cals for producing various agricultural products, such as 
rice, cassava, chili and rubber trees (Anornu et al. 2009). 
The main chemically treated water is obtained from the 
Barekese Dam, which is produced by the Ghana Water 
Company Limited (GWCL) and distributed to individual 
households through pipes in the peri-urban communities 
of Ejisu. The demand for treated water by Ejisu-Juaben 
Municipality has increased over the years without any 
corresponding rise in quantity and quality. As a result of 
the above problems, individual households have resulted 
to the use of hand-dug wells as an alternative source of 
water supply, but the awareness of the health implica-
tions associated with the use of water from hand-dug 
wells have not been considered. This work is aiming to 
study the suitability and health risk associated with heavy 
metal contamination of groundwater and surface water 
for drinking purposes in the Ejisu-Juaben Municipality. 
The study will also employ multivariate statistical tech-
nique and pollution evaluation indices as complementary 
tool to identify the various possible sources of pollution 
that influence the water quality.

Methods
Study area
Geographically, Ejisu–Juaben Municipal Assembly 
lies within Latitudes 1°15′N and 1°45′N and Longitude 
6°15′W and 7°00W. Ejisu-Juaben municipal area is one of 
the 27 administrative districts of Ashanti Region. Ejisu is 
the main capital of the municipality. The municipality has 
4 main urban settlements namely: Ejisu, Juaben, Besease 
and Bonwire. The municipality can boast of about 88 
communities. Ejisu stretches over an area of 637.2 km2 
with population around 143,762. The municipality lies in 
the central part of the Ashanti Region and shares bound-
aries with six Districts in the Region. To its north east and 
west are Sekyere East and Afigya Kwabre, respectively, 
to the south; Bosomtwi and Asante Akim South, to its 
east; Asante Akim North and to the west; Kumasi metro-
politan assembly. The mean monthly temperatures vary 
between 20 °C in August and 32 °C in March. The relative 
humidity ranges from 65 % in January to 85 % in August. 
The area usually experiences a wet semi-equatorial 

climate. Majority of the rainfall is from March to July and 
again from September to the later part of November, with 
a mean of 1200 mm which is ideal for minor season crop-
ping as a result of climatic changes and seasonal drought. 
Groundwater is an important water resource for drink-
ing, agriculture, and industrial uses in the study area. The 
area is characterized by rural setting and the major occu-
pation of the people is agriculture. The main food crops 
grown are plantain, cassava, maize and cocoyam. One 
of the major cash crops grown includes cocoa, which is 
the driving force of the economy. Oil palm is also another 
cash crop that is widely grown in the district.

Sampling
All solvents and reagents used were of high analytical 
grade supplied by BDH Chemical Ltd, UK. Double-dis-
tilled deionized water was used throughout the experi-
ments. A total of nineteen (19) samples were obtained 
from the Ejisu-Juaben Municipality. The sampling sta-
tions are shown in Fig.  1. The sampling standard meth-
ods prescribed by APHA (2005) were followed carefully 
for the groundwater collection and analytical techniques. 
Samples were collected in 1.5 l high-density polyethylene 
(HDPE) containers. Prior to sampling, the bottles were 
rinsed with the water to be sampled and the samples 
were preserved by acidifying to pH  <2 with HNO3 and 
kept at a temperature of 4 °C until analysis.

Heavy metal analysis
The preserved sample was taken out from the refrigera-
tor and kept at room temperature until the attainment of 
thermal equilibrium. Prior to AAS analysis, water sam-
ples were digested with 5 mL of concentrated HNO3(aq). 
The mixture was heated on a hot plate and filtered using 
Whatman filter paper into a volumetric flask. Distilled 
water was added to mark to the top the volumetric flask. 
The heavy metals (Mn, Pb, Fe, Cd, Cu and Zn) was ana-
lysed using atomic Absorption Spectrophotometer (AAS) 
(VARIAN SpectrAA 220) with air acetylene flame.

Quality assurance and quality control
Replicate blanks and reference materials, NIST 1640(a) 
(USA: National Institute of Standards and Technol-
ogy) were used for the method of validation and qual-
ity control. Replicate analysis of these reference 
materials showed good accuracy (relative standard devi-
ation, RSD, ≤3  %) and recovery rates ranged from 94.5 
to 105.8  %. The concentrations of heavy metal in the 
groundwater were reported in mg/L.

Pollution evaluation indices
Generally, pollution indices are estimated for a specific 
use of the water under consideration. The heavy metal 
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pollution index (HPI), heavy metal evaluation index (HEI) 
and degree of contamination (Cd) were used to evalu-
ate the drinking water quality. The HPI and HEI meth-
ods provide an overall quality of the water with regard to 
heavy metals using the ratios of monitored values of the 
desired number of parameters and the maximum admis-
sible concentrations of the respective parameters. In the 
Cd method, the quality of water is evaluated by compu-
tation of the extent of contamination and computed as 
the sum of the contamination factors of each component 
exceeding the upper permissible limit. Therefore, the Cd 
summarizes the combined effects of a number of quality 
parameters regarded as unsafe to household water.

Heavy metal pollution index
The HPI method was developed by assigning a rating or 
weightage (Wi) for each chosen parameter and selecting 
the pollution parameter on which the index was to be 
based. The rating is an arbitrary value between 0 and 1 
and its selection reflects the relative importance of indi-
vidual quality considerations. Wi is defined as inversely 
proportional to the recommended standard (Si) for each 
parameter (Horton 1965; Reddy 1995; Mohan et al. 1996). 
In this study, the concentration limits (i.e., the highest 
permissible value for drinking water (Si) and maximum 
desirable value (Ii) for each parameter) were taken from 
the WHO (2011) standard. The uppermost permissive 

Fig. 1  Map of the study area with sampling locations
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value for drinking water (Si) refers to the maximum 
allowable concentration in drinking water in absence of 
any alternate water source. The desirable maximum value 
(Ii) indicates the standard limits for the same parameters 
in drinking water. According to Mohan et al. (1996), HPI 
is determined according to Eq. (1):

where Qi and Wi are the sub-index and unit weight of 
the ith parameter, respectively, and n is the number of 
parameters considered. The sub-index (Qi) is calculated 
according to Eq. (2):

where Mi, Ii, and Si are the monitored heavy metal, ideal, 
and standard values of the ith parameter, respectively.

Heavy metal evaluation index
Heavy metal evaluation index HEI gives an overall qual-
ity of the water with respect to heavy metals (Edet and 
Offiong 2002) and is expressed using Eq. (3):

where Hc and Hmac are the monitored value and maxi-
mum admissible concentration (MAC) of the ith param-
eter, respectively.

Degree of contamination (Cd)
The contamination index (Cd) summarizes the combined 
effects of several quality parameters considered harmful 
to domestic water (Backman et al. 1997) and is calculated 
as follows:

where Cfi; CAi and CNi represent contamination factor, 
analytical value and upper permissible concentration of 
the ith component, respectively. N denotes the ‘norma-
tive value’ and CNi is taken as MAC.

Risk assessment
Risk assessment methods and parameters previously 
reported by Wongsasuluk et al. (2014) were used in the 
present study. Risk assessment is defined as the process 

(1)HPI =

∑n
i=1WiQi∑n
i=1Wi

(2)Qi =

n∑

i=1

{Mi − Ii}

Si − Ii
× 100

(3)HEI =

n∑

i=1

Hc

Hmac

(4)Cd =

n∑

i=1

Cfi

(5)whereCfi =
CAi

CNi

− 1

of estimating the probability of occurrence of an event 
and the probable magnitude of adverse health effects on 
human exposures to environmental hazards over a speci-
fied time period (NRC 1983; Kolluru et al. 1996; Pausten-
bach 2002; Wongsasuluk et  al. 2014). Risk assessment 
consists of hazard identification, exposure assessment, 
dose response and risk characterization (Lee et al. 2005). 
According to Lim et  al. (2008), two toxicity risk indices 
reported are the slope factor (SF) for carcinogen risk 
characterization and the reference dose (RfD) for non-
carcinogen characterization (Table 1).

Siriwong (2006) reported the estimations of the magni-
tude, frequency and duration of human exposure in the 
environment as average daily dose, for each water sample 
as:

All the parameters in Eq.  (6) have been defined in 
Table 2.

The health risk was assessed in relation to its non-car-
cinogenic as well as carcinogenic effects based on the cal-
culation of ADD estimates and defined toxicity according 
to the following relationships (USEPA IRIS 2011; Wong-
sasuluk et al. 2014). The non-carcinogenic was computed 
as:

(6)ADDi =
(Ci × IR ×EF ×ED)

(BW ×AT)

(7)Hazard quotient (HQ) =
ADD

RfD

Table 1  The toxicity responses (dose response) to  heavy 
metals as  the oral reference dose (RfD) (USEPA IRIS 2011; 
Wongsasuluk et al. 2014)

Heavy metals Oral RfD (mg/kg/day)

Cd 5.0 × 10−4

Cu 4.0 × 10−2

Pb 3.5 × 10−3

Zn 0.3

Fe 0.7

Mn 0.014

Table 2  Input parameters to  characterize the ADD value 
(Wongsasuluk et al. 2014)

Exposure parameters Symbols Units Value

Concentration of water C mg/L Table 3

Ingestion rate IR L/day 2.2

Exposure frequency EF Days/year 365

Exposure duration ED Years 70

Body weight BW Kg 70

Average time AT Years 25,550 days
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The risk assessments of a mixture of chemicals, the 
individual HQs are summed to form hazard index (HI):

According Lim et  al. (2008) an HI/HQ  >1 means an 
unacceptable risk of non-carcinogenic effects on health, 
while HI/HQ  <1 means an acceptable level of risk. 
Table  2 shows the principal exposure factors that have 
been taken into account to carry out the risk assessment 
calculations.

Chronic daily intake (CDI) in the present study was 
calculated using Eq. (4) modified from Muhammed et al. 
(2011); Wu et al. (2009) and De Miguel et al. (2007).

where, Ci, DI, and BW represent the concentration 
of heavy metal in the water samples (mg/L), average 
daily intake rate (2.2 L/day), and body weight (70  kg), 
respectively.

Statistical analysis
IBM Statistical Package for the Social Sciences (SPSS) ‘20 
was used for the data analysis. Principal component anal-
ysis was used to identify the possible sources of heavy 
metals. Factor analysis was performed by varimax rota-
tion (Howitt and Cramer 2005), which minimized the 
number of variables with a high loading on each compo-
nent, thus facilitating the interpretation of PCA results. 
Cluster analysis was applied to identify groups of samples 
with similar heavy metal contents (Panda et  al. 2006). 
CA was formulated according to the Ward-algorithmic 
method, and the rescaled linkage distance was employed 
for measuring the distance between clusters of similar 
metal contents. R-mode CA was used to determine the 
association of different water quality parameters and pol-
lutant sources. Pearson’s correlation matrix was also used 
to identify the elements’ relationship.

(8)Hazard index (HIi) =
∑

HQi

(9)CDI = Ci×
DI

BW

Results and discussion
Descriptive statistics related to the heavy metal concen-
trations in the Ejisu-Juaben municipality are presented 
in Table  3. Coefficient of variation (CV) was the most 
important factor in describing the variability of ground-
water properties. Data was ranked according to amount 
of variation as low variability (CV  ≤  15  %), moderate 
variability (CV 15–35 %), or high variability (CV, > 35 %) 
(Wilding 1985). The CV values in the groundwater 
ranged from 0 to 2 %. All the heavy metals in the study 
area were found to exhibit low variability. These low val-
ues of CV indicate a homogenous distribution of these 
metals in the corresponding sampling points and may 
increase the effect of non-point sources. The concentra-
tions of these heavy metals are illustrated in the box plot 
(Fig.  2). In Fig.  2, iron has relatively large inter-quartile 
range than the other metals. The mean concentration 
of heavy metals in the groundwater samples follows the 
order: Fe > Zn > Mn > Pb > Cu > Cd.

The concentration of lead in groundwater ranged 
from 0.000 to 0.040  mg/L with a mean concentration 
of 0.010  mg/L (Table  3). About 26  % of the groundwa-
ter samples contained lead concentration above the lev-
els permitted by WHO (2011). The main sources of lead 
contamination are industrial discharges from smelters, 
battery manufacturing units, run off from contaminated 
land areas, atmospheric fall out and sewage effluents. 
The levels of Pb from this study were lower than study 
reported by Kortatsi (2007), Wassa West district, Addo 
et  al. (2013); Nassef et  al. (2006), Sadat Industrial City. 
On the other hand the results in this study generally 
agree with those reported by Wongsasuluk et al. (2014), 
Ubon Ratchathani province, Thailand.

The concentration of iron in the groundwater ranged 
from 0.002 to 0.568  mg/L, with a mean of 0.166  mg/L. 
The maximum allowable limit of iron concentration in 
groundwater is 0.3 mg/L as per WHO (2011) classifica-
tion. About 89  % of the samples were within the WHO 
permitted limit. Under reducing conditions, the solubility 

Table 3  Descriptive statistics of  heavy metals concentrations in  groundwater obtained from  Ejisu-Juaben Municipality 
(n = 19)

All results are in mg/L

SD standard deviation

Min. Max. Mean SD Variance WHO (2011)

Mn 0.005 0.020 0.012 0.006 0.000 0.5

Fe 0.002 0.568 0.166 0.149 0.022 0.3

Cu 0.003 0.019 0.010 0.005 0.000 2.0

Pb 0.000 0.040 0.010 0.011 0.000 0.01

Zn 0.000 0.047 0.014 0.012 0.000 3.0

Cd 0.000 0.002 0.000 0.001 0.000 0.003
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of Fe-bearing minerals increase in water, leading to the 
enrichment of dissolved iron in groundwater (Applin and 
Zhao 1989; White et al. 1991). Chronic consumption of 
water with iron overload may results in fatigue, weight 
loss, joint pains and ultimately heart disease, liver prob-
lems and diabetes (US-CDC 2011). Study done by Ansa-
Asare et al. (2009) in Adidome district indicated that the 
levels of Fe were higher compared to this study. However, 
the present study generally agrees with those reported by 
Tay and Kortatsi (2007).

Cadmium concentration in the groundwater ranged 
from 0.000 to 0.002 mg/L with a mean concentration of 
0.002 mg/L. The mean concentrations of cadmium were 
within the WHO guideline of 0.003  mg/L. Exposure 
to higher concentration of Cd may cause kidney dam-
age as well as producing acute health effects (Momodu 
and Anyakora 2010). The mean concentration of Cd in 
this study was comparable to reports by Kortatsi (2007), 
Wassa West district; Asare-Donkor et al. (2015), Obuasi 
and Kuma (2004), Tarkwa.

In the study area, copper concentration ranged from 
0.003 to 0.019  mg/L with a mean concentration of 
0.010  mg/L. Zinc concentration in groundwater of the 
study area ranged from 0.000 to 0.047 mg/L with a mean 
concentration of 0.014  mg/L. Manganese concentration 
in the groundwater ranges from 0.005 to 0.020  mg/L 
with a mean value of 0.012 mg/L. The concentrations of 
manganese, copper and zinc in groundwater are within 
the maximum allowable limit as per WHO standard. 
Cadmium, manganese, copper and zinc are likely to be 
derived from the natural water–rock reaction processes 
since none of these metals exhibited concentration values 
outside the WHO (2011) limits. Study done by Nkan-
sah et al. (2010) and Apau et al. (2014) indicated that the 
levels of Mn and Zn were comparable to this study. On 

the other hand, the levels of Zn and Mn from this study 
were higher than the study by Li et  al. (2014), Henan-
Liaocheng Irrigation Area; Zhang et  al. (2013), Yellow 
River and Buschmann et al. (2008), Vietnam.

Pollution evaluation indices of water
The results of pollution evaluation indices (HPI) are pre-
sented in Table 4. The HPI values ranged from 319.20 to 
688.05, with a mean of 374.47. The HPI results showed 
that all the samples were above the critical limit of 100 
proposed for drinking water by Prasad and Bose (2001). 
The degree of contamination (Cd) was used as reference 
of estimating the extent of metal pollution (Rubio et  al. 
2000). The Cd values in the groundwater ranged from 
0.26 to 26.80, with a mean of 7.79 (Table  4). According 
to Edet and Offiong (2002) and Backman et  al. (1997), 
Cd may be classified into three categories as follows: low 
(Cd < 1), medium (Cd = 1–3) and high (Cd > 3) (Edet and 
Offiong 2002; Backman et  al. 1997). As per the above 
classification, 21 % of the samples were classified as low 
zone, 16 % as medium zone and 63 % as high zone. The 
Cd and HPI indices show that most of the samples were 
highly polluted. The HEI values ranged from 2.25 to 29.88 
with a mean value of 10.08. The proposed HEI criteria 
are as follows: low (HEI  <  10), medium (HEI =  10–20) 
and high (HEI > 20). The HEI results show that 58 % of 

Fig. 2  Boxplot of log of trace metals concentration of hand-dug 
wells in Ejisu-Juaben Municipality. The white circles represent outliers

Table 4  Water pollution indices

Sample number Cd HPI HEI

1 26.80 461.23 29.88

2 6.47 322.45 8.51

3 10.00 321.52 12.14

4 5.87 322.90 8.09

5 8.47 319.55 10.82

6 8.73 327.39 11.07

7 0.42 325.25 2.43

8 2.60 319.20 3.93

9 12.87 515.63 15.88

10 0.80 321.65 2.25

11 7.00 324.37 9.76

12 3.00 319.50 4.78

13 4.24 688.05 6.25

14 0.26 334.10 2.94

15 11.72 527.13 14.75

16 3.27 320.65 5.85

17 19.00 344.47 21.67

18 11.80 325.41 14.28

19 4.73 321.00 6.19

Maximum 26.80 688.05 29.88

Minimum 0.26 319.20 2.25

Mean 7.79 374.47 10.08
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samples are within the low zone, 32  % fall within the 
medium zone and 10 % fall within the high zone. Cd, HPI 
and HEI values show similar trends at various sampling 
points (Fig. 3). 

Correlation study
Correlation analysis establish the relationships between 
heavy metal characteristics of water samples, which can 
reveal the sources and pathways of heavy metals that 
generated the observed water compositions (Azaza et al. 
2011; Parizi and Samani 2013). A high correlation coef-
ficient (near 1 or 1) means a good positive relationship 
between two variables and its value around zero means 
no relationship between them at a significant level of 
p < 0.05 (Varol and Davraz 2014). More precisely, it can 
be said that parameters showing r  >  0.7 are considered 
strongly correlated whereas r between 0.5 and 0.7 shows 
moderate correlation (Manish et  al. 2006). The cor-
relation matrix of the heavy metals is given in Table  5. 
Mn shows a moderate negative correlation with Zn 
(r = −0.500, p < 0.05). Cu shows a moderate positive cor-
relation with Zn (r = 0.580, p < 0.01). Pb shows a moder-
ate positive correlation with Cd (r = 0.583, p < 0.01) and 
Fe (r = 0.459, p < 0.05). Fe does not show any significant 
correlation with other heavy metals, indicating that their 
distributions were not controlled by the same factor. The 
strong correlations between some of the heavy metals 

indicate the same input sources and similar geochemi-
cal behaviour (Lu et al. 2010; Saeedi et al. 2012). There-
fore the associations of metals clearly indicate that the 
groundwater has assimilated various contaminants from 
the processes of chemical industries and landfill leachate 
or municipal sewage systems.

Pollution source identification
Principal component analysis was used to further explore 
the extent of metal pollution and source identification 
following standard procedures (Dragovic et  al. 2008; 
Franco-Uría et  al. 2009). Varimax rotation (Gotelli and 
Ellison 2004) was used to maximize the sum of the vari-
ance of the factor coefficients which better explained the 
possible groups or sources that influenced the water sys-
tem. Corresponding components, variable loadings, and 
the variances are presented in Table 6. Components load-
ings are classified by Liu et al. (2003) as “strong”, “moder-
ate”, and “weak” corresponding to absolute loading values 
of >0.75, 0.75–0.50, and 0.50–0.30, respectively. R-mode 
analysis extracted two components with eigenvalues >1, 
which explained 64.24  % of the total variance. Positive 
scores in PCA indicate that water samples are affected 
by the presence of the parameters that are significantly 
loaded on a specific component, whereas negative scores 
suggest that water quality is essentially unaffected by 
those parameters. The 36.8  % of total variance is con-
tributed by PC1 with higher positive loadings for Cu and 
Zn and moderate negative loadings for Mn. The occur-
rence of higher Zn concentration may be attributed to 
the greatest frequency of nearby sources like hazardous 
waste sites and the emission of industrial effluents. Com-
ponents in PC1 are derived from mixed sources due to 
chemical induction of landfill leachate or municipal sew-
age (Bhuiyan et  al. 2010). PC2 with high positive con-
tribution of Pb and Cu, accounts for 27.4 % of the total 
variance. Despite the natural occurrence of Pb in the 
environment, anthropogenic sources such as discharge of 
various industrial effluents and public sewage also play a 
major role in the higher Pb loadings in the study area.Fig. 3  Spatial distribution of pollution evaluation indices

Table 5  Pearson correlation coefficient matrix for selected metals in groundwater samples (n = 19)

* Correlation is significant at the 0.05 level (2-tailed)

** Correlation is significant at the 0.01 level (2-tailed)

Mn Fe Cu Pb Zn Cd

Mn 1

Fe −0.047 1

Cu −0.440 0.312 1

Pb −0.304 0.116 0.154 1

Zn −0.500* 0.187 0.580** 0.459* 1

Cd −0.024 −0.021 −0.140 0.583** −0.017 1
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R‑mode hierarchical cluster analysis
The R-mode HCA was used to determine the relationship 
among the various heavy metals using Ward’s method 
(Squared Euclidean distance as measure of similarity). 
Cluster analysis (CA) grouped the heavy metals into 
clusters on the basis of similarities within a group and 
dissimilarities between different groups. Parameters 
belonging to the same cluster are likely to have originated 
from a common source. The R-mode CA performed on 
the samples produced two clusters based on spatial simi-
larities and dissimilarities (Fig. 4). The presence of Fe in 
cluster 1 reveals lithogenic contribution source of con-
tamination and were identified in the higher contamina-
tion level. The second cluster includes Cd, Zn, Pb, Cu and 
Mn, which were derived from anthropogenic input.

Human health risk assessment
Heavy metal pollution has being one of the important 
issues in environmental sciences. Ingestion of signifi-
cant amounts of metal-containing drinking water will 
harm human health, resulting in several types of can-
cers (Wu et  al. 2009; Yu et  al. 2010). Using the meas-
ured data for the 6 heavy metals, the HQ were calculated 
using USEPA risk assessment models (US EPA 2011). 
The human health risk assessment of Cd, Fe, Cu, Pb, 
Zn and Mn showed HQ values to be  <1 suggesting an 
acceptable level of non-carcinogenic adverse health risk 
(Table 7). The average HQ values of Pb in the water sam-
ples (0.4924) were highest, followed by Cd (0.3267), Mn 
(0.0101), Fe (0.0089), Cu (0.0029) and Zn (0.0007). The HI 
values of all the 6 metals (Cd, Fe, Cu, Pb, Zn, Mn) rang-
ing from 0.0001 to 0.2022 were also <1, indicating accept-
able risk for non-carcinogenic adverse health effect. The 
HQ values were found to be comparable with study by 
Muhammed et  al. (2011), Kohistan region of Pakistan; 
Çelebi et al. (2014), Melenwatershed, Turkey and Sprang 
et al. (2009), European rivers. On the other hand, the lev-
els of Cr were lower than the study by Keleperzis (2014), 
Thiva area of Greece.

The health risk associated with drinking water depends 
on the volume of water consumed and the weight of the 
individual. In this regard, health risk assessment associ-
ated with the exposure duration (ADD) was determined 
using the concentration of Mn, Fe, Cu, Pb, Zn and Cd 
in the drinking water and the results are presented in 
Table  8. The ADD values ranged from 6.12  ×  10−5 to 
2.00 × 10−4, 2.45 × 10−5 to 8.04 × 10−2, 3.67 × 10−5 to 
2.00 × 10−4, 1.22 × 10−5 to 5.00 × 10−4, 2.45 × 10−5 to 
6.00 × 10−4 and 1.22 × 10−5 to 2.45 × 10−5 mg/kg/day 
for Mn, Fe, Cu, Pb, Zn and Cd, respectively (Table  8). 
Thus, the health risk assessment indicates an alarming 
situation within this study area. It is recommended that 
the use of the water from these contaminated hand-dug 
wells for domestic purposes must be discontinued, or 
appropriate remediation technology must be applied 
to save the health of the human population in the study 
area.

The average Chronic daily intake (CDI) levels for car-
cinogenic risk of Mn, Fe, Cu, Pb, Zn and Cd were found 
to be 3.68 × 10−4, 1.51 × 10−2, 2.89 × 10−4, 4.38 × 10−4, 
5.02 × 10−4 and 4.19 × 10−5, respectively (Table 9). The 
CDI indices were in the order: Fe > Zn > Pb > Mn > Zn > 
Cu > Cd. In general, a CDI value of 1.0 × 10−6 is the limit 
for acceptable health risk (USEPA 2011). The total CDI of 
all the groundwater samples exceeds this acceptable value, 
indicating an increased cancer risk for individuals because 
of their lifetime exposure to these carcinogens (Iqbal 
and Shah 2013). Higher CDI values may be due to run-
off from agricultural fertilization and fungicides, which 

Table 6  Rotated component matrix of  two-component 
model

Extraction method: principal component analysis. Rotation method: Varimax 
with Kaiser Normalization. Rotation converged in 3 iterations

Italics represent high loadings

Component Communities

PC 1 PC 2

Mn −0.695 −0.192 0.520

Fe 0.423 −0.055 0.182

Cu 0.850 −0.105 0.733

Pb 0.323 0.863 0.848

Zn 0.828 0.221 0.735

Cd −0.184 0.896 0.836

Eigen value 2.208 1.646

% of variance 36.805 27.433

Cumulative % 36.805 64.238

Fig. 4  Dendrogram of selected metals in water samples using ward’s 
method
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Table 7  Non-carcinogenic risk (hazard quotient, HQ) and  overall toxic risk (hazard index, HI) of  water from  hand-dug 
wells in Ejisu-Juaben Municipality

Code HQ
∑

HI = HQ

Mn Fe Cu Pb Zn Cd

1 0.0070 0.0054 3.64 × 10−6 0.1399 0.0009 0.0490 0.2022

2 0.0079 3.5 × 10−5 0.0009 0.0350 – 0.0245 0.0683

3 0.0175 0.0003 0.0021 0.0420 0.0005 0.0245 0.0869

4 0.0052 0.0008 0.0018 0.0350 0.0004 0.0000 0.0432

5 0.0166 0.0012 0.0021 0.0350 0.0007 – 0.0556

6 0.0061 0.0012 0.0009 0.0490 0.0007 – 0.0579

7 0.0061 0.0036 0.0031 – 0.0009 – 0.0137

8 0.0157 0.0011 0.0040 – 0.0001 – 0.0209

9 0.0114 0.0068 0.0028 0.0595 0.0008 0.0000 0.0813

10 0.0079 0.0015 0.0034 – 0.0001 – 0.0129

11 0.0044 0.0026 0.0049 0.0420 0.0019 0.0000 0.0558

12 0.0175 0.0027 0.0015 – 0.0002 – 0.0219

13 0.0149 0.1149 0.0021 – – – 0.1319

14 0.0052 0.0037 0.0043 0.0035 0.0006 0.0000 0.0173

15 0.0061 0.0070 0.0058 0.0595 0.0013 0.0000 0.0797

16 0.0114 0.0020 0.0034 0.0140 0.0003 – 0.0311

17 0.0044 0.0023 0.0046 0.1050 0.0009 0.0000 0.1172

18 0.0166 0.0017 0.0012 0.0525 0.0004 – 0.0724

19 0.0105 0.0016 0.0031 0.0175 0.0006 – 0.0333

Table 8  Exposure duration, ADD (mg/kg-day) for selected hand-dug well in Ejisu-Juaben Municipality

Code ADD

Mn Fe Cu Pb Zn Cd

1 9.8 × 10−5 0.0037 0.0001 0.0005 0.0003 2.45 × 10−5

2 0.0001 2.45 x 10−5 3.67 × 10−5 0.0001 – 1.22 × 10−5

3 0.0002 0.0002 8.57 × 10−5 0.0001 0.0001 1.22 × 10−5

4 7.35 × 10−5 0.0005 7.35 × 10−5 0.0001 0.0001 0

5 0.0002 0.0008 8.57 × 10−5 – 0.0002 –

6 8.57 × 10−5 0.0008 3.67 × 10−5 – 0.0002 –

7 8.57 × 10−5 0.0025 0.0001 – 0.0003 –

8 0.0002 0.0008 0.0002 – 2.45 × 10−5 –

9 0.0002 0.0047 0.0001 0.0002 0.0002 0

10 0.0001 0.0011 0.0001 – 2.45 × 10−5 –

11 6.12 × 10−5 0.0018 0.0002 0.0001 0.0006 0

12 0.0002 0.0019 6.12 × 10−5 – 4.90 × 10−5 –

13 0.0002 0.0804 8.57 × 10−5 – ND –

14 7.35 × 10−5 0.0026 0.0002 1.22 × 10−5 0.0002 0

15 8.57 × 10−5 0.0049 0.0002 0.0002 0.0004 0

16 0.0002 0.0014 0.0001 4.90 × 10−5 8.57 × 10−5 –

17 6.12 × 10−5 0.0016 0.0002 0.0004 0.0003 0

18 0.0002 0.0012 4.9 × 10−5 0.0002 0.0001 –

19 0.0001 0.0011 0.0001 6.12 × 10−5 0.0002 –
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intended to increase the concentration of these heavy 
metals and in turn can affect the water quality and ecosys-
tem biodiversity (Li and Zhang 2010). Nguyen et al. (2009) 
determined that about 5 in 1000 people could suffer from 
cancer in Vietnam. In Nanjing, China, a study on six sur-
face waters found carcinogenic value of 2.05–3.28 × 10−4 
higher than the acceptable limits (Wu et al. 2009).

Conclusions
Pollution evaluation indices, principal component analy-
sis, cluster analysis and correlation matrix have been 
used to assess the intensity and sources of pollution in 
groundwater samples from the Ejisu-Juaben Municipal-
ity, Ghana. The study is summarized as follows:

1.	 The mean values of the heavy metal contents in 
the groundwater follow the decreasing order: 
Fe > Zn > Mn > Pb > Cu > Cd. The mean values of Pb 
and Fe in the groundwater were generally high com-
pared to the threshold limits allowable for drinking 
water.

2.	 The human health risk assessment showed hazard 
quotient (HQ) and Hazard index (HI) values to be <1, 
suggesting an acceptable level of non-carcinogenic 
adverse risk, however, the cancer risk exceed the 
acceptable limit of 1.0 × 10−6, indicating that cancer 
risk may occur.

3.	 Principal component analysis with the support of 
cluster analysis identified both natural source and 
anthropogenic activities as the main contributing 
factors of metal profusion in the groundwater.

4.	 According to correlation analysis, highly strong corre-
lations were observed among some of the heavy metal 
pairs, suggesting common sources, mutual depend-
ence and identical behaviour during transport.

5.	 The Cd, HPI, and HEI concentrations show that 63, 
100, and 10 % as highly polluted due to the municipal 
sewage being the main sources in the study area. The 
Cd and HEI concentration indices values increased 
trend along the study area may be due to the agricul-
ture runoff, discharge of industrial wastewater, and 
municipal sewage through the soil.
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Table 9  Chronic daily intake in groundwater samples from selected hand-dug well in Ejisu-Juaben Municipality

Code CDI

Mn Fe Cu Pb Zn Cd

1 0.0003 0.0096 0.0003 0.0013 0.0007 6.29 × 10−5

2 0.0003 6.29 × 10−5 9.43 × 10−5 0.0003 – 3.14 × 10−5

3 0.0006 0.0006 0.0002 0.0004 0.0004 3.14 × 10−5

4 0.0002 0.0014 0.0002 0.0003 0.0003 0

5 0.0006 0.0021 0.0002 0.0003 0.0005 –

6 0.0002 0.0021 9.43 × 10−5 0.0004 0.0005 –

7 0.0002 0.0064 0.0003 – 0.0007 –

8 0.0006 0.0020 0.0004 – 6.29 × 10−5 –

9 0.0004 0.0122 0.0003 0.0005 0.0006 0

10 0.0003 0.0028 0.0003 – 6.29 × 10−5 –

11 0.0002 0.0046 0.0005 0.0004 0.0015 0

12 0.0006 0.0049 0.0002 – 0.0001 –

13 0.0005 0.2064 0.0002 – ND –

14 0.0002 0.0067 0.0004 3.14 × 10−5 0.0005 0

15 0.0002 0.0125 0.0006 0.0005 0.0010 0

16 0.0004 0.0036 0.0003 0.0001 0.0002 –

17 0.0002 0.0041 0.0005 0.0009 0.0007 0

18 0.0006 0.0030 0.0001 0.0005 0.0003 –

19 0.0004 0.0028 0.0003 0.0002 0.0004 –
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