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Background
In practical applications, the information collected from the sensors is often impre-
cise and uncertain. How to deal with the uncertain information effectively is still an 
open issue. To address the uncertain information, many math tools are presented such 
as fuzzy sets theory (Zadeh 1965; Jiang et  al. 2015), evidence theory (Dempster 1967; 
Shafer 1977), rough sets theory (Walczak and Massart 1999; Greco et al. 2001), Z num-
bers (Zadeh 2011; Kang et al. 2012; Jiang et al. 2016e) and D numbers theory (Deng et al. 
2014; 2015a). Also sometimes, the methods with mixed intelligent algorithms are used 
for decision making or related problems (Deng et al. 2015b, c; Jiang et al. 2016b; Deng 
2015c).

Dempster–Shafer evidence theory (Dempster 1967; Shafer 1977) (D–S evidence 
theory) was introduced by Dempster and then developed by Shafer. As an uncertainty 
reasoning tool, it can efficiently cope with imprecise and uncertain information with-
out prior information, so it is widely used in many fields of information fusion (Jiang 
et al. 2016c; Deng 2015a). However, the counter-intuitive results may be obtained when 
dealing with highly conflicting evidence (Zadeh 1986; Jiang et al. 2016d). If this problem 
cannot be solved effectively, it will greatly limit the application of D–S evidence theory. 
Many approaches were proposed to resolve the problem (Lefevre et  al. 2002; Murphy 
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2000; Smets 2007). In general, there are mainly two types of methodologies. One is to 
modify Dempster’s combination rule, and the other is to pre-process the data. Yager 
(1987) and Smets (2000), solve the problem of counter intuitive combination results 
through redistribution conflicting evidence. In the work of Murphy (2000), Deng et al. 
(2004), they pre-processed the data and also achieved ideal effect, based on the Demp-
ster’s combination rule.

Among these two methods to solve the counter-intuitive results, according to the first 
type of methodology, the counter-intuitive behaviors are imputed to the combination 
rule. However, modifying combination rule usually destroys the good properties such as 
commutativity and associativity. What’s more, modifying the evidence combination rule 
is blamed to be unreasonable if the counter-intuitive results are caused by sensor failure. 
Based on the analysis above, researchers prefer to modify data model, in other words, 
through pre-process evidence to solve the problem of highly conflicting evidence.

As to the method of pre-processing evidence, the weight vector is difficult to deter-
mine. At present, most of the researchers are limited to basing on the relationship 
among evidence or the evidence itself to generate the weight, instead of considering 
these two aspects. Murphy’s method (Murphy 2000) is just a simple arithmetic mean, 
which does not take into account the relationship and difference among evidence. Deng 
et al.’s weighted average method (Deng et al. 2004) uses the distance of evidence to deter-
mine the weight, which makes up the shortage of Murphy’s method to some degree, but 
the effect of evidence itself on weight is ignored.

In this paper, a method of modifying the evidence is used to solve the combination 
problem of conflicting evidence. By considering the difference among evidence and the 
effect of evidence itself on weight, a combination method based on the distance of evi-
dence (Jousselme et al. 2001) and a novel belief entropy (Deng 2015c) is proposed. First, 
the novel belief entropy is introduced to measure the uncertainty. Then, according to the 
distance of evidence, the evidence is divided into credible evidence and incredible evi-
dence, and to be assigned with appropriate weight based on the distance and the uncer-
tainty. Finally, the obtained weight is used to modify the evidence to get the weighted 
averaging evidence and combine it (n− 1) times by the Dempster’s combination rule. 
The experimental results show that the proposed method can effectively deal with the 
highly conflicting evidence.

This rest of this paper is organized as follows. The basic concepts are briefly intro-
duced in “Preliminaries” section. In “The proposed method” section, a new combination 
method based on the distance of evidence and Deng entropy is presented. A numerical 
example is illustrated to show the efficiency of this new method in “Numerical example” 
section. Finally, a conclusion is presented in “Conclusion” section.

Preliminaries
In this section, some preliminaries are briefly introduced below.

Dempster–Shafer evidence theory (Dempster 1967; Shafer 1977)

D–S evidence theory gained increasing interest in the field of information fusion. In this 
subsection, D–S evidence theory is briefly introduced.
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Definition 1  Let � be the set of N mutually exclusive and exhaustive hypotheses. This 
set is called the frame of discernment, and defined as � = {θ1, θ2, . . . , θn}. The concept of 
basic probability assignment (BPA) m: 2� → [0, 1], which is defined as follows:

If m(A) > 0, A is called a focal element. The BPA reflects the degree of evidence support 
for the proposition of A in frame of discernment.

Definition 2  When multiple independent BPAs are available, the combined evidence 
can be obtained based on the Dempster’s combination rule as follows:

where k =
∑

B∩C=∅
m1(B)m2(C), represents the degree of conflict between m1 and 

m2. The greater the k, the greater the degree of conflict; the smaller the k, the smaller 
the degree of conflict. k = 0 corresponds to the evidence do no conflict; whereas k = 1 
implies complete contradiction, i.e., none of the combining masses intersect, hence the 
combination between m1 and m2 does not exist.

Jousselme distance (Jousselme et al. 2001)

Jousselme distance is defined with the BPAs as a particular case of vectors in a 2|�|-linear 
space. It is an appropriate measure of the difference-or the lack of similarity-between 
any two BPAs. In this subsection, Jousselme distance is briefly introduced.

Definition 3  Let m1 and m2 be two BPAs on the same frame of discernment �. The 
distance between m1 and m2 is:

where D is an 2|�| × 2|�| matrix whose element are

Ambiguity measure (Jousselme et al. 2006)

In evidence theory, the common uncertainty includes: nonspecificity measure (NS) 
(Didier and Prade 1985), aggregated uncertainty measure (AU) (Harmanec and Klir 
1994) and ambiguity measure (AM) (Jousselme et  al. 2006; Yang and Han 2016). And 
AM is widely used in uncertainty measure, which is defined as follows.

Definition 4  Suppose that � be a frame of discernment, m is a BPA, ambiguity meas-
ure (AM) is defined as follows:

(1)

{

m(∅) = 0
∑

A⊆�m(A) = 1

(2)m(A) =

{

∑

B∩C=A m1(B)m2(C)

1−k
A �= ∅

0 A = ∅

(3)d(m1,m2) =

√

1

2
( �m1 − �m2)TD( �m1 − �m2),

(4)D(A,B) =
|A ∩ B|

|A ∪ B|
A,B ∈ 2�
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where

is the Pignistic probability proposed by Smets and Kennes (1994).

Belief entropy (Deng 2015c)

Recently, a novel belief entropy, named as Deng entropy, is applied to measure the infor-
mation volume of the evidence. This entropy is the generalization of Shannon entropy 
(Shannon 1948). It is an efficient way to measure uncertainty, not only under the situ-
ation where the uncertainty is represented by a probability distribution, but also under 
the situation where the uncertainty is represented by BPAs. When the uncertainty is 
expressed in the form of a probability distribution, the entropy definitely degenerates to 
Shannon entropy. The related concepts are given below.

Definition 5  Deng entropy is defined as follows:

where Bi is a proposition in BPAs m, and |Bi| is the cardinality of Bi.
Specially, this entropy can definitely degenerate to the Shannon entropy if the belief is 

only assigned to single element. Namely,

In addition, the belief entropy has been used in Jiang et  al. (2016a) and Yuan et  al. 
(2016). For more detailed information, please refer to Deng (2015c) and Fei et al. (2015).

The proposed method
Suppose that there are n evidence mi i = 1, . . . , n, the pre-processing of the evidence can 
be illustrated as:

where wi is the corresponding weight of evidence mi.
In Eq. (9), each wimi can be considered as the discounted mi, and m denotes the 

weighted averaging evidence of the original n evidence. The n evidence are weighted 
average according to all the available focal elements, respectively. But how to get the 

(5)AM(m) = −
∑

θ∈�

BetPm(θ) log2(BetPm(θ))

(6)BetPm(θ) =

∑

B∈�m(B)

|B|

(7)Ed = −
∑

i

m(Bi) log
m(Bi)

2|Bi| − 1

(8)Ed = −
∑

i

m(Ci) log
m(Ci)

2|Ci| − 1
= −

∑

i

m(Ci) logm(Ci)

(9)

{

m =
∑n

i=1 wimi
∑n

i=1 wi = 1
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appropriate weight? We argue that both the distance of evidence and the uncertainty 
should be used to generate the appropriate weight of evidence.

The uncertainty (Jousselme et al. 2006) of evidence can reflect the clarity of the evi-
dence: the smaller the uncertainty of evidence, the clearer the evidence, and the higher 
the credibility. Based on the speciality of uncertainty, we take the uncertainty as one of 
the factors to determine the credibility of the evidence, then it is used to determine the 
weight.

In D–S evidence theory, AM is widely used in uncertainty measure. However, to a cer-
tain degree, AM may be lack of information in the Pignistic probability conversion pro-
cess. Compared to the AM, the calculation of the novel belief entropy (Deng 2015c) is 
more convenient, and can better measure the uncertainty of the evidence.

A example is given to show the effectiveness of this belief entropy below.

Example 1  Assume there are two BPAs in the frame of discernment � = {a, b, c}, and 
the BPAs are listed as follows:

The uncertainty of each method is calculated respectively by Eqs. (5) and (7):

The novel belief entropy: Ed(m1) = 1.5850, Ed(m2) = 3.2338.

From an intuitive point of view, m1 has more higher certainty than m2, namely, the 
uncertainty of m2 is greater than m1. Whereas the AM of these two BPAs is the same, the 
result of this belief entropy is consistent with intuition.

In order to get the appropriate weight, the novel entropy is used to measure the uncer-
tainty of the evidence, and a new combination method is proposed based on the entropy 
and the distance of evidence. Meanwhile, some definitions are presented below.

Suppose there are n mutually exclusive evidence.

1.	 If the Jousselme distance between one evidence and other evidence is small, namely, 
the evidence is supported by other evidence, then the evidence is considered as cred-
ible evidence;

2.	 If the Jousselme distance between one evidence and other evidence is great, namely, 
the evidence is not supported by other evidence, then the evidence is considered as 
incredible evidence.

For a credible evidence, the smaller the entropy, the smaller the uncertainty, then the 
clearer the evidence and it is favorable to making decision. So, the greater weight should 
be assigned to the evidence. On the contrary, for a incredible evidence, the smaller the 
entropy, the smaller the uncertainty, then the clearer the evidence. However, since there 
is a great conflict between the incredible evidence and other evidence, and in order to 
weaken its negative effects, the smaller weight should be assigned to the evidence. Based 
on this idea, a reward function and a penalty function are defined to generate weight.

m1:m1(a) = m1(b) = m1(c) = 1/3;

m2:m2(a) = m2(b) = m2(c) = 0.05, m2(a, b, c) = 0.85.

AM:AM(m1) = 1.5850, AM(m2) = 1.5850;
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Definition 6  A reward function is defined as:

where Ed(mi) is the normalized belief entropy, namely, 0 ≤ Ed(mi) ≤ 1.
This presented reward function meets the following properties:

Property 1  The reward function is always positive, i.e., αi > 0.

Proof  According to the mathematic properties of the exp-function, we can get that 
αi > 0.

Property 2  The reward function is a monotone decreasing function.

Proof  According to the mathematic properties of the exp-function, we can get that this 
reward function is a monotone decreasing function. Thus, it can achieve that the smaller 
the entropy, the greater the weight. In the method, the reward function is used to gener-
ate the weight for the credible evidence.

Definition 7  A penalty function is defined as:

where Emax
d  is the maximum normalized belief entropy. Ed(mi) is the normalized belief 

entropy, namely, 0 ≤ Ed(mi) ≤ 1.
This presented penalty function meets the following properties:

Property 3  The penalty function is always positive, i.e., αi > 0.

Proof  According to the mathematic properties of the exp-function, we can get that 
αi > 0.

Property 4  The penalty function is a monotone increasing function.

Proof  Arbitrary take variables Ed(m1) and Ed(m2), and suppose Ed(m2) > Ed(m1), that 
is Ed(m2)− Ed(m1) > 0, then

Since

Based on the mathematic properties of the exp-function, we can get that:

(10)αi = exp
(

−Ed(mi)
)

, i = 1, 2, . . . , n

(11)αi = exp
[

−
(

Emax
d + 1− Ed(mi)

)]

, i = 1, 2, . . . , n

α2 − α1 = exp
[

−
(

Emax
d + 1− Ed(m2)

)]

− exp
[

−
(

Emax
d + 1− Ed(m1)

)]

= exp
[(

Ed(m2)− Ed(m1)
)]

Ed(m2)− Ed(m1) > 0.
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Hence

Namely, the penalty function is a monotone increasing function. So it can achieve that 
the smaller the entropy, the smaller the weight. In the method, the penalty function is 
used to generate the weight for the incredible evidence.

Assume there are n evidence mi i = 1, 2, . . . , n, the building steps of weight are given 
below:

Step 1 Obtain the Jousselme distances dij i, j = 1, 2, . . . , n of every two evidence mi 
and mj by Eq. (3). The distance matrix DM is given as follows:

Step 2 Calculate the average evidence distance di of the evidence mi,

Step 3 Calculate the global evidence distance d.

Step 4 The evidence set is divided into two parts: the credible evidence and the incred-
ible evidence.

If di ≤ d, then mi is a credible evidence;
If di > d, then mi is a incredible evidence.
Step 5 Calculate the belief entropy Ed(mi), i = 1, 2, . . . , n, and normalize it as follows.

Step 6 Obtain the corresponding initial weight αi, i = 1, 2, . . . , n as follows:

1.	 For the credible evidence, the reward function is used to generate the initial weight αi 
according to Eq. (10);

2.	 For the incredible evidence, the penalty function is used to generate the initial weight 
αi according to Eq. (11).

Step 7 The final weight wi of evidence mi are normalized as follows:

exp
[

(Ed(m2)− Ed(m1))
]

> exp(0) = 1.

α2 − α1 > 0, i.e.,α2 > α1.

(12)DM = [dij] =









0 d12 · · · d1n
d21 0 · · · d2n
...

...
...

...
dn1 dn2 · · · 0









(13)di =

∑n
j=1,j �=i dij

n− 1
, i, j = 1, 2, . . . , n

(14)d =

∑n
i=1 di

n
, i = 1, 2, . . . , n

(15)Ed(mi) =
Ed(mi)

∑n
i=1 Ed(mi)

, i = 1, 2, . . . , n

(16)wi =
αi

∑n
i=1 αi

, i = 1, 2 . . . , n
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According to Eq. (9), we can get the weighted averaging evidence by the weighted 
average method of multi-source evidence after obtaining the weight of each evidence. 
Finally, the new evidence is combined for (n− 1) times by Dempster’s combination rule 
and the fusion result can be obtained.

It should be pointed out that, if there are only two BPAs, the Jousselme distance loses 
efficacy, the building steps of weight are given as follows:

Step 1 Calculate the belief entropy Ed(mi), i = 1, 2, and normalize it by Eq. (15).
Step 2 The weight αi1 is obtained according to the reward function.

Step 3 The weight αi2 is obtained according to the penalty function.

where Emax
d  is the maximum normalized belief entropy.

Step 4 A average weight αi is given as follows:

Step 5 The final weight wi, i = 1, 2 of evidence mi, i = 1, 2 are normalized by Eq. (16).

Numerical example
In this section, a simple example is given to show the efficiency of the new method.

Example 2  In a multisensor-based target recognition system, there are totally three 
types of targets: � = {A,B,C}. Suppose there are five sensors, and five acquired BPAs 
are listed as follows:

Firstly, according to Eq. (3), the Jousselme distance of every two evidence can be cal-
culated based on the initial evidence, and the distance matrix DM can be obtained as 
follows:

Then, adopt Eq. (13) to calculate the average evidence distance di, i = 1, 2, 3, 4, 5, which 
is given below:

(17)αi1 = exp
(

−Ed(mi)
)

, i = 1, 2

(18)αi2 = exp
[

−
(

Emax
d + 1− Ed(mi)

)]

, i = 1, 2

(19)αi =
1

2
(αi1 + αi2), i = 1, 2

m1:m1(A) = 0.41, m1(B) = 0.29, m1(C) = 0.30;

m2:m2(A) = 0.00, m2(B) = 0.90, m2(C) = 0.10;

m3:m3(A) = 0.58, m3(B) = 0.07, m3(A,C) = 0.35;

m4:m4(A) = 0.55, m4(B) = 0.10, m4(A,C) = 0.35;

m5:m5(A) = 0.60, m5(B) = 0.10, m5(A,C) = 0.30.

DM =











0 0.5386 0.2892 0.2699 0.2848
0.5386 0 0.7195 0.6901 0.7106
0.2892 0.7195 0 0.0300 0.0255
0.2699 0.6901 0.0300 0 0.0354
0.2848 0.7106 0.0255 0.0354 0











d1 = 0.3456, d2 = 0.6647, d3 = 0.2661, d4 = 0.2564, d5 = 0.2641.
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Secondly, the global evidence distance d can be obtained by Eq. (14):

Thirdly, from the above, we can know that m1,m3,m4,m5 are the credible evidence 
and m2 is the incredible evidence.

Additionally, the belief entropy Ed(mi), i = 1, 2, 3, 4, 5 is calculated according to Eq. 
(7):

The results after normalization of this entropy Ed(mi), i = 1, 2, 3, 4, 5 according to  
Eq. (15) are as follows:

Then, the weight αi, i = 1, 2, 3, 4, 5 of the credible evidence and the incredible evidence 
can be obtained based on Eqs. (10) and (11), respectively.

According to Eq. (16), the final weight wi, i = 1, 2, 3, 4, 5 after normalization is shown 
as follows:

Obviously, we can obtain that there is a highly conflict between the evidence m2 and 
other evidence. So m2 is defined as an incredible evidence, and its weight is only 0.0877. 
Other evidence is supported by each other, so their weight are higher than m2.

Finally, use the weight to modify the evidence, the results are:

After combine for 4 times by Dempster’s combination rule, the final results are given 
below:

The fusing results derived based on different combination rules are listed in Table 1. 
As illustrated in Table  1, when conflicting evidence is acquired, Dempster’s combina-
tion rule produces counter-intuitive results. When more BPAs are available, Murphy’s 
method (Murphy 2000), Deng et al.’s method (Deng et al. 2004) and the proposed method 
in this paper all provide reasonable results. However, Murphy’s method is only a simple 
arithmetic mean, without taking the relationship among the evidence into account. Deng 

d = 0.3594

Ed(m1) = 1.5664, Ed(m2) = 0.4690, Ed(m3) = 1.8092,

Ed(m4) = 1.8914, Ed(m5) = 1.7710.

Ed(m1) = 0.2087, Ed(m2) = 0.0625, Ed(m3) = 0.2410,

Ed(m4) = 0.2520, Ed(m5) = 0.2359.

α1 = exp(−0.2087) = 0.8117;

α2 = exp [−(0.2520+ 1− 0.0625)] = 0.3044;

α3 = exp(−0.2410) = 0.7858;

α4 = exp(−0.2520) = 0.7773;

α5 = exp(−0.2359) = 0.7899.

w1 = 0.2340, w2 = 0.0877, w3 = 0.2265,

w4 = 0.2241, w5 = 0.2277.

m(A) = 0.4872, m(B) = 0.2078, m(C) = 0.0790, m(A,C) = 0.2260.

m(A) = 0.9837, m(B) = 0.0021, m(C) = 0.0110, m(A,C) = 0.0032.
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et al.’s method uses the distance of evidence to determine the weight, which makes up 
the shortage of Murphy’s method, but the effect of evidence itself on weight is ignored. 
The experimental results show that the proposed method performs better than other 
methods. The reason is that the proposed method can better measure the uncertainty of 
evidence by Deng entropy and takes into consider the relationship between evidence and 
the evidence itself to define weight. Furthermore, it can strengthen the effect of credible 
evidence further and at the same time weaken the effect of incredible evidence further 
by the reward function and the penalty function.

Conclusion
Dempster’s combination rule will generate counter-intuitive results when dealing 
with highly conflicting evidence. In the past, more attention was paid to the relation-
ship among the evidence in information fusion, and the research on the evidence itself 
is ignored. In the presented method, a novel belief entropy is taken as the uncertainty 
measure, and it is more accurate than the AM. Furthermore, the new method can effi-
ciently handle conflicting evidence with better performance of convergence by jointly 
using the distance of evidence and the uncertainty measure.

In the future work, more factors will be analyzed and used in establishing the weight 
to construct more powerful evidence combination methods.
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Table 1  Evidence combination results based on different combination methods

Evidence Method m(A) m(B) m(C) m(AC) Target

m1,m2 Dempster’s method (Dempster 1967) 0 0.8969 0.1031 0 B

Murphy’s method (Murphy 2000) 0.0964 0.8119 0.0917 0 B

Deng et al.’s method (Deng et al. 2004) 0.0964 0.8119 0.0917 0 B

The proposed method 0.0964 0.8119 0.0917 0 B

m1,m2,m3 Dempster’s method (Dempster 1967) 0 0.6575 0.3425 0 B

Murphy’s method (Murphy 2000) 0.4939 0.4180 0.0792 0.0090 A

Deng et al.’s method (Deng et al. 2004) 0.4974 0.4054 0.0888 0.0084 A

The proposed method 0.7614 0.1295 0.0961 0.0130 A

m1,m2,m3,m4 Dempster’s method (Dempster 1967) 0 0.3321 0.6679 0 C

Murphy’s method (Murphy 2000) 0.8362 0.1147 0.0410 0.0081 A

Deng et al.’s method (Deng et al. 2004) 0.9089 0.0444 0.0379 0.0089 A

The proposed method 0.9379 0.0173 0.0361 0.0087 A

m1,m2,m3,m4,m5 Dempster’s method (Dempster 1967) 0 0.1422 0.8578 0 C

Murphy’s method (Murphy 2000) 0.9620 0.0210 0.0138 0.0032 A

Deng et al.’s method (Deng et al. 2004) 0.9820 0.0039 0.0107 0.0034 A

The proposed method 0.9837 0.0021 0.0110 0.0032 A
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