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Background
It is well known that discrete fractional calculus is a very new area. In 1988, Miller and 
Ross (1989) firstly introduced the definitions of non-integer order differences and sums. 
Since then, several authors started to study the theory of fractional difference equations. 
Especially, some excellent results have been established in recent years. For example, we 
refer the reader to Atici and Eloe (2007, 2009a, 2009b, 2011, 2012), Abdeljawad and Atici 
(2012), Atici and Wu (2014), Goodrich (2011, 2012), Anastassiou (2010, 2011), Čermák 
et al. (2015), Dassios and Baleanu (2013, 2015), Dassios et al. (2014), Hein et al. (2011), 
Abdeljawad (2011, 2013a, b), Alzabut and Abdeljawad (2014), Kang et al. (2014), Diblík 
(2015), Kisalar et al. (2015), Erbe et al. (2016), Li (2016) and the references therein.

The oscillation theory is an important part of the qualitative theory of fractional differ-
ence equations. However, to the best of our knowledge, few papers (Alzabut and Abdel-
jawad 2014; Kisalar et al. 2015; Li 2016) are known regarding the oscillatory behavior of 
fractional difference equations.

In Alzabut and Abdeljawad (2014), Alzabut and Abdeljawad considered the oscillation 
for nonlinear fractional difference equation of the form











∇
q
a(q)−1

x(t)+ f1(t, x(t)) = r(t)+ f2(t, x(t)), t ∈ Na(q),

∇
−(1−q)
a(q)−1

x(t)|t=a(q) = x(a(q)) = c, c ∈ R,

(E1)

Abstract 

In this paper, we study the oscillation of nonlinear fractional nabla difference equations 
of the form 

where c and α are constants, 0 < α < 1,∇α
a  is the Riemann–Liouville fractional nabla 

difference operator of order α, a ≥ 0 is a real number, and Na+1 = {a+ 1, a+ 2, . . .}. 
Some sufficient conditions for oscillation are established.
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∇α
a x(t)+ q(t)f (x(t)) = g(t), t ∈ Na+1,

∇
−(1−α)
a x(t)|t=a = c,
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where Na(q) = {a(q)+ 1, a(q)+ 2, . . .}, a(q) = a+m− 1, m = [q]+ 1,m− 1 < q < m,

m ∈ N, r : Na(q) → R, fi : Na(q) × R → R, (i = 1, 2),∇
q
a(q) is the Riemann–Liouville frac-

tional nabla difference operator of order q of x, and ∇−q
a(q) is q-th fractional sum operator.

In Kisalar et al. (2015), Kisalar et al. studied oscillatory behavior of the higher order 
fractional nonlinear difference equations of the form

where �α is a Riemann–Liouville fractional delta difference operator of order α, 
m− 1 < α ≤ m,m ≥ 1 is an integer, fi : [0,∞)× R → R, (i = 1, 2) and v are continuous 
with respect to t and x,Na = {a, a+ 1, a+ 2, . . .}.

In Li (2016), Li established the oscillation of forced fractional difference equations 
with damping term of the form

with initial condition �α−1x(t)|t=0 = x0, where 0 < α < 1 is a constant, �αx is the Rie-
mann–Liouville fractional delta difference operator of order α of x, and N0 = {0, 1, 2, . . .} .

In Atici and Eloe (2012), Atici and Eloe considered the following initial value problem 
for a nonlinear fractional difference equation

where 0 < ν ≤ 1 and a is any real number. The authors obtained that x(t) is a solution of 
(E4) if and only if

Motivated by the papers (Atici and Eloe 2012; Alzabut and Abdeljawad 2014; Kisalar 
et al. 2015; Li 2016), in this paper, we investigate the oscillation of a nonlinear fractional 
nabla difference system of the form

where c and α are constants, 0 < α < 1,∇α
a  is the Riemann–Liouville fractional nabla 

difference operator of order α, a ≥ 0 is a real number, and Na+1 = {a+ 1, a+ 2, . . .}.
In this paper, we always assume that

(A) f : R → R, and xf (x) > 0 for x �= 0, g : Na+1 → R, and q(t) ≥ 0, t ∈ Na+1.

A solution x(t) of the system (1) is said to be oscillatory if it is neither eventually posi-
tive nor eventually negative, otherwise it is nonoscillatory.

{

�αx(t)+ f1(t, x(t + α)) = v(t)+ f2(t, x(t + α)), t ∈ N0, m− 1 < α ≤ m,

�α−kx(t)|t=0 = xk , k = 1, 2, . . . ,m− 1,
(E2)

(1+p(t))�(�αx(t))+p(t)�αx(t)+f (t, x(t)) = g(t), t ∈ N0, (E3)

{

∇ν
ax(t) = f (t, x(t)), for t = a+ 1, a+ 2, . . . ,

∇
−(1−ν)
a x(t)|t=a = x(a) = c,

(E4)

x(t) =
(t − a+ 1)ν−1

Ŵ(ν)
x(a)+ ∇

−ν
a+1f (t, x(t)).

(1)

{

∇α
a x(t)+ q(t)f (x(t)) = g(t), t ∈ Na+1,

∇
−(1−α)
a x(t)|t=a = c,
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Preliminaries
In this section, we collect some basic definitions and lemmas that will be important to us 
in what follows. For an excellent introduction to the discrete fractional calculus, we refer 
the reader to papers (Atici and Eloe 2009a, 2012; Abdeljawad and Atici 2012; Anastas-
siou 2010, 2011; Abdeljawad 2011, 2013b).

Definition 1  (Atici and Eloe 2012) Let ν > 0. The ν-th fractional sum f is defined by

for t ∈ Na = {a, a+ 1, a+ 2, . . .}, where Ŵ is the gamma function, and

Definition 2  (Atici and Eloe 2012) Let µ > 0 and m− 1 < µ < m, where m denotes a 
positive integer. Set ν = m− µ. The µ-th fractional nabla difference is defined as

Lemma 3  (Atici and Eloe 2012) Let f be a real-valued function defined on Na, and let 
µ, ν > 0. Then

and

Lemma 4  (Atici and Eloe 2012) For every t ∈ Na,

Lemma 5  Let

Then

(2)∇−ν
a f (t) =

1

Ŵ(ν)

t
∑

s=a

(t − s + 1)ν−1f (s),

(3)tν =
Ŵ(t + ν)

Ŵ(t)
.

(4)∇µ
a f (t) = ∇m−ν

a f (t) = ∇m
a ∇−ν

a f (t).

(5)∇−ν
a [∇−µ

a f (t)] = ∇−(µ+ν)
a f (t) = ∇−µ

a

[

∇−ν
a f (t)

]

,

(6)∇
−ν
a+1∇f (t) = ∇∇−ν

a f (t)−
(t − a+ 1)ν−1

Ŵ(ν)
f (a).

(7)∇−ν
a (t − a+ 1)µ =

Ŵ(µ+ 1)

Ŵ(µ+ ν + 1)
(t − a+ 1)ν+µ.

(8)E(t) =

t
∑

s=a

(t − s + 1)−αx(s), t ∈ Na.

(9)∇E(t) = Ŵ(1− α)∇α
a x(t).
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Proof  Using Definition 1, it follows from (8) that

Using Definition 2, it follows from (10) that

The proof of Lemma 5 is complete.

Lemma 6  Let a ≥ 0 and 0 < α < 1 be real number, u, v : Na → R. If

then

Proof  It follows from (11) that

Summing both sides of (13) from a to t, we have

Using Definition 1, from (14) we easily obtain (12). This completes the proof of Lemma 6.

Main results
In this section, we establish the oscillation results of system (1).

Theorem 7  Assume that

and

Then every solution x(t) of the system (1) is oscillatory.

(10)

E(t) =

t
∑

s=a

(t − s + 1)−αx(s) =

t
∑

s=a

(t − s + 1)(1−α)−1x(s)

= Ŵ(1− α)∇−(1−α)
a x(t).

∇E(t) = Ŵ(1− α)∇∇−(1−α)
a x(t) = Ŵ(1− α)∇α

a x(t).

(11)u(t) ≤ v(t), t ∈ Na,

(12)∇−α
a u(t) ≤ ∇−α

a v(t).

(13)(t − s + 1)α−1u(s) ≤ (t − s + 1)α−1v(s) for s = a, a+ 1, . . . , t.

(14)
t

∑

s=a

(t − s + 1)α−1u(s) ≤

t
∑

s=a

(t − s + 1)α−1v(s).

(15)lim inf
t→∞

{

(t − a)1−α

t
∑

s=a+1

(t − s + 1)α−1g(s)

}

= −∞,

(16)lim sup
t→∞

{

(t − a)1−α

t
∑

s=a+1

(t − s + 1)α−1g(s)

}

= +∞.
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Proof  Suppose to the contrary that there is a nonoscillatory solution x(t) of system (1). 
It is obvious that there exists t0 ∈ Na+1 such that x(t) > 0 or x(t) < 0, t ≥ t0.

Case 1  x(t) > 0, t ≥ t0. Noting the assumption (A), from the system (1) , we have

Using Lemma 6, from (17), we have

Using Definition 2, Lemma 3 in the left-hand side of (18) and noting the initial condition 
of system (1) , we obtain

Using Definition 1, it follows from the right-hand side of (18) that

Combining (18)–(20), we have

It follows from (21) that

By using the Stirling’s formula (Alzabut and Abdeljawad 2014)

we obtain

(17)∇α
a x(t) = −q(t)f (x(t))+ g(t) ≤ g(t).

(18)∇
−α
a+1∇

α
a x(t) ≤ ∇

−α
a+1g(t).

(19)

∇
−α
a+1∇

α
a x(t) = ∇

−α
a+1∇∇−(1−α)

a x(t)

= ∇∇−α
a ∇−(1−α)

a x(t)−
(t − a+ 1)α−1

Ŵ(α)
∇−(1−α)
a x(a)

= x(t)−
c

Ŵ(α)
(t − a+ 1)α−1.

(20)∇
−α
a+1g(t) =

1

Ŵ(α)

t
∑

s=a+1

(t − s + 1)α−1g(s).

(21)x(t) ≤
c

Ŵ(α)
(t − a+ 1)α−1 +

1

Ŵ(α)

t
∑

s=a+1

(t − s + 1)α−1g(s).

(22)

Ŵ(α)(t − a)1−αx(t) ≤ c(t − a+ 1)α−1(t − a)1−α

+ (t − a)1−α

t
∑

s=a+1

(t − s + 1)α−1g(t).

lim
t→∞

Ŵ(t)tε

Ŵ(t + ε)
= 1, ε > 0,

(23)

lim
t→∞

(t − a)1−α(t − a+ 1)α−1

= lim
t→∞

(t − a)1−α Ŵ(t − a+ 1+ α − 1)

Ŵ(t − a+ 1)

= lim
t→∞

(t − a)1−α Ŵ(t − a+ α)

(t − a)Ŵ(t − a)

= lim
t→∞

Ŵ(t − a+ α)

(t − a)αŴ(t − a)

= 1.
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Noting (23) and taking t → ∞ in (22), we have

which contradicts with x(t) > 0.

Case 2  x(t) < 0, t ≥ t0. Noting the assumption (A), from the system (1) , we have

By Lemma 6, from (24), we obtain

Using the procedure of Case 1, it follows from (25) that

Noting (23) and taking t → ∞ in (26), we have

which contradicts with x(t) < 0. This completes the proof of Theorem 7.

Theorem 8  Assume that there exists t0 ∈ Na+1 such that

and

Then every solution x(t) of the system (1) is oscillatory.

Proof  Suppose to the contrary that there is a nonoscillatory solution x(t) of system (1). 
It is obvious that there exists t0 ∈ Na+1 such that x(t) > 0 or x(t) < 0, t ≥ t0.

Case 1  x(t) > 0, t ≥ t0. As in the proof of Theorem 7, we obtain (17). Using Lemma 5, 
it follows from (17) that

(24)lim inf
t→∞

{

(t − a)1−αx(t)
}

≤ −∞,

∇α
a x(t) = −q(t)f (x(t))+ g(t) ≥ g(t).

(25)∇
−α
a+1∇

α
a x(t) ≥ ∇

−α
a+1g(t).

(26)

Ŵ(α)(t − a)1−αx(t) ≥ c(t − a+ 1)α−1(t − a)1−α

+ (t − a)1−α

t
∑

s=a+1

(t − s + 1)α−1g(t).

lim sup
t→∞

{

(t − a)1−αx(t)
}

≥ +∞,

(27)lim inf
t→∞







t
�

s=t0+1

g(s)







= −∞,

(28)lim sup
t→∞







t
�

s=t0+1

g(s)







= +∞.

(29)∇E(t) ≤ Ŵ(1− α)g(t).
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Summing both sides of (29) from t0 + 1 to t, we have

Letting t → ∞ in (30), we obtain

which contradicts with E(t) > 0.

Case 2  x(t) < 0, t ≥ t0. As in the proof of Theorem 7, we obtain (24). Then, using the 
above mentioned method, we easily obtain a contradiction. This completes the proof of 
Theorem 8.

Remarks
In our Definition 1, the fractional sum in (2) starts at a. In Abdeljawad and Atici (2012), 
Abdeljawad and Atici introduced the following fractional sum.

Let ν > 0. The ν-th fractional sum f is defined by

Obviously, the fractional sum in (31) starts at a+ 1. In Abdeljawad and Atici (2012), the 
authors established the relation between the operators ∇−ν

a  and ˜∇−ν
a  and considered the 

following initial value problem for a nonlinear fractional difference equation

where 0 < α < 1 and a is any real number. The authors obtained that x(t) is a solution of 
(E5) if and only if

Using the idea in Abdeljawad and Atici (2012), we can try to investigate the oscillation of 
the following nonlinear fractional nabla difference system

Examples
In this section, we give some examples to illustrate our main results.

(30)E(t) ≤ E(t0)+ Ŵ(1− α)

t
∑

s=t0+1

g(t).

lim inf
t→∞

E(t) = −∞,

(31)˜∇−ν
a f (t) =

1

Ŵ(ν)

t
∑

s=a+1

(t − s + 1)ν−1f (s), t ∈ Na+1.

{

∇α
a−1x(t) = f (t, x(t)), for t = a+ 1, a+ 2, . . . ,

˜∇
−(1−α)
a−1 x(t)|t=a = x(a) = c,

(E5)

x(t) =
(t − a+ 1)α−1

Ŵ(α)
x(a)+ ˜∇−α

a f (t, x(t)).

{

∇α
a−1

x(t)+ q(t)f (x(t)) = g(t), t ∈ Na,

˜∇
−(1−α)
a−1

x(t)|t=a = c.
(E6)
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Example 9  Consider the following fractional nabla difference system

Here a = 1,α = 1
2 , q(t) =

(t−
√
π

2 )Ŵ(t)

Ŵ(t+ 1
2 )

, f (x(t)) = x(t), g(t) = t. It is easy to see that

Therefore, from (33), we obtain that the condition (15) of Theorem  7 does not 
hold. Indeed, using Lemma  4 and Definition  1, by careful calculation, we find that 
x(t) = t

1
2 > 0 is a nonoscillatory solution of system (32).

Example 10  Consider the following fractional nabla difference system

Here a = 1,α = 1
3 , q(t) =

t2Ŵ(t)

Ŵ(t+ 1
3 )
, f (x(t)) = x(t), g(t) = t2 + 1

3Ŵ

(

1
3

)

. Obviously, for 
t0 ∈ N2,

which shows that the condition (27) of Theorem 8 does not hold. In fact, we can verify 
that x(t) = t

1
3 > 0 is a nonoscillatory solution of system (34).

Example 11  Consider the following fractional nabla difference system

Here a = 1,α = 1
2 , q(t) =

3t

Ŵ(t+ 1
4 )

f (x(t)) = x(t), g(t) = (−1)t et − (−1)t−1et−1. We 
easily see that

(32)















∇
1
2
1 x(t)+

�

t−
√
π

2

�

Ŵ(t)

Ŵ

�

t+ 1
2

� x(t) = t, t ∈ N2,

∇
− 1

2
1 x(t)

�

�

�

t=1
=

√
π

2 .

(33)(t − 1)
1
2

t
∑

s=2

(t − s + 1)−
1
2 g(s) = (t − 1)

1
2

t
∑

s=2

(t − s + 1)−
1
2 s > 0, t ∈ N2.

(34)











∇
1
3
1 x(t)+

t2Ŵ(t)

Ŵ

�

t+ 1
3

�x(t) = t2 + 1
3Ŵ

�

1
3

�

, t ∈ N2,

∇
− 2

3
1 x(t)

�

�

�

t=1
= 1

3Ŵ

�

1
3

�

.

(35)

t
∑

s=t0+1

g(s) =

t
∑

s=t0+1

(

s2 +
1

3
Ŵ

(

1

3

))

> 0,

(36)











∇
1
2
1 x(t)+

3t

Ŵ

�

t+ 1
4

�x(t) = (−1)t et − (−1)t−1et−1, t ∈ N2,

∇
− 1

2
1 x(t)

�

�

�

t=1
= c1, (c1 is a constant ).

t
∑

s=t0+1

g(s) = (−1)t et − (−1)t0et0 , t0 ∈ N2.



Page 9 of 10Li and Sheng ﻿SpringerPlus  (2016) 5:1178 

Therefore,

and

which show that the conditions in Theorem 8 are satisfied. By Theorem 8, every solution 
x(t) of the system (36) is oscillatory.

Conclusions
This paper provides some oscillation criteria for solutions of a nonlinear fractional nabla 
difference system by using the basic theories of discrete fractional calculus. The main 
results are given in Theorems 7 and 8. In the end of this paper, we give three examples. 
Examples 9 and 10 show that the assumptions of the main results can not be dropped.
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