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Introduction and preliminaries
The Hamiltonian cycle (HC) problem has many applications such as time scheduling, 
the choice of travel routes and network topology (Bollobas et al. 1987; Akhmedov and 
Winter 2014). Therefore, resolving the HC is an important problem in graph theory 
and computer science as well (Pak and Radoičić 2009). It is known to be in the class of 
NP-complete problems and consequently, determining if a graph is Hamiltonian, using 
the current algorithms, if it has a high time complexity. The difficulty of finding HC 
increases exponentially with the problem size. Also, there is an algorithm for solving the 
HC problem with polynomial expected running time (Bollobas et al. 1987).

A Hamiltonian path is a path in an undirected graph that visits each vertex exactly 
once. A Hamiltonian cycle is the cycle that visits each vertex once. A Hamiltonian graph 
is a graph that has a Hamiltonian cycle (Hertel 2004).

Due to their similarities, the problem of an HC is usually compared with Euler’s prob-
lem, but solving them is very different. There exists a very elegant, necessary and suffi-
cient condition for a graph to have Euler Cycles. Also, literature presents many solutions 
that generate efficient algorithms for finding Euler Cycles. Unfortunately, there is a lack 
of solutions for the Hamilton problem. In addition to the author’ knowledge, there is no 
research indicating a necessary and sufficient condition for a graph to have a HC. Some 
of the theorems provide finding sufficient conditions for a graph to be Hamiltonian 
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[such as Ore’s (1961) and Dirac’s (1952) theorems]. Nevertheless, the conditions in those 
theorems are complicated, and they are not applicable in many situations.

In this context, this paper introduces necessary conditions for a graph to have HC. 
This condition leads to build an efficient algorithm to find HC. The proposed algorithm 
depends on a numerical term which we call surplus edges.

Definition 1  If G(V, E) is an undirected graph and v ∊ V is a vertex in G, then we define 
the surplus of v, denoted by sur(v), to be sur(v) = deg (v) − 2. The surplus of the vertex v 
represents the number of edges that are incident to v and that must be removed so that 
the degree of v is 2.

In this paper, another new term used is: “n-factor graphs”. It is an extension to the fam-
ily of Hamiltonian graphs.

Definition 2  An undirected graph G(V, E) is n-Factor graph if, and only if there exists, 
a positive integer n and G1(V1, E1), G2(V2, E2),…, Gn(Vn, En) cycles and sub-graphs of G 
with {V1, V2,…, Vn} is a partition for V. Moreover, the set {G1, G2,…, Gn} is called a factor-
ized representation of G and the Gi’s are called the factors of the representation. The n is 
the number of factors.

The remainder of this paper is as follows. In “Literature review” section, a short lit-
erature review related to the problem of HC is done. “Deletion and n-factor graphs” 
section tackles the problem of deletion and n-Factor Graphs, the basis of the algorithm 
proposed being detailed step by step. In “Results and discussion” section, the results of 
different case studies (examples) were given. The last section concludes the paper.

Literature review
HC plays an important role in many areas including graph theory, algorithm design, and 
computational complexity. It has been studied widely in the past 100 years (Ibarra 2009). 
Many sufficient conditions for Hamiltonicity have been discovered from which two of 
the most notable are Dirac’s sufficient condition (Dirac 1952) and Ore’s theorems (Ore 
1961).

Dirac’s theorem  A simple graph with n vertices in which each vertex has degree at 
least ⌈n/2⌉ has a Hamiltonian cycle.

Ore’s theorem  A simple graph with n vertices in which the sum of the degrees of any 
two non-adjacent vertices is greater than or equal to n has a Hamiltonian cycle.

An algorithm for finding a HC in a proper interval graph in O(m +  n) time is pre-
sented by Ibarra (2009) where m is the number of edges and n is the number of vertices 
in the graph. The algorithm is simpler and shorter than the previous versions. An inter-
val graph is a graph where each vertex can be assigned an interval on the real line so that 
two vertices are adjacent if, and only if, their assigned intervals intersect; such an assign-
ment is an interval representation. A proper interval graph is an interval graph with an 
interval representation where no interval is properly contained in another.
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In another work, Nivasch (2003) tested two algorithms to determine their perfor-
mance for practical problems. The two algorithms used are Ham and SemiHam. Ham 
was introduced by Bollobas et al. (1987), and it is heuristic polynomial-time algorithm 
for finding Hamiltonian cycles in random graphs with high probability.

In order to improve the Hamiltonian Cycle function of the Combinatorica, Csehi and 
Toth (2011) proposed an alternative solution for finding HC by testing if a HC exists. 
This is performed by checking the bi-connectivity of the graph and other conditions 
such as those described in the theorems of Dirac (1952), Ore (1960), Posa (1962) and 
Lawler et al. (1985).

A similar approach for finding HC in directed graphs is proposed by Christofides et al. 
(2012). It uses several known criteria for the existence of HC and provides algorith-
mic proof for, and oriented analogue of, Dirac theorem and an approximate version of 
Chvatal theorem.

Other researchers focused on specific structures. Liu and Wang (2014) demonstrated 
that, in a hypercube with a set of faulty edges, there is a fault free HC if two conditions 
are satisfied: the degree of every vertex is at least two and there are no pairs of adjacent 
vertices (with degree two) in a 4 cycle. In a similar study, Hao et al. (2014) derived that 
in a balanced hypercube, for any fault free edge exists a fault free HC containing it, and 
having 2n-2 faulty edges.

Deletion and n‑factor graphs
In order to find a HC, the edges that form it must be chosen so that any extra edges are 
avoided. In other words, the edges that do not belong to this cycle must be deleted. Defi-
nition 3 below introduces the primary way of deleting such edges.

Definition 3  A deletion of a graph G is a random way of removing edges that are not 
incident to vertices with zero surpluses until we cannot delete more edges. The edges 
that are deleted are called surplus edges, and the deletion process is denoted by D.

This process is expressed in the Algorithm 1 below:

Input: a graph G(V, E)

Output: a graph G' without surplus edges

deletion(G)

{

for each vertex  v in V

for each edge e incident to v

if e is a surplus  edge

remove e

}

Algorithm 1
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Definition 4  In a deletion for a graph G (V,E), an alternate edge path from vertex u 
to vertex v is defined to be a path in the graph G which is labeled in the deletion by 
X,O,X,… Or O,X,O,X,… In this case, “X” labels the removed edges, while “O” labels the 
non-removed edges.

Depending on the number and type of edges, a specific terminology is used:

• • If the number of edges in an alternate edge path is odd, then the path is called an 
“odd alternate edge path”.

• • If the odd alternate edge path starts with O (and so ends with O because its length is 
odd), then it is called a “Destroyer”.

• • If the number of edges in an alternate edge path is even, then the path is called an 
“even alternate edge path”.

• • If the even alternate edge path is a cycle from the vertex to itself, then it is called a 
“Connector”.

Definition 5  The inverse of an alternate edge path: XOXO… n-times is the same path 
but with reflecting the X’s and the O’s, that is: OXOX… n-times.

Definition 6  In a deletion D for a graph G (V,E), the set of vertices remained with sur-
plus >0 (degree > 2) is called the Remaining Set induced by D, it is denoted by SD.

The following example illustrates the deletion process.

Example 1  Consider the following graph G.

According to definition 2, if the edges {c,h}, {f,g}, {g,h}, {i,j}, {i,j}, {l,m}, {m,n}, {l,q} and 
{r,s} are removed or labeled with X, while, the other edges are labeled with O, then the 
graph in Fig. 1 becomes the graph in Fig. 2, where Fig. 2A shows the graph with the XOX 
notation. Figure 2B shows the clean version of the graph without the XOX notation: 

Now, no more edges can be removed because each edge is incident with at least one 
vertex with degree two (zero surplus).

Although no more edges can be removed, the graph still has some vertices of degree 
higher than two. Therefore, the objective becomes a refinement of the random deletion 
in order to reach a connected graph with degree two for each vertex. In order to perform 

Fig. 1  Initial G graph
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such a task, Definitions 2 and 3 are considered and their corresponding algorithms being 
the following:

Input: a graph G (V, E) that has no surplus edges, remaining set SD

Output: a Hamiltonian/ n-factor graph G' 

destroyer(G, SD )

{

w = 1    // The value of the first edge in      

// the destroy path should be 1

for each x and y in SD

destroyPath(x,y,w)

}

destroyPath(node x, node y, int w)

{

for each edge e of x where value(e) = w

if value(e) = 1 and w = 1 and y =endVertex(e)

then return 1 

else if value(e) = w 

then if destroyPath(endVertex(e), y , -w) = 1    

then

value(e) = 1 - value(e)

return 1

else return 0

else if value(e) = 0 and endVertex(e) = y 

then  return 0

}

Algorithm 2

Fig. 2  The reduced form of G in Fig. 1 after removing the edges mentioned in Example 1: A the graph with 
the XOX notation and  B the graph without the XOX notation
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By analyzing the deletion from Example 1 leading to Fig. 2, the following aspects can 
be observed:

• • Initially, a random deletion was applied so that the degree of every vertex is 2 (as dis-
cussed in Definition 3).

• • The path f,g,l,m,h is an even alternate edge path with labeling XOXO,
• • The path b,g,f,k is a destroyer with labeling P: OXO, according to Definition 4.
• • According to Definition 5, the inverse of the destroyer b,g,f,k is b,g,f,k with labeling 

P−1: XOX.
• • The remaining set of our deletion is SD = {b,d,k,o}.

The following theorem provides a necessary and sufficient condition for a graph to be 
an n-factor graph.

Theorem 1  A graphG(V, E) is an n-factor graph if and only, if in any deletion D with 
a remaining set SD the following condition is satisfied: “∀u ∈ SD∃v ∈ SD such that there 
exists a destroyer from u to v”.

Proof  (←) If SD = φ, then there is nothing to prove. If not, that is, if SD ≠ φ, then by 
given ∀u ∈ SD∃v ∈ SD and a destroyer, say P: u, O, × 1, X, x2, O,…, X, xn, O, v, where xi, 
are the vertices between u and v through which the destroyer P passes and i = 1,2,…n. By 
reflecting the destroyer P, its inverse is P−1: u, X, x1, O, x2, X,…, O, xn, X, v. This process 
reduces with one the degree of u and v without affecting the degrees of any xi, and this 
is because, simultaneously, one edge is added to each vertex xi and one edge is removed 
from each vertex xi. Finally, if this process is repeated for the other vertices in SD, then 
some edges can be deleted so that the degree of each vertex in the resulting graph is 2. 
As a result, it is SD = ф. This new graph is a factorized representation for graph G.

(→) If a graph G is n-factor, then it has already a factorized representation with n compo-
nents. Therefore, a random deletion for G produces a graph that can be transformed into this 
representation by removing one edge (X) or removing two edges and adding one (XOX), and 
so on. This means that after that random deletion, the destroyers ((O) or (OXO) and so on) 
are reflected between the elements in the produced graph. It is important to mention here 
that the total sum of surplus edges is always an even number, and this can be seen through 
the well-known Handshaking Theorem that interprets the third equality in Eq. (1):

where |E| is the number of edges and |V| is the number of vertices.

Example 2  Based on Example 1, it will be shown that Gis an n-factor graph because 
G satisfies Theorem  1. In order to demonstrate this, consider the remaining set 
SD = {b,d,k,o}. For instance, the destroyer P: b,O, g ,X , f ,O, k joins the vertices b and k. 
Also, the vertices d and o are joined by the destroyer Q: d,O, c,X , h,O, i,X , n,O, o. If P 
and Q are reflected, then P−1: b,X , g ,O, f ,X , k and Q−1: d,X , c,O, h,X , i,O, n,X , o. These 
two reflections transform the graph from Fig. 2 to the graph from Fig. 3.

(1)

∑

x∈V

sur(x) =
∑

x∈V

(

deg(x)− 2
)

=
∑

x∈V

deg(x)−
∑

x∈V

2 = 2(|E| − |V |),
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Figure 3, it can be observed that C1: (g,h,m,l,g), C2: (q,l,g,h,m,n,s,r,q), C3: (m,n,s,r,m),C4:  
(h,i,n,m,h), C5: (c,d,i,h,c) and C6: (i,j,o,n,i) are connectors, and there could be other 
connectors.

Reflecting any connector in an n-factor graph will transform it into an m-factor graph, 
where m is not necessarily to be equal to n. Therefore, the objective is to find the set of 
reflections that lead to the 1-factor graph, which is the Hamilton cycle of the original graph.

The concept behind reflecting a connector in a factorized representation is just adding 
ki and removing ki edges from each vertex vi. This means that reflecting connectors pre-
serves the degree of each vertex but change the status of the graph from a representation 
to another.

The process of connecting an n-factor graph is expressed in Algorithm 3.

Algorithm 3

Input: a n-factor graph G (V, E) 
Output: a Hamiltonian graph G' 

connector(G)
{

w = 1
for each v in V

connectingPath(v,v,w,w)
}

connectingPath(node x, node y, int w, int f)
{

for each edge e of x where value(e) = w
if value(e) = f and y = endVertex(e) 
then return 1 
else if value(e) = w 

then
if connectingPath(endVertex(e),y,-w,f) =1
then

value(e) = 1 - value(e)
return 1

else return 0
else if value(e) != f and endVertex(e) = y 

then  return 0
}

Fig. 3  Applying the Destroyer Algorithm: A the XOX notation and B the clean version of the graph
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Figure 4 shows the status of the graph in Fig. 3 after applying reflections to the connec-
tors C1, C2,…, and C6.

Therefore, if in a factorized representation of a graph there exists m different connec-
tors, then to determine whether the graph is Hamiltonian or not, at most 2 m situations 
of the connectors must be tested. Knowing that each connector C has two situations C 
and C−1, each situation is called a switch.

For a certain graph, HC doesn’t have to be unique, and this is equivalent to the affirma-
tion that the connectors that produce HC do not have to be unique. Distinctively to the 
Euler’s cycle (in which the determination of the direction of moving to pass each edge 
exactly one time is required), in the case of the Hamilton problem, the right edges that 
lead to pass each vertex once must be selected.

The previous arguments suggest that the idea of factorized representation, and the 
idea of connectors, will lead together to find the desired Hamilton cycle. Consequently, 

Fig. 4  Producing n-factor graphs. A Reflecting C1 produces, B reflecting C2 produces, C reflecting C3 pro-
duces, D reflecting C4 produces, E reflecting C5 produces, F reflecting C6 produces



Page 9 of 14Alhalabi et al. SpringerPlus  (2016) 5:1192 

based on Theorem 1, starting with some n-factor representation (if possible, otherwise 
the graph is not Hamiltonian), the target is to make n = 1. In other words, the scope is to 
join the n components by using some of the connectors.

Based on these aspects, a set of illustrative cases are presented below.

Example 4  The graph in Fig. 5 is not Hamiltonian because it is not n-factor graph.

Example 5  The Petersen graph as in Figs. 6 and 7.

Fig. 5  Not n-factor graph

Fig. 6  Petersen graph

Fig. 7  Connectors reflection of the Petersen graph from Example 5. A When connector C1: (a, f, i, d, c, h, j, e, a) 
is reflected and B connector C2: (a, f, i, g, b, c, d, e, a) is reflected
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In Example 5 it can be observed that the factorized representation of the Petersen 
graph is {G1, G2} where G1 is the red plot, and G2 is the blue plot. The components of the 
representation cannot be joined because reflecting any of the connectors will transfer 
the representation into another representation of two components; hence the Petersen 
graph is not Hamiltonian, although it is n-factor graph. In order for the reader to have a 
better understanding of this aspect, we will reflect all connectors.

Results and discussion
In order to evaluate the proposed algorithms, their implementation was performed. 
The IDE used was Eclipse with JRE 7 and 1.6.0_37 JDK in combination with JGraph and 
JGraphT (open source java class libraries for the interface design) (http://www.jgraph.
com, http://www.jgrapht.org). The specifications of the machine used in the experiments 
are 2 GB of RAM and 2.2 Ghz CPU speed with iOS version 10.8 as an operating system.

The first example uses a complete graph of 5 nodes shown in Fig. 8. The Hamiltonian 
cycles of the complete graph shown in Fig. 9 are different because, in order to obtain the 
HC, the first step of the proposed methodology consists in randomly removing the edges 
incident with vertices of degree greater than 2.

Fig. 8  Complete graph

Fig. 9  Different possible Hamiltonian circuits of the complete graph

http://www.jgraph.com
http://www.jgraph.com
http://www.jgrapht.org
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In some situations, this step is not enough and further refinements are required. Take, 
for instance, the 20 nodes graph in Fig. 10 as an example. The random deletion of surplus 
edges resulted in n-factor graph as shown in Fig. 11, which is a graph of disconnected 
cycles. In order to join the graph’s components, connector(s) need to be reflected. A 
connector is an even alternate edge path that is a cycle from a vertex to itself. One pos-
sible connector would be C: v6, X, v11, O, v12, X, v13, O, v14, X, v9, O, v4, X, v3, O v2, X, 
v7, O, v6. If we reflect C, the representation components will be joined and the Hamilto-
nian cycle will be revealed as illustrated in Fig. 12.

Figure 13 presents the Dodecahedron graph before implementing the algorithm. After 
performing a random deletion, the remaining set of our deletion is SD =  {v1, v16}, as 
shown in Fig. 14A, which shows a destroyer is needed to get rid of the extra edges; a 
destroyer is an odd alternate edge path between the two vertices of the remaining set. 
The path P: v1, O, v3, X, v19, O, v20, X, v18, O, v17, X, v15, O, v12, X, v11, O, v16 is a 
destroyer path. Figure 14B displays the Hamiltonian cycle of the Dodecahedron graph 
after the inverse of the destroyer P was reflected.

The next example is the Petersen graph, as shown in Fig. 15. After removing the extra 
edges from the Petersen graph, an n-factor graph was obtained. All connector path 
attempts failed to connect the graph and result in another n-factor graph. Some of these 
attempts are shown in Fig. 15B. Therefore, the graph is not Hamiltonian.

Fig. 10  The input graph

Fig. 11  n-factor graph with n = 3
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Fig. 12  The graph after implementing a connector path

Fig. 13  Dodecahedron graph

Fig. 14  Dodecahedron graph after running the algorithms. a SD = {v1, v16}, b the graph after implementing 
the destroyer
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Conclusion
As the existing solutions relate to the HC problem, this paper proposed a precise math-
ematical procedure for determining HC. Based on this procedure, an algorithm has been 
proposed and successfully implemented. The simulations results indicated that the algo-
rithm works as expected. The graphs were visualized using a Java Applet with the aid of 
the JGraph library, where the steps of the algorithm are shown. Several graphs have been 
tested, and in all the cases, the algorithm provided successful results.

One of the possibilities of algorithm improvement include adding more constraints 
to the destroyer and connector functions, thus further reducing the search time. Also, 
computing the complexity of the algorithm and testing the algorithm on a variety of 
extensive graphs, needs to be implemented for future improvement.
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