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Background
Research on language evolution is crucial for understanding the diversity of human cul-
ture. Over recent years, language evolution has become a popular topic in modern sci-
ence. Evolution of language can largely be attributed to social behavior. Thus, the factor 
of social behavior is one of the motivations of language evolution. The original meaning 
of the word evolution is the difference in living beings between generations, even includ-
ing competition amongst species. American linguist Mufwene (2001) considers language 

Abstract 

Language is characterized by both ecological properties and social properties, and 
competition is the basic form of language evolution. The rise and decline of one 
language is a result of competition between languages. Moreover, this rise and decline 
directly influences the diversity of human culture. Mathematics and computer mod‑
eling for language competition has been a popular topic in the fields of linguistics, 
mathematics, computer science, ecology, and other disciplines. Currently, there are sev‑
eral problems in the research on language competition modeling. First, comprehensive 
mathematical analysis is absent in most studies of language competition models. Next, 
most language competition models are based on the assumption that one language 
in the model is stronger than the other. These studies tend to ignore cases where there 
is a balance of power in the competition. The competition between two well-matched 
languages is more practical, because it can facilitate the co-development of two 
languages. A third issue with current studies is that many studies have an evolution 
result where the weaker language inevitably goes extinct. From the integrated point 
of view of ecology and sociology, this paper improves the Lotka–Volterra model and 
basic reaction–diffusion model to propose an “ecology–society” computational model 
for describing language competition. Furthermore, a strict and comprehensive math‑
ematical analysis was made for the stability of the equilibria. Two languages in compe‑
tition may be either well-matched or greatly different in strength, which was reflected 
in the experimental design. The results revealed that language coexistence, and even 
co-development, are likely to occur during language competition.

Keywords:  Language competition, Coexistence, Co-development, Computational 
model, Lotka–Volterra, Reaction–diffusion, Equilibria, Stability, Ecology–society

Open Access

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and 
indicate if changes were made.

RESEARCH

Yun et al. SpringerPlus  (2016) 5:855 
DOI 10.1186/s40064-016-2482-0

*Correspondence:  
dlnuliushuang@126.com 
1 School of Computer 
Science and Engineering, 
Dalian Nationalities 
University, Dalian 116600, 
Liaoning, China
Full list of author information 
is available at the end of the 
article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40064-016-2482-0&domain=pdf


Page 2 of 16Yun et al. SpringerPlus  (2016) 5:855 

a biological species and analyzes language evolution from a brand-new ecological point 
of view, thus formulating language evolution ecology. Mufwene (2001) describes lan-
guage as being like a parasite on a host, which is the talking person. Here, competition 
and selection are the basic evolution modes of language species evolution, and the rise 
and decline of any given language is the result of language competition. Language evolu-
tion is characterized by language competition, while language competition is character-
ized by both ecological properties and social properties.

This paper proposes an “ecology–society” computational model that describes the 
coexistence and co-development within language competition. The model is then used 
to prove the possibility of the coexistence of two competitive languages.

The remainder of this paper is organized as follows. The “Related work” section pre-
sents related research. The “Stability of equilibria in associated computational models” 
section contains the mathematical analysis of equilibria and their stability in an existing 
computation model. The “Ecology–society computational model” section describes the 
proposed “ecology–society” computational model for language competition, along with 
a relatively strict mathematical analysis and theoretical arguments. The “Experiments 
and analysis” section shows the experiments that were designed to prove the validity of 
the model. Finally, the “Conclusion” section presents the conclusion.

Related work
Research on language evolution can be divided into two categories: language origin 
and change, and language competition. The former is usually carried out in an inter-
disciplinary manner, with relatively obvious cross characterizations of linguistics, evo-
lutionary biology, nerve and brain function science, informetrics, and computer science. 
Research regarding language competition, on the other hand, is typically considered to 
be more practical, as various models produced in language competition research can 
provide a quantitative evaluation and estimation for the tendency of the two languages 
in competition.

The various components of language origin and change have made significant con-
tributions to the field. In terms of linguistics, the language variation theories presented 
by Labov (1994, 2001) are considered standard in language evolution. Studies in the 
field of evolutionary biology have also made useful contributions to language evolution 
research. The findings of Allentoft et  al. (2015), Novembre (2015) are consistent with 
the hypothesized spread of Indo-European languages during the Early Bronze Age, and 
the genome-wide DNA analysis of Haak et al. (2015), Novembre (2015) showed that the 
massive migration from the steppe was a source for Indo-European languages in Europe. 
Nerve and brain function science studies have demonstrated that human brain spe-
cializations that support language can be identified by comparing human brains with 
non-human primate brains; the volume of human arcuate fasciculus is much larger than 
other primates, and only human arcuate fasciculus completely connect the Broca area 
in the left brain prefrontal cortex with the Wernicke area behind the temporal lobeand 
(Rilling et  al. 2008; Rilling 2014). These two brain regions are both language function 
areas. Informetrics have also been introduced in this research branch. Petersen et  al. 
(2012) showed a decreasing marginal need for new words in language expansion by ana-
lyzing the occurrence frequencies of over 15 million words in seven different languages. 
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Perc (2012) studied the evolution of the most common English words and phrases over 
the centuries based on statistical analysis and contemporary network science. Perc 
(2014) also studied the Matthew effect in social phenomena and emphasized the impor-
tance of cumulative advantage processes in language change. Computer science has 
also presented relevant results in recent years by considering the formation of language 
structure as an entry point. Here, language structure refers to phonetics, syntax, and 
vocabulary. In human language systems, phonetics, syntax, and vocabulary are comput-
able. Investigators have created a wide variety of research in the field of computer sci-
ence regarding language evolution: Ke et al. (2003) proposed a human vowel system and 
tone system optimization model based on genetic algorithms; Mukherjee et  al. (2007) 
proposed a human consonant system co-occurrence model based on community find-
ing algorithms in complex networks (Radicchi et al. 2004); Redford et al. (2001) modeled 
the emergence of human syllable systems based on symbiotic evolutionary algorithms; 
Shaobai et al. (2015) investigated the mechanism for phonating stressed English sylla-
bles based on an improved neural network model; De and Zuidema (2010) investigated 
the evolution of combinatorial phonology with a multi-agents model; Gong (2011) pre-
sented a syntactic model that discusses the process of universal, non-language-specific 
mechanisms that help individuals acquire vocabulary and syntax; and Kirby et al. (2014) 
reviewed various methods, such as computational agent-based simulations and math-
ematical modeling, for understanding how behavior is shaped by the iterated learning 
process, and then showed how an iterated learning framework has been used to explain 
the origins of structure in language.

In recent years, language competition has become an increasingly popular topic in 
language evolution research. This branch primarily focuses on computer science, math-
ematics, and ecology. The language competition dynamics model proposed by Abrams 
and Strogatz (2003) is considered to be the standard in this branch. The AS (Abrams-
Strogatz) model suggests that the coexistence of two languages competition is not stable 
and that the weaker one will eventually become extinct. The parameter s in this model 
represents the social state of the language. Other researchers (Stauffer et al. 2007; Caridi 
et  al. 2013) have considered the AS model and further discussed the phenomenon of 
language competition by using an agent-based method. Patriarca and Leppänen (2004) 
discussed the coexistence of two languages in two disjoint zones using a reaction–diffu-
sion equation. However, this research is not suitable for the coexistence of two languages 
in competition in one zone. Pinasco and Romanelli (2006) combined the famous species 
competition model, also known as the Lotka–Volterra model, with the infectious disease 
model to propose a new ecological model that is capable of explaining the coexistence of 
two competitive languages in one zone. Based on this work, Kandler and Steele (2008) 
took common carrying capacity and spatial heterogeneity into account and improved 
the ecological model. Zhang and Gong (2013) discussed the rules in qualitative and 
quantitative analysis of various parameters in the language competition model. Over-
all, both ecological modeling and sociological modeling are useful methods for studying 
language evolution.

It is highly important to develop a computational model that integrates both ecologi-
cal and societal characteristics, as language can be classified by both ecological species 
and social status. In fact, mathematical modeling of competition in “ecology–societal” 
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models such as sustainable development, population growth and cultural evolution has 
been widely discussed (Perc and Szolnoki 2010; Ghirlanda et al. 2010). In addition, many 
existing language competition modeling studies are driven by endangered language 
extinction crises; the associated models tend to assume that one language is weaker 
than the other in advance. However, competition between two well-matched languages 
is more fruitful as a subject of research. If the two languages in competition are evenly 
matched, the competition is more valuable, as it is less predictable. The core value here 
is that the two languages can develop jointly through competition. Research on language 
competition will be more valuable if it is more applicable to a real world setting.

Stability of equilibria in associated computational models
Consider the two following differential equations defined as Theorem (Xue 2011):

The corresponding algebraic equations are:

The real roots x1 = x∗1, x2 = x∗2 of the algebraic equations are the equilibria of the men-
tioned differential equations, and they are denoted by (x∗1, x

∗
2).

Let A, p, and q be defined by the following equations:

If p > 0 and q > 0, then (x∗1, x
∗
2) is stable. If p < 0 or q < 0, then (x∗1, x

∗
2) is unstable.

Lotka–Volterra/infectious disease hybrid model and basic reaction–diffusion model

The hybrid model of Lotka–Volterra and infectious disease, proposed by Pinasco and 
Romanelli (2006), is as follows:

dx1

dt
= f1(x1, x2),

dx2

dt
= f2(x1, x2)

f1(x1, x2) = 0,

f2(x1, x2) = 0.
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The basic reaction–diffusion language competition model, proposed by Kandler and 
Steele (2008), is as follows:

where u1 and u2 represent the frequencies of the populations using language 1 and lan-
guage 2, respectively; a1 and a2 represent the growth rate of the number of speakers who 
speak language 1 and language 2, respectively; K1 and K2 represent the carrying capaci-
ties of the populations using language 1 and language 2, respectively; c is the attractive-
ness of language 1 to language 2, which can also be defined as the conversion rate of 
language 2 to language 1; d1�u1 and d2�u2 represent the diffusion components of the 
populations using language 1 and language 2, respectively; and � is the Laplace operator.

The equilibria and stabilities of models (1) and (2) are equal according to the following 
detailed analysis.

The four equilibrium points can be determined according to Theorem (Xue 2011):

For the equilibrium to be positive, K1 <
a2
c  must be satisfied. The following can be 

defined according to Theorem (Xue 2011):

For the equilibrium (u∗1,u
∗
2) = (0, 0), matrix A =

[

a1 0
0 a2

]

. Equilibrium 

(u∗1,u
∗
2) = (0, 0) is not stable, because p = −(a1 + a2) < 0. For the equilibrium 

(u∗1,u
∗
2) = (0,K2) , matrix A =

[

a1 + cK2 0
−cK2 −a2

]

. The equilibrium (u∗1,u
∗
2) = (0,K2) is not 

stable, because q = −a2(a1 + cK2) < 0. For the equilibrium (u∗1,u
∗
2) = (K1, 0), matrix 

A =

[

−a1 cK1

0 a2 − cK1

]

. When the premise condition K1 <
a2
c  is satisfied, q < 0 because 

q = −a1(a2 − cK1). Thus, the equilibrium (u∗1,u
∗
2) = (K1, 0) is not stable. For the equilib-

rium (u∗1,u
∗
2) =

(

a2K1(a1+cK2)
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)
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



−
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

 . 
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Based on the above analysis of the four equilibria, it can be seen that when K1 <
a2
c , 

the only stable equilibrium is (u∗1,u
∗
2) =

(

a2K1(a1+cK2)

a1a2+c2K1K2
, a1K2(a2−cK1)

a1a2+c2K1K2

)

, which allows for the 
possibility of language coexistence.

Reaction–diffusion model with common carrying capacity

Kandler and Steele (2008) proposed the reaction–diffusion language competition model 
with common carrying capacity:

where K represents the maximum carrying capacity of the sum of the populations using 
language 1 and language 2.

The following five equilibria can be defined according to Theorem (Xue 2011):

To keep the fourth equilibrium positive, c2K 2 > 4a1a2, cK − 2a1 + (c2K 2 − 4a1a2)
1/2 > 0 

must be satisfied, so K >
2(a1a2)

1/2

c and a2 > a1.
To keep the fifth equilibrium positive, c2K 2 > 4a1a2, cK − 2a1 − (c2K 2 − 4a1a2)

1/2 > 0 
must be satisfied, so a1+a2

c > K >
2(a1a2)

1/2

c .
The common carrying requirement of the fourth and fifth equilibria must be verified, 

that is, u1 + u2 ≤ K .
For the fourth equilibrium,

because a2 > a1, u∗1 + u∗2 > K .
For the fifth equilibrium, u∗1 + u∗2 = K +

a2−a1−(c2K 2
−4a1a2)

1/2

c .
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2c
,
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1/2

2c

)

,
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∗
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1/2

2c
,
cK − 2a1 − (c2K 2 − 4a1a2)

1/2

2c

)

.

u∗1 + u∗2 =
cK + 2a2 + (c2K 2 − 4a1a2)

1/2 + cK − 2a1 + (c2K 2 − 4a1a2)
1/2

2c

= K +
a2 − a1 + (c2K 2 − 4a1a2)

1/2

c
.

If a2 < a1, u
∗
1 + u∗2 < K ;

If a2 > a1,
a1 + a2

c
> K >

2(a1a2)
1/2

c
;
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Assuming φ(x) = x + a2−a1−(c2x2−4a1a2)
1/2

c , then φ ′

(x) = 1− cx
(c2x2−4a1a2)1/2

< 0, so 
φ(x) is monotonically decreasing. Based on the properties of the monotonic decreasing 
function, if a1+a2

c > k >
2(a1a2)

1/2

c , then u∗1 + u∗2 ≥ K .
According to Theorem (Xue 2011),

For the equilibrium (u∗1,u
∗
2) = (0, 0) ,matrix A =

[

a1 0
0 a2

]

. Equilibrium (u∗1,u
∗
2) = (0, 0) 

is not stable, because p = −(a1 + a2) < 0.
For the equilibrium (u∗1,u

∗
2) = (0,K ), matrix A =

[

a1 + cK 0
−cK − a2 −a2

]

. Equilibrium 

(u∗1,u
∗
2) = (0,K ) is not stable, because q = −a2(a1 + cK ) < 0.

For the equilibrium (u∗1,u
∗
2) = (K , 0) ,matrix A =

[

−a1 cK − a1
0 a2 − cK

]

, and 

p = −(−a1 + a2 − cK ), q = −a1(a2 − cK ) when K < a2
c . Here, the equilibrium is not 

stable, because q < 0. When K > a2
c , the equilibrium is stable, because p > 0, q > 0.

For the equilibrium (u∗1,u
∗
2) =

(

cK+2a2+(c2K 2
−4a1a2)

1/2

2c , cK−2a1+(c2K 2
−4a1a2)

1/2

2c

)

,

because p = −

(

a1 −
2a1u1
K−u2

+ cu2 + a2 − cu1 −
2a2u2
K−u1

)

= 0, (u∗
1
,u∗

2
) =

(

cK+2a2+(c2K 2−4a1a2)
1/2

2c ,

cK−2a1+(c2K 2
−4a1a2)

1/2

2c

)

 is not stable.
For the equilibrium (u∗1,u

∗
2) =

(

cK+2a2−(c2K 2
−4a1a2)

1/2

2c , cK−2a1−(c2K 2
−4a1a2)

1/2

2c

)

 , 

because p = −

(

a1 −
2a1u1
K−u2

+ cu2 + a2 − cu1 −
2a2u2
K−u1

)

= 0, the equilibrium (u∗
1
,u∗

2
) =

(

cK+2a2−(c2K 2
−4a1a2)

1/2

2c ,
cK−2a1−(c2K 2

−4a1a2)
1/2

2c

)

 is not stable.
The above analysis demonstrates that the introduction of the common carrying capac-

ity alone is not sufficient to make the languages coexist. The fourth and fifth equilib-
ria are neither stable nor able to meet the requirements cu1u2 in most cases. In other 
words, the common carrying capacity does not set the upper limit of the sum of the 
two components for one equilibrium. This shows that the model is weaker than both 
the Lotka–Volterra model and the basic reaction–diffusion model for describing lan-
guage coexistence. The model describes the language coexistence mainly by regulating 
the diffusion coefficient in the reaction–diffusion equation. The basic reaction–diffusion 
model also utilizes the diffusion coefficient.

In addition, each of the three models mentioned above implies that language 1 is 
stronger than language 2. The reason is that there is cu1u2 in language 1, cu1u2 in lan-
guage 2, and c > 0 in the model. None of the three models successfully describe more 
valuable, more common, and more real competition, which is defined by co-develop-
ment in competition.

If K =
2(a1a2)

1/2

c
, u∗1 + u∗2 = K +

a2 − a1

c
> K ;

If K =
a1 + a2

c
, u∗1 + u∗2 = K .

A =





a1 −
2a1u1
K−u2

+ cu2 cu1 −
a1u

2
1

(K−u2)2

−cu2 −
a2u

2
2

(K−u1)2
a2 − cu1 −

2a2u2
K−u1




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Ecology–society computational model
Proposal and description of the model

This paper proposes a model that offers an improvement upon the Lotka–Volterra model 
and the basic reaction–diffusion model based on the analysis of the various models in the 
previous section. These two models were chosen for improvement due to their ability to 
describe language co-existence. The improved model is therefore expected to describe 
both language coexistence and language co-development. The new model reflects both the 
ecological elements that the language as a species should have and the social status ele-
ments of the language. Equation 4 shows the improved model:

where d1�u1 and d2�u2 represent the diffusion terms of the populations using languages 
1 and language 2, respectively; a1u1

(

1− u1
K1

−
αu2
K1

)

 and a2u2
(

1− u2
K2

−
βu1
K2

)

 reflect the 
characteristics of the Lotka–Volterra model and represent the change of language frequency 
influenced by the population’s inherent growth rate, the competition within the population, 
and the competition among populations using language 1 and language 2, respectively; c1 is 
the attractiveness of language 1 to language 2, which can also be described as the conver-
sion rate representing the percentage of people turning to speak language 1 in the popula-
tion using language 2; and c2 is the attractiveness of language 2 to language 1. In this model, 
the role of parameters c1 and c2 is similar to parameter s in the AS model (Abrams and Stro-
gatz 2003). They are used to represent the social combination factors affecting language 
competition, including language position, media influence, geographical distribution of the 
language-speaking population, and domestic policy on the language. In contrast to existing 
models that consider one language to be stronger than the other, the current model focuses 
on the co-development of two well-matched languages in competition. In the model, there 
is c1u1u2 in language 1, c2u1u2 in language 2, and c1 > 0 and c2 > 0.

Analysis of equilibria and their stabilities

The following four equilibria can be determined according to Theorem (Xue 2011):

Positive analysis of equilibria

This section presents mathematical analysis of the requirements to keep the fourth equi-
librium positive.

(4)

∂u1

∂t
= d1�u1 + a1u1

(

1−
u1

K1
−

αu2

K1

)

+ c1u1u2

∂u2

∂t
= d2�u2 + a2u2

(

1−
u2

K2
−

βu1

K2

)

+ c2u1u2

(u∗1,u
∗
2) = (0, 0),

(u∗1,u
∗
2) = (K1, 0),

(u∗1,u
∗
2) = (0,K2),

(u∗1,u
∗
2) =

(

a2(K2αa1 − K2c1K1 − a1K1)

−a1a2 + αβa1a2 − βa2c1K1 − c2K2αa1 + c2K2c1K1

,

a1(K1βa2 − K2c2K1 − a2K2)

−a1a2 + αβa1a2 − βa2c1K1 − c2K2αa1 + c2K2c1K1

)



Page 9 of 16Yun et al. SpringerPlus  (2016) 5:855 

1.	 Assume −a1a2 + αβa1a2 − βa2c1K1 − c2K2αa1 + c2K2c1K1 > 0, which is equivalent 
to c1K1(c2K2 − βa2) > a1(c2K2α + a2 − αβa2). Thus, K1 >

a1(c2K2α+a2−αβa2)
c1(c2K2−βa2)

> 0 

when c2K2 − βa2 > 0, and 0 < K1 <
a1(c2K2α+a2−αβa2)

c1(c2K2−βa2)
 when c2K2 − βa2 < 0.

In the first case, K1βa2 − K2c2K1 − a2K2 > 0. This is because the numerator must be 
greater than zero if the denominator is greater than zero. Therefore, K1 <

a2K2
βa2−c2K2

< 0, 
which is obviously not plausible.

In the second case, K2αa1 − K2c1K1 − a1K1 > 0. Here, K1 <
K2αa1

K2c1+a1
. Since 

K1βa2 − K2c2K1 − a2K2 > 0, K1 >
a2K2

βa2−K2c2
.

Assuming that the denominator of the equilibrium is greater than zero, 
a2K2

βa2−K2c2
< K1 < min

(

K2αa1
K2c1+a1

, a1(c2K2α+a2−αβa2)
c1(c2K2−βa2)

)

 must be satisfied.

2.	 Assume −a1a2 + αβa1a2 − βa2c1K1 − c2K2αa1 + c2K2c1K1 < 0, which is  
equivalent to c1K1(c2K2 − βa2) < a1(c2K2α + a2 − αβa2). Therefore, 
0 < K1 <

a1(c2K2α+a2−αβa2)
c1(c2K2−βa2)

 when c2K2 − βa2 > 0, and K1 >
a1(c2K2α+a2−αβa2)

c1(c2K2−βa2)
> 0 

when c2K2 − βa2 < 0.

In the first case, K1βa2 − K2c2K1 − a2K2 < 0. This is because the numerator must 
be less than zero if the denominator is less than zero. Then, K1 > 0 > a2K2

βa2−c2K2
. Since 

K2αa1 − K2c1K1 − a1K1 < 0, then K1 >
K2αa1

K2c1+a1
.

In the second case, K2αa1 − K2c1K1 − a1K1 < 0, K1 >
K2αa1

K2c1+a1
. Since 

K1βa2 − K2c2K1 − a2K2 < 0, K1 <
a2K2

βa2−K2c2
.

Assuming that the denominator of the equilibrium is smaller than zero, 
max

(

a1(c2K2α+a2−αβa2)
c1(c2K2−βa2)

, K2αa1
K2c1+a1

)

< K1 <
a2K2

βa2−K2c2
 or K2αa1

K2c1+a1
< K1 <

a1(c2K2α+a2−αβa2)
c1(c2K2−βa2)

 

must be satisfied.

Analysis of the stablities of the equilibria

According to Theorem (Xue 2011),

For the equilibrium (u∗1,u
∗
2) = (0, 0), matrix A =

[

a1 0
0 a2

]

. Since p = −(a1 + a2) < 0, 
equilibrium (u∗1,u

∗
2) = (0, 0) is not stable.

For the equilibrium (u∗1,u
∗
2) = (0,K2),

A =

[

a1 −
2a1u1
K1

−
αa1u2
K1

+ c1u2 c1u1 −
αa1u1
K1

c2u2 −
βa2u2
K2

a2 −
2a2u2
K2

−
βa2u1
K2

+ c2u1

]

.

p = −

(

a1 −
2a1u1

K1

−
αa1u2

K1

+ c1u2 + a2 −
2a2u2

K2

−
βa2u1

K2

+ c2u1

)

= a2 − a1 +
αa1K2

K1

− c1K2

q =

(

a1 −
2a1u1

K1

−
αa1u2

K1

+ c1u2

)(

a2 −
2a2u2

K2

−
βa2u1

K2

+ c2u1

)

−

(

c1u1 −
αa1u1

K1

)(

c2u2 −
βa2u2

K2

)

= −a2

(

a1 −
αa1k2

k1
+ c1k2

)
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According to Theorem (Xue 2011), since p > 0 and q > 0, K1 <
αa1K2

a1+c1K2
. Therefore, 

equilibrium (u∗1,u
∗
2) = (0,K2) is stable when K1 <

αa1K2
a1+c1K2

.
For the equilibrium (u∗1,u

∗
2) = (K1, 0),

According to Theorem (Xue 2011), since p > 0 and q > 0,K2 <
βa2K1

a2+c2K1
. Therefore, the 

equilibrium (u∗1,u
∗
2) = (K1, 0) is stable when K2 <

βa2K1
a2+c2K1

.
For the equilibrium

Assuming the denominator of the equilibrium is smaller than zero, 
max

(

a1(c2K2α+a2−αβa2)
c1(c2K2−βa2)

, K2αa1
K2c1+a1

)

< K1 <
a2K2

βa2−K2c2
 or K2αa1

K2c1+a1
< K1 <

a1(c2K2α+a2−αβa2)
c1(c2K2−βa2)

  
must be satisfied. Therefore, −a1a2 + αβa1a2 − βa2c1K1 − c2K2αa1 + c2K2c1K1 < 0, 
a1K2α − c1K1K2 − a1K1 < 0 and a2K1β − c2K1K2 − a2K2 < 0. Now, p > 0, q > 0, which  
suggests that (u∗

1
,u∗

2
) =

(

a2(K2αa1−K2c1K1−a1K1)
−a1a2+αβa1a2−βa2c1K1−c2K2αa1+c2K2c1K1

,
a1(K1βa2−K2c2K1−a2K2)

−a1a2+αβa1a2−βa2c1K1−c2K2αa1+c2K2c1K1

)

 is 
stable.

p = −

(

a1 −
2a1u1

K1
−

αa1u2

K1
+ c1u2 + a2 −

2a2u2

K2
−

βa2u1

K2
+ c2u1

)

= a1 − a2 +
βa2K1

K2
− c2K1

q =

(

a1 −
2a1u1

K1

−
αa1u2

K1

+ c1u2

)(

a2 −
2a2u2

K2

−
βa2u1

K2

+ c2u1

)

−

(

c1u1 −
αa1u1

K1

)(

c2u2 −
βa2u2

K2

)

= −a1

(

a2 −
βa2K1

K2

+ c2K1

)

(u∗1,u
∗
2) =

(

a2(K2αa1 − K2c1K1 − a1K1)

−a1a2 + αβa1a2 − βa2c1K1 − c2K2αa1 + c2K2c1K1

,

a1(K1βa2 − K2c2K1 − a2K2)

−a1a2 + αβa1a2 − βa2c1K1 − c2K2αa1 + c2K2c1K1

)

,

p = −

(

a1 −
2a1u1

K1
−

αa1u2

K1
+ c1u2 + a2 −

2a2u2

K2
−

βa2u1

K2
+ c2u1

)

=
−a1a2(K2αa1 − K2c1K1 − a1K1)

−K1(−a1a2 + αβa1a2 − βa2c1K1 − c2K2αa1 + c2K2c1K1)

+
−a2a1(K1βa2 − K2c2K1 − a2K2)

−K2(−a1a2 + αβa1a2 − βa2c1K1 − c2K2αa1 + c2K2c1K1)

q =

(

a1 −
2a1u1

K1

−
αa1u2

K1

+ c1u2

)(

a2 −
2a2u2

K2

−
βa2u1

K2

+ c2u1

)

−

(

c1u1 −
αa1u1

K1

)(

c2u2 −
βa2u2

K2

)

=
a1a2(a1K2α − c1K1K2 − a1K1)(a2K1β − c2K1K2 − a2K2)

−(−a1a2 + αβa1a2 − βa2c1K1 − c2K2αa1 + c2K2c1k1)K1K2
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Assuming that the denominator of the equilibrium is greater than zero, 
a2K2

βa2−K2c2
< K1 < min

(

K2αa1
K2c1+a1

, a1(c2K2α+a2−αβa2)
c1(c2K2−βa2)

)

 must be satisfied. Therefore, 
−a1a2 + αβa1a2 − βa2c1K1 − c2K2αa1 + c2K2c1K1 > 0, a1K2α − c1K1K2 − a1K1 > 0 , 
and a2K1β − c2K1K2 − a2K2 > 0. Now,p > 0, q < 0, which suggests that equilibrium 
(u∗

1
,u∗

2
) =

(

a2(K2αa1−K2c1K1−a1K1)
−a1a2+αβa1a2−βa2c1K1−c2K2αa1+c2K2c1K1

,
a1(K1βa2−K2c2K1−a2K2)

−a1a2+αβa1a2−βa2c1K1−c2K2αa1+c2K2c1K1

)

 is 
not stable.

Based on the analysis of “Stability of equilibria in associated computational models” 
section and “Ecology–society computational model” section, there are two advantages 
for the new parameters c1 and c2, which are: (1) c1 and c2 represent the attractive force 
of their own languages to the competitor. Therefore, c1 and c2 show the bidirectional 
attractive forces of two languages, while the original model in the previous section only 
represents unidirectional attractive force; and (2) Equations in the new model have posi-
tive and stable equilibriums under some conditions, which provides the possibility of 
co-existence or even co-development for two competitive languages.

Experiments and analysis
Fundamental rules of determining parameter values

Based on the analysis of the stabilities of the equilibria given in the “Ecology–society 
computational model” section, it can be seen that the parameter values must meet sta-
bility requirements for the equilibria. The requirements are as follows:

Suppose K1 = 1, K2 = 1. Taking the first case as an example, the requirement is 
a1(c2K2α+a2−αβa2)

c1(c2K2−βa2)
> 1, then α > c1

a1
.

Simulation results

Experiments on the coexistence of two languages greatly different in strength

The following value set was chosen based on the basic rules for determining parameter 
values:

This parameter set demonstrates that language 1 has a greater advantage than language 
2. Boundary conditions are ∂u1

∂n = 0, ∂u2
∂n = 0, where u1,u2 ∈ ∂D; D is a [0,1] × [0,1] rec-

tangular area. Figure 1 shows the initial distribution of u1,u2 for the cases of two coexist-
ence languages greatly different in strength, which was taken from (Kandler and Steele 
2008). It can be seen that the frequency of language 1 is superior to that of language 2 
in its initial distribution, which is consistent with the purpose of choosing other experi-
mental parameter values. Figure 2 shows the changes in the frequency of the two lan-
guages at different moments.

If c2K2 − βa2 > 0,
K2αa1

K2c1 + a1
< K1 <

a1(c2K2α + a2 − αβa2)

c1(c2K2 − βa2)
.

If c2K2−βa2 < 0, max

(

K2αa1

K2c1 + a1
,
a1(c2K2α + a2 − αβa2)

c1(c2K2 − βa2)

)

< K1 <
a2K2

βa2 − K2c2
.

d1 = 0.001; d2 = 0.01; a1 = 0.08; a2 = 0.01;K1 = 1;

K2 = 1; c1 = 0.04; c2 = 0.02; α = 0.6; β = 0.65
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Table 1 shows the maximum and minimum values of the language frequency at differ-
ent moments.

It can be seen that the maximum values of u1,u2 first decreased and then increased 
later, while the minimum values of u1,u2 always increased. During observation, the 

Fig. 1  Initial value distribution of u1, u2 for experiment on the coexistence of two languages greatly different 
in strength, where u1 is the frequency of language 1 and u2 is the frequency of language 2

Fig. 2  Value distribution of u1, u2 for experiment on the coexistence of two languages greatly different 
in strength. Sub-image a t = 100, sub-image b t = 300, sub-image c t = 500 and sub-image d t = 700. 
Sub-images a–d show the changes in the frequency of the two languages at different moments. With the 
advance of observed time moment, the originally more powerful language 1 becomes even more superior. 
The originally weaker language 2 co-exists with language 1 without dying out



Page 13 of 16Yun et al. SpringerPlus  (2016) 5:855 

weaker language, language 2, never appeared to be close to extinction and even coex-
isted with the stronger language, language 1.

Experiments on the co‑development of two well‑matched languages

The following values were chosen based on the basic rules for determining parameter 
values:

These parameter values make the two languages well-matched. The boundary condi-
tions are ∂u1

∂n = 0, ∂u2
∂n = 0, where u1,u2 ∈ ∂D; D is a [0,1] × [0,1] rectangle area. Figure 3 

shows the initial distribution of u1,u2 during the co-development of two languages 
that are similar in strength. It can be seen that the frequencies of languages 1 and 2 are 
roughly the same in their initial distributions, which is consistent with the purpose of 
determining the values of other experimental parameters. Figure 4 shows the changes in 
the frequency of the two languages at different moments.

Table 2 shows the maximum and minimum values of the frequencies of the two lan-
guages at different moments.

It can be seen that the maximum value of u1 increased, and the maximum value of u2 
decreased at first and then increased later. Moreover, the minimum values of u1,u2 both 
increased at growth rates larger than their respective maximum values. Each language 
developed harmoniously within its scope, and the two languages co-developed. Lan-
guages 1 and 2 were evenly matched in general. Interestingly, language 1 was dominant 

d1 = 0.005; d2 = 0.005; a1 = 0.02; a2 = 0.01; K1 = 1;

K2 = 1; c1 = 0.016; c2 = 0.02; α = 0.6; β = 0.5.

Table 1  Maximum and  minimum value distribution of  u1,u2 at  different moments 
for experiment 1

Values of t 
(min, max)

t = 0 t = 100 t = 300 t = 500 t = 700

u1 (0.0, 0.9) (0.0003, 0.8914) (0.0689, 0.9093) (0.4656, 0.9480) (0.8399, 0.9652)

u2 (0.0, 0.3) (0.0466, 0.1389) (0.1210, 0.1211) (0.1653, 0.1757) (0.2482, 0.2548)

Fig. 3  Initial value distribution of u1, u2 for experiment on the co-development of two well-matched lan‑
guages. The initial distributions of the frequency of language 1 u1 and frequency of language 2 u2 are roughly 
equivalent
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in Fig. 2b, c, while language 2 was dominant in Fig. 2d Reviewing the parameter values of 
c1 and c2, c2 > c1, it is reasonable to conclude that language 2 is superior to language 1 in 
terms of social property. The analysis suggests that the social properties of language may 
play a more important role in language competition than previously thought.

Conclusion
Based on an overall mathematical analysis of related language competition models, this 
paper has proposed an ecology–society computational model describing language com-
petition. Key features of this ecology–society computational model are as follows. First, 
the model changes the assumption from previous research that one language is always 
superior to the other language. That is, there is only one unidirectional attractive force 
c of the stronger language to the weaker language. However, in the present model, the 

Fig. 4  Value distribution of u1, u2 for experiment on the co-development of two well-matched languages. 
Sub-image a t = 100, sub-image b t = 300, sub-image c t = 500 and sub-image d: t = 700. Sub-images 
a–d show the changes in the frequency of the two well-matched languages at different moments. With the 
advance of observed time moment, the two well-matched languages show co-development in the process 
of competition

Table 2  The maximum and  minimum diffusion of u1,u2 at  different moments for  experi-
ment 2

Values of t 
(max, min)

t = 0 t = 100 t = 300 t = 500 t = 700

u1 (0.2, 0.6) (0.3680, 0.6128) (0.5796, 0.6494) (0.7259, 0.7438) (0.8491, 0.8532)

u2 (0.2, 0.6) (0.2817, 0.5310) (0.4869, 0.5660) (0.6853, 0.7093) (0.9167, 0.9236)
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attractive forces of both c1 and c2 are introduced to cancel the indication that one lan-
guage must be superior to another language. Second, this model has positive and sta-
ble equilibriums in some conditions, which provides the possibility of co-existence or 
even co-development for two competitive languages. Based on simulation experiments 
regarding the coexistence of two languages greatly different in strength and the co-
development of two well-matched languages, it appears possible that two languages in 
competition may coexist and even develop jointly.
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