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Background
The Boolean satisfiability problem (SAT) consists in the following: for an arbitrary 
Boolean formula to decide if it is satisfiable, i.e. if there exists such an assignment of 
Boolean variables from the formula that makes this formula true. SAT is usually con-
sidered for a Boolean formula in conjunctive normal form (CNF), because SAT for any 
Boolean formula can be effectively reduced to SAT for some CNF. Despite the fact that 
SAT is an NP-hard problem, it has wide spectrum of practical applications because many 
combinatorial problems from different areas can be reduced to it (Biere et al. 2009). The 
effectiveness of the SAT solving algorithms in the recent years dramatically increased. At 
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the present moment these algorithms are often used in formal verification, combinato-
rics, cryptanalysis, bioinformatics and other areas.

In this paper we consider the applicability of the SAT approach to problems of inver-
sion of some cryptographic functions. The corresponding SAT instances are hard and 
the success in their solving has at least two positive consequences. First, the SAT solv-
ing algorithms, that successfully cope with cryptanalysis instances, are powerful com-
puting methods and can be applied to solving combinatorial problems from various 
classes. Second, they can be used to justify the resistance of cryptographic systems or 
to find their vulnerabilities. Unfortunately, today there is no unified term to represent 
the cryptanalysis via SAT approach. In the corresponding papers such phrases as “logi-
cal cryptanalysis”, “SAT-aided cryptanalysis”, “cryptanalysis via SAT solvers”, etc. are used 
for this purpose. Hereinafter we will refer to it as SAT-based cryptanalysis.

The development of parallel SAT solving algorithms is very relevant. There are two 
approaches to constructing such algorithms: the portfolio approach and the partitioning 
approach. According to the portfolio approach one SAT instance is solved using differ-
ent SAT solvers. During their work, SAT solvers share information (usually in the form 
of conflict clauses). According to the partitioning approach the original SAT instance 
is decomposed into a family of independent instances. For solving instances from the 
obtained family it is natural to use a parallel or a distributed computing system. Note that 
for a particular SAT instance there can be constructed a lot of different partitionings. In 
this case there arises a question: how to evaluate a partitioning and compare it to others? 
From the practical point of view it can be reformulated as follows: how to find relatively 
good partitioning in a reasonable time? In this paper we answer these questions.

Below we present the brief outline of this paper. First, we consider the problem of esti-
mating the effectiveness of a SAT partitioning as a problem of estimating the expected 
value of a special random variable. To solve the latter problem we apply the Monte Carlo 
method in its classical formulation (Metropolis and Ulam 1949). Then the problem 
of finding a SAT partitioning with a realistic estimated time, required to process it, is 
reduced to the optimization problem for the predictive function in a special finite search 
space. We use two metaheuristic algorithms to solve this problem: simulated annealing 
and tabu search.

The proposed methods for constructing SAT partitionings were tested in application 
to cryptanalysis of two well known stream ciphers: A5/1 and Bivium. The search for SAT 
partitionings was performed using a computing cluster. The corresponding cryptanalysis 
instances were solved using the found partitionings on the computing cluster and also in 
the volunteer computing project SAT@home, that was developed by us specifically for 
the purpose of solving hard SAT instances via partitioning approach.

We would like to emphasize that this paper is a significant extension of the paper 
(Semenov and Zaikin 2015), which appeared in the proceedings of 13th international 
conference on parallel computing technologies (PaCT’2015).

Monte Carlo approach to statistical estimation of effectiveness of SAT 
partitioning
Let us consider the SAT for an arbitrary CNF C. The partitioning of C is a set of formulas

C ∧ Gj , j ∈ {1, . . . , s}
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such that for any i, j : i �= j formula C ∧ Gi ∧ Gj is unsatisfiable and

(hereinafter by “≡” we denote logical equivalence). Obviously when one has a partition-
ing of the original SAT instance, SAT for formulas C ∧ Gj, j ∈ {1, . . . , s} can be solved 
independently in parallel.

There exist various partitioning techniques. For example one can construct {Gj}sj=1 
using a scattering procedure, a guiding path solver, lookahead solver and a number of 
other techniques described in Hyvärinen (2011). Unfortunately, for these partitioning 
methods it is hard in general case to estimate the time required to solve an original prob-
lem. From the other hand in a number of papers about SAT-based cryptanalysis of sev-
eral keystream ciphers there was used a partitioning method that makes it possible to 
construct such estimations in quite a natural way. In particular, in Eibach et al. (2008), 
Soos et al. (2009), Soos (2010), Zaikin and Semenov (2008) for this purpose the informa-
tion about the time to solve small number of subproblems randomly chosen from the 
partitioning of an original problem was used. In our paper we give strict formal descrip-
tion of this idea within the borders of the Monte Carlo method in its classical form 
(Metropolis and Ulam 1949). Also we focus our attention on some important details of 
the method that were not considered in previous works.

Consider SAT for an arbitrary CNF C over a set of Boolean variables X = {x1, . . . , xn} . 
To an arbitrary set X̃ =

{

xi1 , . . . , xid
}

, X̃ ⊆ X we refer as a decomposition set. Consider 
a partitioning of C that consists of a set of 2d formulas

where Gj, j ∈ {1, . . . , 2d} are all possible minterms over X̃. Note that an arbitrary formula 
Gj takes a value of true on a single truth assignment 

(

α
j
1, . . . ,α

j
d

)

∈ {0, 1}d. Therefore, an 

arbitrary formula C ∧ Gj is satisfiable if and only if C
[

X̃/
(

α
j
1, . . . ,α

j
d

)]

 is satisfiable. Here 

C
[

X̃/
(

α
j
1, . . . ,α

j
d

)]

 is produced by setting values of variables xik to corresponding αj
k, 

k ∈ {1, . . . , d} : xi1 = α
j
1, . . . , xid = α

j
d. To a set of CNFs

we will refer as a decomposition family produced by X̃. It is easy to see that the decom-
position family is the partitioning of the SAT instance C.

Let A be some SAT solving algorithm. Hereinafter we presume that A is complete, 
i.e. it halts on every input. We also presume that A is a non-randomized deterministic 
algorithm. We denote the total runtime of A on all the SAT instances from �C

(

X̃
)

 as 
tC ,A

(

X̃
)

. Below we suggest a method for estimating tC ,A
(

X̃
)

.
Define the uniform distribution on the set {0, 1}d. With each randomly chosen truth 

assignment (α1, . . . ,αd) from {0, 1}d we associate a value ξC ,A(α1, . . . ,αd) that is equal 

to the runtime of A on CNF C
[

X̃/(α1, . . . ,αd)
]

. Let ξ1, . . . , ξQ be all the different values 

that ξC ,A(α1, . . . ,αd) takes on all the possible (α1, . . . ,αd) ∈ {0, 1}d. Below we use the fol-
lowing notation

C ≡ C ∧ G1 ∨ · · · ∨ C ∧ Gs.

C ∧ Gj , j ∈ {1, . . . , 2d}

�C(X̃) =
{

C
[

X̃/
(

α
j
1, . . . ,α

j
d

)]}

(

α
j
1,...,α

j
d

)

∈{0,1}d
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Denote the number of (α1, . . . ,αd), such that ξC ,A(α1, . . . ,αd) = ξ j, as ♯ξ j. Associate with 
(1) the following set

We say that the random variable ξC ,A
(

X̃
)

 has distribution P
(

ξC ,A

(

X̃
))

. Note that the 
following equality holds

Therefore,

To estimate the expected value E
[

ξC ,A

(

X̃
)]

 we will use the Monte Carlo method 
(Metropolis and Ulam 1949). According to this method, a probabilistic experiment that 
consists of N independent observations of values of an arbitrary random variable ξ is used 
to approximately calculate E[ξ ]. Let ζ 1, . . . , ζN be results of the corresponding observa-
tions. They can be considered as a single observation of N independent random variables 
with the same distribution as ξ. If E[ξ ] and Var(ξ) are both finite then from the Central 
Limit Theorem (Feller 1971) we have the main formula of the Monte Carlo method

Here σ =
√
Var(ξ) stands for a standard deviation, γ – for a confidence level, γ = �

(

δγ
)

 , 
where �(·) is the normal cumulative distribution function. It means that under the con-
sidered assumptions the value

is a good approximation of E[ξ ], when the number of observations N is large enough.
Due to completeness of A the expected value and variance of random variable ξC ,A(X̃) 

are finite. Since A is deterministic (i.e. it does not use randomization) the observed val-
ues will have the same distribution. One can use the preprocessing stage to estimate the 
effectiveness of the considered partitioning because N can be significantly less than 2d.

So the process of estimating the value (2) for a given X̃ is as follows. We randomly 
choose N truth assignments of variables from X̃

Below we refer to (4) as random sample. Then consider values

(1)ξC ,A
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and calculate the value

If N is large enough then the value of FC ,A
(

X̃
)

 can be considered as a good approxi-
mation of (2). That is why one can search for a decomposition set with minimal value of 
FC ,A(·) instead of finding a decomposition set with minimal value (2). Below we refer to 
function FC ,A(·) as predictive function.

Algorithms for minimization of predictive function
Below we will describe the algorithm for finding good partitionings. This algorithm is 
based on the procedure minimizing the predictive function in the special search space.

Let C be an arbitrary CNF over the set of Boolean variables X = {x1, . . . , xn} . Let 
X̃ ⊆ X be an arbitrary decomposition set. We can represent X̃ by binary vector 
χ = (χ1, . . . ,χn). Here

For an arbitrary χ ∈ {0, 1}n we compute the value of function F(χ) in the following way. 
For vector χ we construct the corresponding set X̃ (it is formed by variables from X 
that correspond to 1 positions in χ). Then we construct a random sample α1, . . . ,αN , 
αj ∈ {0, 1}|X̃ | [see (4)] and solve SAT for CNFs C

[

X̃/αj
]

. For each of these SAT instances 
we measure ζ j — the runtime of algorithm A on the input C

[

X̃/αj
]

. After this we calcu-
late the value of FC ,A

(

X̃
)

 according to (5). As a result we have the value of F(χ) in the 
considered point of the search space.

Now we will solve the problem F(χ) → min over the set {0, 1}n. Of course, the prob-
lem of search for the exact minimum of function F(χ) is extraordinarily complex. There-
fore our main goal is to find in affordable time the points in {0, 1}n with relatively good 
values of function F(·). Note that the function F(·) is not specified by some formula and 
therefore we do not know any of its analytical properties. That is why to minimize this 
function we use metaheuristic algorithms: simulated annealing and tabu search.

First, we need to introduce the notation. By R we denote the search space, for exam-
ple, R = {0, 1}n, however, as we will see later, for the problems considered one can use 
the search spaces of much less power. During the minimization of function F(·) we itera-
tively move from one point of the search space to another:

By Nρ(χ) we denote the neighborhood of point χ of radius ρ in the search space R. The 
point from which the search starts we denote as χstart. We will refer to the decomposi-
tion set specified by this point as X̃start. The current Best Known Value of F(·) is denoted 
by Fbest. The point in which the Fbest was achieved we denote as χbest. By χcenter we denote 
the point the neighborhood of which is processed at the current moment. We call the 
point, in which we computed the value F(·), a checked point. The neighborhood Nρ(χ) 

(5)FC ,A

�

X̃
�

= 2d ·





1

N
·

N
�

j=1

ζ j



.

χi =
{

1, if xi ∈ X̃

0, if xi /∈ X̃
, i ∈ {1, . . . , n}

χ0 → χ1 → · · · → χ i → · · · → χ∗.
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in which all the points are checked is called checked neighborhood. Otherwise the neigh-
borhood is called unchecked.

According to the scheme of the simulated annealing (Kirkpatrick et al. 1983), the tran-
sition from χ i to χ i+1 is performed in two stages. First we choose a point χ̃ i from Nρ

(

χ i
)

 . 
The point χ̃ i becomes the point χ i+1 with the probability denoted as Pr

{

χ̃ i → χ i+1|χ i
}

. 
This probability is defined in the following way:

In the pseudocode of the algorithm demonstrated below, the function that tests if the 
point χ̃ i becomes χ i+1, is called PointAccepted (this function returns the value of 
true if the transition occurs and false otherwise). The change of parameter Ti corre-
sponds to decreasing the “temperature of the environment” (Kirkpatrick et al. 1983) (in 
the pseudocode by decreaseTemperature() we denote the function which imple-
ments this procedure). Usually it is assumed that Ti = Q · Ti−1, i ≥ 1, where Q ∈ (0, 1) . 
The process starts at some initial value T0 and continues until the temperature drops 
below some threshold value Tinf  (in the pseudocode the function that checks this condi-
tion is called temperatureLimitReached()).

Algorithm 1: Simulated annealing algorithm for minimization of the predictive
function
Input: CNF C, initial point χstart

Output: Pair χbest, Fbest , where Fbest is a prediction for C, χbest is a corresponding
decomposition set

1 χcenter , Fbest χstart, F (χstart)
2 repeat
3 bestValueUpdated ← false
4 ρ = 1
5 repeat // check neighborhood
6 χ ← any unchecked point from Nρ(χcenter)
7 compute F (χ)
8 mark χ as checked point in Nρ(χcenter)
9 if PointAccepted(χ) then

10 χbest, Fbest χ, F (χ)
11 χcenter ← χbest

12 bestValueUpdated ← true

13 if (Nρ(χcenter) is checked) and (not bestValueUpdated) then
14 ρ = ρ+ 1

15 decreaseTemperature()
16 until bestValueUpdated
17 until timeExceeded() or temperatureLimitReached()
18 return χbest, Fbest

Another metaheuristic scheme that we used for minimization of F(·) is the tabu search 
algorithm (Glover and Laguna 1997). According to this algorithm we store the points 
from the search space, in which we already calculated the values of function F(·), in 
special tabu lists. When we try to improve the current Best Known Value of F(·) in the 
neighborhood of some point χcenter then for an arbitrary point χ from the neighborhood 
we first check if we haven’t computed F(χ) earlier. If we haven’t and, therefore, the point 
χ is not contained in tabu lists, then we compute F(χ). This strategy is justified in the 
case of the minimization of predictive function F(·) because the computing of values of 

Pr
�

χ̃ i → χ i+1|χ i
�

=







1, if F
�

χ̃ i
�

< F
�

χ i
�

exp

�

− F
�

χ̃ i
�

−F
�

χ i
�

Ti

�

, if F
�

χ̃ i
�

≥ F
�

χ i
�
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the function in some points of the search space can be very expensive. The use of tabu 
lists makes it possible to significantly increase the number of points of the search space 
processed per time unit.

Let us describe the tabu search algorithm for minimization F(·) in more detail. To 
store the information about points, in which we already computed the value of F(·) we 
use two tabu lists L1 and L2. The L1 list contains only points with checked neighbor-
hoods. The L2 list contains checked points with unchecked neighborhoods. Below we 
present the pseudocode of the tabu search algorithm for F(·) minimization.

Algorithm 2: Tabu search altorithm for minimization of the predictive function
Input: CNF C, initial point χstart

Output: Pair χbest, Fbest , where Fbest is a prediction for C, χbest is a corresponding
decomposition set

1 χcenter , Fbest χstart, F (χstart)
2 L1, L2 , χstart // initialize tabu lists
3 repeat
4 bestValueUpdated ← false
5 repeat // check neighborhood
6 χ ← any unchecked point from Nρ(χcenter)
7 compute F (χ)
8 markPointInTabuLists(χ, L1, L2 stsilubatetadpu//)
9 if F (χ) < Fbest then

10 χbest, Fbest χ, F (χ)
11 bestValueUpdated ← true

12 until Nρ(χcenter) is checked
13 if bestValueUpdated then χcenter ← χbest
14 else χcenter ← getNewCenter(L2)
15 until timeExceeded() or L2 = ∅
16 return χbest, Fbest

In this algorithm the function markPointInTabuLists(χ , L1, L2) adds the point χ 
to L2 and then marks χ as checked in all neighborhoods of points from L2 that contain 
χ. If as a result the neighborhood of some point χ ′ becomes checked, the point χ ′ is 
removed from L2 and is added to L1. If we have processed all the points in the neighbor-
hood of χcenter but could not improve the Fbest then as the new point χcenter we choose 
some point from L2. It is done via the function getNewCenter(L2). To choose the new 
point in this case one can use various heuristics. In our current implementation the tabu 
search algorithm chooses the point for which the total conflict activity (Marques-Silva 
et al. 2009) of Boolean variables, contained in the corresponding decomposition set, is 
the largest.

As we already mentioned above, taking into account the features of the considered 
SAT problems makes it possible to significantly decrease the size of the search space. 
For example, knowing the so called Backdoor Sets (Williams et  al. 2003) can help in 
that matter. Let us consider the SAT instance that encodes the inversion problem of 
the function of the kind f : {0, 1}k → {0, 1}l. Let S(f) be the Boolean circuit implement-
ing f. Then the set X̃in, formed by the variables encoding the inputs of the Boolean cir-
cuit S(f), is the so called Strong Unit Propagation Backdoor Set (Järvisalo and Junttila 
2009). It means that if we use X̃in as the decomposition set, then the CDCL (Conflict-
Driven Clause Learning Marques-Silva et al. 2009) solver will solve SAT for any CNF of 
the kind C

[

X̃in/α

]

, α ∈ {0, 1}|X̃in| on the preprocessing stage, i.e. very fast. Therefore the 
set X̃in can be used as the set X̃start in the predictive function minimization procedure. 



Page 8 of 16Semenov and Zaikin ﻿SpringerPlus  (2016) 5:554 

Moreover, in this case it is possible to use the set 2X̃in in the role of the search space R. In 
all our computational experiments we followed this path.

Computational experiments
We implemented the algorithms from the previous section in the form of PDSAT MPI-
program (https://github.com/Nauchnik/pdsat). One process of PDSAT is the leader pro-
cess, all the other are computing processes (each process corresponds to 1 CPU core).

The leader process selects points of the search space (we use neighborhoods of radius 
ρ = 1). For every new point χ = χ

(

X̃
)

 it generates a random sample (4) of size N. Each 
assignment from (4) combined with the original CNF C defines the SAT instance from 
the decomposition family �C

(

X̃
)

. These instances are solved by computing processes. 
When computing the value of the predictive function we assume that the decomposi-
tion family will be processed by 1 CPU core. We can extrapolate the estimation obtained 
to an arbitrary parallel (or distributed) computing system because the processing of 
�C

(

X̃
)

 consists in solving independent subproblems. In the computing processes Mini-
Sat solver (Eén and Sörensson 2003) is used. This solver was modified to be able to stop 
computations upon receiving corresponding messages from the leader process.

Below we present the estimations produced by PDSAT for SAT-based cryptanalysis 
of the A5/1 (Biryukov et al. 2000), Bivium (Cannière 2006) and Grain (Hell et al. 2007) 
keystream generators. We used the Transalg system (Otpuschennikov et al. 2015) to 
construct SAT instances for these problems.

Time estimations for SAT‑based cryptanalysis of A5/1

For the first time the SAT-based cryptanalysis of the A5/1 keystream generator was con-
sidered in Semenov et al. (2011). Further we study this problem in the following form: to 
find the secret key of length 64 bits based on the given 114-bit keystream fragment. The 
PDSAT program was used to find partitionings with good time estimations for CNFs 
encoding this problem. The computational experiments were performed on the comput-
ing cluster “Academician V.M. Matrosov” of ISDCT SB RAS (http://hpc.icc.ru/index.
php). One computing node of this cluster consists of 2 AMD Opteron 6276 CPUs (32 
CPU cores in total). In each experiment PDSAT was launched for 1 day using 2 comput-
ing nodes (i.e. 64 CPU cores). We used random samples of size N = 104.

On Figs. 1, 2a, b three decomposition sets are shown. We described the first decom-
position set (further referred to as S1) in the paper Semenov et al. (2011). This set (con-
sisting of 31 variables) was constructed “manually” based on the analysis of algorithmic 
features of the A5/1 generator. The second one (S2), consisting of 31 variables, was found 
as a result of the minimization of F(·) by the simulated annealing algorithm (see “Algo-
rithms for minimization of predictive function” section). The third decomposition set 
(S3), consisting of 32 variables, was found as a result of minimization of F(·) by the tabu 
search algorithm. In the Table 1 the values of F(·) (in seconds) for all three decomposi-
tion sets are shown. Note that each of decomposition sets S2 and S3 was found for one 
114 bit fragment of keystream that was generated according to the A5/1 algorithm for a 
randomly chosen 64-bit secret key.

https://github.com/Nauchnik/pdsat
http://hpc.icc.ru/index.php
http://hpc.icc.ru/index.php
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Solving cryptanalysis instances for A5/1 in the volunteer computing project SAT@home

The values of predictive function presented in Table 1 show that the SAT-based crypta-
nalysis of the A5/1 generator requires quite significant computing power. Specifically for 
the purpose of solving hard SAT instances we developed the volunteer computing pro-
ject SAT@home (Posypkin et al. 2012). Volunteer computing (Durrani and Shamsi 2014) 
is a type of distributed computing which uses computational resources of PCs of private 
persons called volunteers. Each volunteer computing project is designed to solve one 
or several hard problems. SAT@home is based on the BOINC platform (Berkeley Open 
Infrastructure for Network Computing Anderson 2004). SAT@home was launched on 
September 29, 2011 by Matrosov Institute for System Dynamics and Control Theory 
of Siberian Branch of Russian Academy of Sciences and Kharkevich Institute for Infor-
mation Transmission Problems of Russian Academy of Sciences. On February 7, 2012 

Fig. 1  Decomposition set S1 constructed in Semenov et al. (2011)

(a) (b)
Fig. 2  Decomposition sets found by PDSAT for cryptanalysis of A5/1. a S2: found by simulated annealing.  
b S3: found by tabu search

Table 1  Decomposition sets for SAT-based cryptanalysis of A5/1 and corresponding values 
of the predictive function

Set Power of set F(·)

S1 31 4.45140e+08

S2 31 4.78318e+08

S3 32 4.64428e+08
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SAT@home was added to the official list of BOINC projects (http://boinc.berkeley.edu/
projects.php).

The experiment aimed at solving 10 cryptanalysis instances for the A5/1 keystream 
generator was held in SAT@home from December 2011 to May 2012. We used the 
rainbow-tables (http://opensource.srlabs.de/projects/a51-decrypt) to construct the cor-
responding instances. When analyzing 8 bursts of keystream (i.e. 912 bits) these tables 
allow to find the secret key with probability about 88%. We randomly generated 1000 
instances and applied the rainbow-tables technique to analyze 8 bursts of keystream, 
generated by A5/1. Among these 1000 instances the rainbow-tables could not find the 
secret key for 125 problems. From these 125 instances we randomly chose 10 and in 
the computational experiments applied the SAT approach to the analysis of the first 
burst of each corresponding keystream fragment (114 bits). For each SAT instance we 
constructed the partitioning generated by the S1 decomposition set (see Fig. 1) and pro-
cessed it in the SAT@home project. All 10 instances constructed this way were success-
fully solved in SAT@home (i.e. we managed to find the corresponding secret keys) in 
about 5 months (the average performance of the project at that time was about 2 tera-
flops). The second experiment on the cryptanalysis of A5/1 was launched in SAT@home 
in May 2014. It was done with the purpose of testing the decomposition set found by 
tabu search algorithm. In particular we took the decomposition set S3 (see Fig. 2b). On 
September 26, 2014 we successfully solved in SAT@home all 10 instances from the con-
sidered series.

It should be noted that in all the experiments the time required to solve the problem 
agrees with the predictive function value computed for the desomposition sets S1 and 
S3. Our computational experiments clearly demonstrate that the proposed method of 
automatic search for decomposition sets makes it possible to construct SAT partition-
ings with the properties close to that of “reference” partitionings, i.e. partitionings con-
structed based on the analysis of algorithmic features of the considered cryptographic 
functions.

Time estimations for SAT‑based cryptanalysis of Bivium and Grain

The Bivium keystream generator (Cannière 2006) is constructed from two shift registers 
of a special kind. The first one contains 93 cells and the second one contains 84 cells. 
The Grain keystream generator (Hell et al. 2007) also uses 2 shift registers: first is 80-bit 
nonlinear feedback shift register (NFSR), second is 80-bit linear feedback shift regis-
ter (LFSR). To mix registers outputs the generator uses a special filter function h(x). In 
accordance with Maximov et al. (2007), Soos (2010) we considered cryptanalysis prob-
lems for Bivium and Grain in the following formulation. Based on the known fragment 
of keystream we search for the values of all registers cells at the end of the initialization 
phase. It means that we need to find 177 bits in case of Bivium and 160 bits in case of 
Grain.

Usually it is sufficient to consider keystream fragment of length comparable to the 
total length of shift registers to uniquely identify the secret key. Here we followed Eibach 
et al. (2008), Soos (2010) and set the keystream fragment length for Bivium cryptanalysis 
to 200 bits and for Grain cryptanalysis to 160 bits.

http://boinc.berkeley.edu/projects.php
http://boinc.berkeley.edu/projects.php
http://opensource.srlabs.de/projects/a51-decrypt
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In our computational experiments we applied PDSAT to SAT instances that encode 
the cryptanalysis of Bivium and Grain according to the formulations described above. 
In these experiments to minimize the predictive functions we used only the tabu search 
algorithm, since compared to the simulated annealing it traverses more points of the 
search space per time unit. Also we noticed that the decomposition set for the A5/1 
cryptanalysis, constructed by the tabu search algorithm, is closer to the “reference” set 
than that constructed with the help of simulated annealing.

During the cryptanalysis of Bivium and Grain in the role of X̃start we used the set 
formed by the variables encoding the cells of registers of the generator considered at 
the end of the initialization phase. Further we refer to these variables as starting vari-
ables. Thus 

∣

∣

∣X̃start

∣

∣

∣
= 177 in case of Bivium, and 

∣

∣

∣X̃start

∣

∣

∣
= 160 in case of Grain. When 

computing predictive function values PDSAT used random samples of size N = 105. It 
was launched for 1 day using 5 computing nodes (160 CPU cores in total) within the 
computing cluster “Academician V.M.Matrosov”. So there was 1 leader process and 159 
computing processes. Time estimations obtained are Fbest = 3.769× 1010 for Bivium 
and Fbest = 4.368× 1020 seconds for Grain. Corresponding decomposition set X̃best for 
Bivium is marked with gray on Fig. 3 (50 variables) and the decomposition set for Grain 
is marked with gray on Fig. 4 (69 variables). Interesting fact is that X̃best for Grain con-
tains only variables corresponding to the LFSR cells.

In Eibach et al. (2008), Soos et al. (2009), Soos (2010) a number of time estimations for 
SAT-based cryptanalysis of Bivium were proposed. In particular, in Eibach et al. (2008) 
several fixed types of decomposition sets (strategies in the notation of Eibach et  al. 

Fig. 3  Decomposition set of 50 variables found by PDSAT for Bivium cryptanalysis

Fig. 4  Decomposition set of 69 variables found by PDSAT for Grain cryptanalysis
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(2008)) were analyzed. The best decomposition set from Eibach et al. (2008) consists of 
45 variables encoding the last 45 cells of the second shift register. Note that in Eibach 
et al. (2008) the corresponding estimation of time equal to 1.637× 1013 was calculated 
using random samples of size 102. In Soos et al. (2009), Soos (2010) the estimations of 
runtime for CryptoMiniSat solver, working with SAT instances encoding Bivium 
cryptanalysis, were presented. From the description of experiments in these papers it 
can be seen that authors used probabilistic experiment to estimate the sets of variables 
chosen by CryptoMiniSat during the solving process and extrapolated the estimations 
obtained to time points of the solving process that lay in the distant future. Note that in 
Soos et al. (2009), Soos (2010) the problem of estimating the effectiveness of a particular 
partitioning is not considered as the problem of estimating the expected value of some 
random variable (that is necessary for it to correspond to the Monte Carlo method in 
its classical sense). Apparently, as it is described in Soos et al. (2009), Soos (2010), the 
random samples of size 102 and 103 were used. In the Table 2 all three estimations men-
tioned above are shown. The performance of one CPU core we used in our experiments 
is comparable with that of one CPU core used in Soos et al. (2009), Soos (2010).

Solving cryptanalysis instances for Bivium and Grain

Since the values of predictive functions for Bivium and Grain cryptanalysis turned out 
to be quite large, in our computational experiments we studied “weakened” variants of 
the corresponding instances. For this purpose we used the sets of the so called “guessing 
bits” (Bard 2009). The instances obtained were solved on a computing cluster (with the 
help of PDSAT) and in the SAT@home project.

In the solving mode of PDSAT for X̃best found during predictive function minimiza-
tion all 2

∣

∣

∣X̃best

∣

∣

∣ assignments of variables from X̃best are generated. PDSAT solves all cor-
responding SAT instances. To compare obtained time estimations with real solving 
time we used PDSAT to solve several cryptanalysis problems for Bivium and Grain with 
several known guessing bits. Below we use the notation BiviumK (GrainK) to denote 
the cryptanalysis of Bivium (Grain) with known K guessing bits. In the role of guessing 
bits in all cases we chose known values of K starting variables encoding the last K cells 
of the second shift register. We solved 3 instances for each of the following problems: 
Bivium16, Bivium14, Bivium12, Grain44, Grain42 and Grain40.

In the following experiments for each BiviumK (GrainK) problem we computed the 
estimation for the first instance from the corresponding series and used the obtained 
decomposition set for all 3 instances from the series. To get more statistical data we did 
not stop the solving process after the satisfying assignment was found, thus process-
ing the whole decomposition family. In the Table 3 for each problem we show the time 
required to solve it using 15 computing nodes (480 CPU cores total) of “Academician 

Table 2  Time estimations for the Bivium cryptanalysis problem

Source N Time estimation

From Eibach et al. (2008) 10
2

1.637× 10
13

From Soos et al. (2009), Soos (2010) 10
3

9.718× 10
10

Found by PDSAT 10
5

3.769× 10
10
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V. M. Matrosov”. The estimation of time was computed for the first instance (inst. 1) in 
all cases. The estimation for 480 CPU cores is based on the estimation for 1 CPU core. 
According to the results from this table, on average the real solving time deviates from 
the estimation by about 8 %.

We also solved the Bivium9 problem in SAT@home. With the help of PDSAT the 
decomposition set formed of 43 variables was found. Using this decomposition set 5 
instances of Bivium9 were solved in SAT@home in about 4 months from September 
2014 to December 2014. During this experiment the average performance of the project 
was about 4 teraflops.

It should be noted that for all considered BiviumK and GrainK problems the time 
required to solve the corresponding instances on the computing cluster and in SAT@
home agrees well with values of the predictive function found by our approach.

Related work
Apparently, the paper Cook and Mitchell (1997) was the first work in which it was pro-
posed to use SAT encodings of inversion problems of cryptographic functions as justi-
fied hard SAT instances. One of the first examples of SAT encodings for a widely known 
ciphering algorithm was proposed in Massacci and Marraro (2000): in particular, in that 
paper the process of constructing SAT encoding for the DES algorithm was described. 
To the best of our knowledge, the first example of successful application of SAT solvers 
to cryptanalysis of real-world cryptographic functions was given in Mironov and Zhang 
(2006). It used the SAT solvers to construct collisions for the hash functions from the 
MD family.

The monograph (Bard 2009) contains systematic research of various questions regard-
ing algebraic cryptanalysis. A substantial part of this book studies the possibilities of the 
use of SAT solvers for solving cryptanalysis equations represented in the form of alge-
braic systems over finite fields.

The A5/1 algorithm is still used in many countries to cipher GSM traffic. During the 
long lifetime of this algorithm a lot of attacks on it have been created. However, the first 
attacks that allowed to find the secret key in manageable time were presented by the 
A5/1 Cracking Project Group in 2009 [27]. These attacks were in fact developed from 
the Rainbow method (Oechslin 2003). In Güneysu et al. (2008) a number of techniques, 
used in the A5/1 Cracking Project to construct Rainbow tables, were presented. The 
cryptanalysis of A5/1 via Rainbow tables has the success rate of approximately 88 % if 

Table 3  Solving cryptanalysis problems for Bivium and Grain on a computing cluster

Problem
∣

∣

∣

X̃best

∣

∣

∣

Fbest �C(X̃best) on 480 cores Finding SAT on 480 cores

1 core 480 cores inst. 1 inst. 2 inst. 3 inst. 1 inst. 2 inst. 3

Bivium16 31 1.65e7 3.44e4 3.42e4 3.36e4 3.42e4 1.10e3 2.33e4 2.67e4

Bivium14 35 6.84e7 1.42e4 1.34e5 1.32e5 1.33e5 3.95e2 9.10e4 9.18e4

Bivium12 37 2.63e8 5.50e5 4.95e5 4.83e5 5.28e5 3.04e5 1.39e5 1.89e5

Grain44 29 1.60e7 3.36e4 3.61e4 4.51e4 3.73e4 1.34e3 1.35e4 8.24e2

Grain42 29 6.05e7 1.26e5 1.35e5 1.30e5 1.20e5 6.92e4 1.07e5 9.15e4

Grain40 32 2.52e8 5.27e5 5.79e5 5.73e5 5.06e5 3.10e5 5.10e5 3.20e5
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one uses 8 bursts of keystream. The success rate of the Rainbow method if one has only 
1 burst of keystream is about 24 %. In all our computational experiments we analyzed 
the keystream fragment of size 114 bits, i.e. one burst, and considered only instances 
for which the solution could not be found using the Rainbow method. We successfully 
solved in SAT@home several dozens of such instances. In Semenov et  al. (2011) we 
described our first experience on the application of the SAT approach to A5/1 crypta-
nalysis in the specially constructed grid system BNB-Grid. In that paper we found the 
set S1 (see “Time estimations for SAT-based cryptanalysis of A5/1” section) manually, 
based on the peculiarities of the A5/1 algorithm.

The Bivium generator is a weakened variant of the Trivium generator (Cannière 2006) 
developed within the context of the eSTREAM project. The detailed analysis of its vul-
nerabilities was performed in Maximov et al. (2007). As far as we know, the cryptanaly-
sis estimations from that paper were not verified with the exception of the distinguishing 
attack. Later the Bivium generator became quite a popular object of the SAT-based 
cryptanalysis. The paper Mcdonald et al. (2007) was the first research in that direction. 
In Eibach et al. (2008) there was described the SAT-based attack on Bivium, which used 
specially constructed sets of guessing bits. One of the advantages of Eibach et al. (2008) 
consists in the fact that their computational experiments are easy to reproduce. In Soos 
et  al. (2009), Soos (2010) there was constructed a time estimation for the SAT-based 
cryptanalysis of Bivium, that was much better than all previous estimations. Essentially, 
to construct it the Monte Carlo method was used (in Soos 2010 the author even uses the 
term “Monte Carlo algorithm”). However that paper does not really contain any refer-
ences to theoretical basics of the method: there is no formal definition of the random 
variable, the expected value of which is estimated. The main novelty of our approach 
consists in strict justification of the applicability of the Monte Carlo method to estimat-
ing the effectiveness of SAT partitionings, and in using metaheuristic algorithms (simu-
lated annealing and tabu search) for finding partitionings with good estimations of total 
time required to process them.

The Monte Carlo method for estimating the expected value of a random variable was 
first proposed in Metropolis and Ulam (1949). There are a lot of modern guides and 
handbooks containing the description and the results of application of this method, for 
example, Kalos and Whitlock (1986).

Simulated annealling was first described in Kirkpatrick et  al. (1983). It is used to 
solve optimization problems from various areas. Tabu search is another widely used 
metaheuristic method originated from Glover and Laguna (1997).

The questions regarding solving SAT in parallel and distributed environments were 
considered in a number of papers. In particular, in Hyvärinen (2011) a systematic review 
of methods for constructing SAT partitionings is presented.

The grid systems aimed at solving SAT are relatively rare. In Schulz and Blochinger 
(2010) a desktop grid for solving SAT which used conflict clauses exchange via a peer-to-
peer protocol was described. Apparently, Black and Bard (2011) became the first paper 
about the use of a desktop grid based on the BOINC platform for solving SAT. Unfortu-
nately, it did not evolve into a full-fledged volunteer computing project. The predeces-
sor of the SAT@home was the BNB-Grid system (Evtushenko et al. 2009; Semenov et al. 
2011), that was used to solve first large scale SAT-based cryptanalysis problems in 2009.
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At the present moment there are several common principles that lie in the basis of 
modern SAT solvers. From many years of our experience we believe that in applica-
tion to cryptanalysis instances the best solvers are the ones based on the CDCL con-
cept (Marques-Silva et al. 2009). It might seem surprising that CDCL solvers show good 
results even when we solve inversion problems for functions with large number of pre-
images (for example, when we search for collisions of cryptographic hash functions). 
Nowadays there are many CDCL-solvers that have a common basic architecture but dif-
fer in details and heuristics.

Conclusion
In the present paper we propose the method for constructing SAT partitionings for solv-
ing hard SAT instances in parallel. This approach is based on the Monte Carlo method 
(in its classical form) for estimating expected value of random variable. From our point 
of view the proposed method and the corresponding algorithms can be used in SAT-
based cryptanalysis, that is an actively developing direction in cryptography. We tested 
our method in application to cryptanalysis of several keystream generators (A5/1, 
Bivium, Grain). In the nearest future we are going to expand the list of metaheuristics 
used for minimization of predictive functions. Also we plan to investigate the question 
of accuracy of the estimations obtained by the Monte Carlo method for the considered 
class of problems in more detail.
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