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Abstract 

Oral squamous cell carcinoma (OSCC), one of the most common types of cancers worldwide, is diagnosed mainly 
through tissue biopsy. However, owing to the tumor heterogeneity and other drawbacks, such as the invasiveness 
of the biopsy procedure and high cost and limited usefulness of longitudinal surveillance, there has been a focus on 
adopting more rapid, economical, and noninvasive screening methods. Examples of these include liquid biopsy, opti-
cal detection systems, oral brush cytology, microfluidic detection, and artificial intelligence auxiliary diagnosis, which 
have their own strengths and weaknesses. Extensive research is being performed on various liquid biopsy biomarkers, 
including novel microbiome components, noncoding RNAs, extracellular vesicles, and circulating tumor DNA. The 
majority of these elements have demonstrated encouraging clinical outcomes in early OSCC detection. This review 
summarizes the screening methods for OSCC with a focus on providing new guiding strategies for the diagnosis of 
the disease.

Keywords  Oral squamous cell carcinoma, Diagnosis, Liquid biopsy, Optical detection systems, Oral brush cytology, 
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Introduction
Oral cancer, one of the most common types of malignant 
neoplasms, poses a significant economic and clinical bur-
den worldwide [1]. Despite advances in its treatment, the 
5-year survival rates of afflicted patients have remained 

constant over the past decades, owing to delayed diag-
nosis of the disease [2]. According to a World Health 
Organization report, the mortality rate for oral cancer 
within 5 years of diagnosis is 45% (for all stages of diagno-
sis combined) [3]. By contrast, the survival rate is 80–90% 
if the disease is detected early in its development. Unfor-
tunately, because of insufficient public awareness and 
screening methods, the early detection of most of these 
cancers remains difficult to achieve, thereby leading to 
the poor prognosis and low survival rates [4]. Oral can-
cer is characterized by its insidious onset, difficult diag-
nosis, and rapid progression and is often accompanied by 
metastasis and disabling treatment. The high mortality 
and morbidity rates associated with the disease highlight 
the need for an effective screening method and the devel-
opment of early diagnostic tools [5]. Currently, routine 
oral examination (visual and tactile inspection of acces-
sible oral structures), together with tissue biopsy, remains 
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the gold standard for diagnosing potentially malignant 
diseases (PMDs) and oral squamous cell carcinoma 
(OSCC). However, this method also possesses certain 
limitations, such as sampling bias, which can result in 
underdiagnosis or misdiagnosis, especially for multifocal 
lesions [6]. Therefore, there is an urgent need to explore 
noninvasive, rapid, and economical screening methods 
with high enough sensitivity and specificity for the early 
diagnosis of oral cancer. Herein, we review the current 
status on research into noninvasive diagnostic methods, 
such as liquid biopsy, optical detection systems, nano 
detection technology, microfluidic systems, and artificial 
intelligence approaches. The strengths and weaknesses of 
the systems are discussed as well as their potential appli-
cation for the early diagnosis of OSCC.

Liquid biopsy
The use of liquid biopsy for cancer screening, as well 
as patient stratification and monitoring, has been docu-
mented extensively [7]. Its use in OSCC is particularly 
stressed upon, as this is a highly heterogeneous tumor 
that necessitates molecular characterization for its 

effective monitoring and management. In addition to 
blood, other bodily fluids, such as urine, saliva, semi-
nal fluid, pleural effusion, cerebrospinal fluid, sputum, 
and stool samples, can be used for liquid biopsy [8]. For 
OSCC, blood and salivary biomarkers are discussed in 
this review.

Blood and salivary biomarkers include circulating 
tumor cells (CTCs), cell-free DNA (cfDNA), circulating 
tumor DNA (ctDNA), and exosomes, among other mol-
ecules [9]. CTCs, which carry an intact viable nucleus 
and are positive for both cytokeratin and epithelial cell 
adhesion molecule (EpCAM) and negative for the CD45 
molecule, are shed from a primary tumor into the vascu-
lature [10]. These cells are detected in metastatic carci-
nomas but are extremely rare in nonmetastatic disease 
[11] (Fig. 1). They not only promote the development of 
metastasis but can also colonize the site of the primary 
tumor, supporting its growth via a process known as 
tumor self-seeding [12, 13]. CellSearch is the most com-
monly used test system for capturing and enumerat-
ing CTCs and is the only platform approved by the US 
Food and Drug Administration (FDA) for the prognosis 

Fig. 1  Schematic representation of CTCs, cfDNA, ctDNA, and exosomes for achieving personalized medicine in the diagnosis, prognosis, and 
treatment monitoring of oral cancer. Individual nuanced and unique characteristics of CTCs, cfDNA, ctDNA, and exosomes can be detected in the 
carcinogenesis, angiogenesis, and dissemination processes of OSCC
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of breast, prostate, and colorectal cancers [14]. The Cell-
Search system consists of an automated instrument 
for capturing and immunostaining CTCs (AutoPrep; 
Veridex) and a semiautomated fluorescence micro-
scope for scanning and visualizing the results (CellS-
potter Analyzer; Veridex). Samples are processed with 
the CellSearch Epithelial Cell Kit (Veridex). DAPI- and 
cytokeratin-positive (but CD45-negative) cells with a 
diameter of at least 4 um are designated epithelial cells 
that function as a surrogate for tumor cells [15]. Studies 
on patients with head and neck squamous cell carcinoma 
have demonstrated that the individuals without detected 
CTCs in their blood have a significantly higher probabil-
ity of disease-free survival [16]. CTCs have encouraging 
clinical relevance for further investigation compared with 
markers with very low sensitivity. The use of CTC counts 
for predicting tumor relapse, especially the risk of early 
locoregional relapse, may become feasible. The phrase 
“molecular characterization of CTCs” refers to the iden-
tification of potential targets for individualized therapies, 
as well as the use of repeated CTC assessments in indi-
vidual patients for treatment surveillance [17].

All cell types frequently produce cfDNA, which is 
derived from necrotic or apoptotic cells. By contrast, 
ctDNA is defined as fragmented tumor-derived DNA 
that is found in the circulatory system and is not associ-
ated with cells (i.e., cell free). They are the tumor-derived 
component of circulating cfDNA, the latter of which is 
the total DNA shed into the blood and biological fluids 
during physiological and pathologic apoptosis and necro-
sis [18]. Lin et  al. [19] reported that the plasma cfDNA 
level was significantly higher in patients with OSCC 
than in the control group. The plasma cfDNA concentra-
tion is associated with an advanced tumor stage, cervi-
cal lymph node metastasis, and the tumor size. Higher 
plasma cfDNA levels have been linked to poor progno-
sis in OSCC. However, an increased cfDNA level is not a 
hallmark of cancer, and there is no set cut-off number in 
any given patient that can be used to quantify the tumor 
through the ctDNA. This constraint can be circumvented 
by examining tumor-specific modifications, such meth-
ylations and mutations [20].

Exosomes, which are small membrane sacs ranging 
from 40 to 150 nm in diameter, are a type of lipid bilayer 
membrane [21]. These extracellular vesicles contain a 
variety of parent cell-derived bioactive substances, such 
as proteins, lipids, mRNAs, noncoding RNA, genomic 
DNA, and cDNA, depending on the mechanism of bio-
genesis, cell type, and physiological circumstance [22]. Li 
et al. [23] determined that exosome-mediated paracrine 
miR-34a-5p promoted the proliferation and metastasis 
of oral cancer cells. Wang et al. [24] reported that OSCC 

exosomes promoted angiogenesis in oral cancer by regu-
lating EFNA3-targeting miR-210-3p through the PI3K/
AKT pathway. Xiao et  al. [25] observed that M1-like 
tumor-associated macrophages activated by exosome-
transferred THBS1 promoted the malignant migration 
of OSCC. These results indicate that exosomes play an 
important role in tumorigenesis and cancer cell inva-
sion and metastasis. Recent evidence suggests that tumor 
exosomes contribute to immunosuppression and pro-
mote tumor development and progression. For example, 
it was found that tumor exosomes could communicate 
with immune cells within the tumor microenvironment 
via immunosuppressive (protumor) and immunostimu-
latory (antitumor) signals [26]. Zlotogorski et  al. [27] 
reported that exosomes isolated from patients with oral 
cancer exhibited differential expression of various exo-
some markers (CD63, CD9, and CD81) compared with 
those isolated from healthy individuals. Therefore, a sig-
nificantly reduced level of CD9 and CD81 expression, 
rather than an ambiguous increase in CD63 expression, 
can be used as an indicator of oral cancer, even in the 
early stages of the disease. Busso-Lopes mapped the prot-
eomic, microRNA (miRNA), metabolomic, and lipidomic 
profiles of extracellular vesicles derived from human 
primary tumor (SCC-9) cells and matched lymph node 
metastatic (LN1) cells. Their integration of the multi-
omics data with results from the analysis of multiple pub-
lic databases revealed that a low abundance of seven hub 
proteins (ALDH7A1, CAD, CANT1, GOT1, MTHFD1, 
PYGB, and SARS) was correlated with a poor prognosis 
in oral cancer [28].

Cancer cell transformation and progression are both 
complicated events that involve the upregulation and 
downregulation of numerous genes required for cell pro-
liferation, differentiation, and death. As a result, protein 
analysis is needed to accurately predict marker function 
[29]. Saliva is an inexhaustible biological fluid that can 
be used for noninvasive measurements. It contains com-
ponents, such as DNA, RNA, proteins, metabolites, and 
microbiota, which can be used for diagnostic purposes, 
thereby providing an unprecedented wealth of genetic 
information [30]. Salivary biomarkers can be viewed 
from several perspectives, such as genomics, proteomics, 
metabolomics, and microbiomics (Fig.  2) Additionally, 
focus should be placed on comprehensive analysis of the 
integrative multi-omics module, where the multiplex net-
work represents such systems effectively and encodes far 
more information than isolated networks [31, 32].

The OSCC genome contains numerous alterations, 
such as frequent oncogenic drivers and novel therapeu-
tic candidates. The inclusion of genomic analyses in pro-
spective clinical trials is important, as these findings will 
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be useful if they are extended to a well-annotated and 
clinically relevant cohort [33]. Guerrero-Preston et  al. 
[34] indicated that hypermethylation of the NID2 and 
HOXA9 promoters in tissue and salivary cells can be 
used as biomarkers for the prevention and early detec-
tion of OSCC. Lin et  al. [35] reported that two of four 
significantly mutated OSCC-specific genes (CUL3 and 
ZFP36L2) exerted strong antiproliferative effects on the 
cancer cells. The other two significantly mutated genes 
(PTCH1 and ATF5) may play key roles in other processes, 
such as cell migration, invasion, and epithelial–mes-
enchymal transformation. Using detailed biochemical, 
cellular, and animal experiments, those authors further 
confirmed that both CUL3 and ZFP36L2 are lineage-spe-
cific tumor suppressors in OSCC [35].

Cumulative salivary proteome data highlight the poten-
tial use of salivary biomarkers as early diagnostic and 
screening tools for oral tumors. The most abundant pro-
teins in saliva are alpha-amylase, cystatin, proline-rich 

peptide, serum albumin, and mucin [36]. Depending on 
the biomarker type, potential salivary biomarkers can 
be studied using methods, such as the enzyme-linked 
immunosorbent assay (ELISA), radioimmunoassay, two-
dimensional gel electrophoresis (2DE), 2DE followed by 
mass spectrometry (MS), reverse-phase liquid chroma-
tography (LC), LC-tandem MS, matrix-assisted laser 
desorption/ionization time-of-flight mass spectrom-
etry (MALDI-TOF MS), and 2DE followed by MALDI-
TOF MS [29]. More than 100 salivary molecules have 
been identified as biomarkers for oral cancer, with the 
cytokines being the most promising [37]. It was shown 
that antibodies specific for interleukin (IL)-6 and tumor 
protein P53 may be potential salivary biomarkers and 
that IL-6, IL-8, vascular endothelial growth factor, IL-1β, 
and tumor necrosis factor-alpha (TNF-α) also partici-
pate in the initial process of OSCC [38]. Nagler et  al. 
[39] reported a fourfold increase in three known salivary 
markers in patients with OSCC, namely, cancer antigen 
125 (CA125), cytokeratin 19 fragment (Cyfra 21-1), and 
tissue polypeptide antigen despite without statistical sig-
nificance. The combination of these circulatory epithelial 
tumor markers with the salivary concentration of carci-
noembryonic antigen enhanced the clinical prediction of 
OSCC development.

Metabolomics is the study of low-molecular-weight 
compounds in biological systems. Such analysis of the 
human metabolome, which is composed of multiple 
metabolites, contributes to the diagnosis and prognosis 
of OSCC [40]. Various biomarkers (including carbohy-
drates, enzymes, and metabolites, and the molecules in 
liquid biopsies) have been assessed using liquid chroma-
tography, nuclear magnetic resonance, enzyme analy-
sis, and MS [41]. HMDB contains 114222 metabolite 
entries, including water- and fat-soluble metabolites as 
well as metabolites considered abundant (> 1 μm) or rela-
tively rare (< 1 nm). In addition, 5702 protein sequences 
were linked to these metabolite entries. HMDB can be 
used in metabolomics, clinical chemistry, biomarker 
discovery, and other studies [42]. Putrescine, which is a 
cadaverine-related polyamine produced by the break-
down of amino acids, has been found to be at a signifi-
cantly higher level in patients with oral leukoplakia and 
OSCC than in control individuals. The level of putrescine 
is related to the regulation of tumor growth, and there is 
a significant difference in its levels between experimental 
individuals and control individuals [40]. Wang et al. [43] 
identified 14 salivary metabolites as possible biomark-
ers, of which eight were upregulated and six were down-
regulated in patients with OSCC compared with their 
levels in the healthy control group. Five of the salivary 
biomarkers (propionylcholine, N-acetyl-l-phenylalanine, 

Fig. 2  Clinical utility of saliva and the potential of salivary biomarkers 
in revealing carcinogenesis [29]
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sphinganine, phytosphingosine, and S-carboxymethyl-
l-cysteine) in combination yielded satisfactory accuracy 
(AUC​ = 0.997), sensitivity (100%), and specificity (96.7%) 
in distinguishing patients at stage I–II OSCC from the 
control group.

The oral microbiota is one of the most diverse of the 
microbiotas found in nature [44]. A number of studies 
have demonstrated that oral bacteria may also play an 
important role in OSCC, based on observed changes in 
their abundance in the oral cavity of afflicted patients and 
their possible involvement in various mechanisms of can-
cer development (e.g., acceleration of cell proliferation, 
inhibition of cell apoptosis, and improvement of tumor 
invasion and metastasis) [45, 46]. In human microbiome 
studies, 16S rRNA-based next-generation sequencing 
technology is used to determine the structure and func-
tion of culturable and unculturable bacterial communi-
ties in different parts of the human body under healthy 
and diseased conditions. The 16S rRNA gene, which is 
1,500 bp in length, is used for the identification of bacte-
rial communities. This gene contains nine hypervariable 
regions (V1–V9). A single hypervariable region cannot 
be distinguished among all bacteria. Among V1–V9, 
the V3–V4 regions exhibit the greatest ability to iden-
tify bacterial communities, producing a 500-bp-long 
PCR amplification product that is commonly used in 
metagenomic studies [47]. Human papillomavirus (HPV) 
DNA can be detected in a subset of OSCC, and a series of 
recent reports have provided clear data revealing differ-
ences in HPV DNA positivity and oncogene activity [9]. 
The abundance of lactic acid bacteria and species of the 
genus Lactobacillus in saliva was found to be significantly 
higher in patients who had undergone chemoradiation 
or surgery [47]. The abundance of lactic acid bacteria in 
saliva was also increased in patients at an advanced TNM 
stage [47].

Liquid biopsy has emerged as a clinically useful tool, 
with the regulatory approval of several test solutions 
demonstrating its utility as a futuristic approach for real-
izing timely and personalized therapeutic decisions [9]. 
We have provided current information on various novel 
liquid biopsy biomarkers, such as oral microbiota and 
metabolites in saliva ctDNAs/CTCs, in terms of their role 
in OSCC diagnosis, prognosis, and treatment monitor-
ing. However, larger clinical studies/trials on these bio-
markers are required to understand these liquid biopsy 
components in more detail and to validate their trans-
lation into high-throughput applicable solutions in the 
clinical setting. The evidence gathered on these mol-
ecules will help advance the use of liquid biopsies for 
achieving accurate, personalized, and specific guidance 
in OSCC management.

Light‑based detection system
Light-based detection systems based on the optical 
properties of biological tissues have emerged as a viable 
diagnostic option, with reports demonstrating their abili-
ties to improve oral mucosal examination and increase 
the detection of PMDs and OSCC [48]. The assumption 
behind optical detection systems, such as chemilumines-
cence and self-fluorescence imaging, is that tumors and 
precancerous tissues that undergo abnormal metabolic or 
structural changes have different absorption and reflec-
tion properties when exposed to specific wavelengths of 
light. Such technologies for oral use have been adapted 
and marketed over the last decade (chemiluminescence: 
ViziLite®, ViziLite® Plus, MicroLux DL; spontaneous flu-
orescence: the visually enhanced light lens VELscope®) 
[49, 50].

Chemiluminescence
The term “chemiluminescence” describes the blue/
white light (430–580  nm) produced by the chemical 
reaction of acetylsalicylic acid and hydrogen perox-
ide inside a capsule light rod. The reaction is based on 
how light is reflected by tissues that undergo biologi-
cal changes, including increased nuclear/cytoplasmic 
ratios (Fig. 3) [51]. The lesion is clear in outline, whereas 
the normal tissue is darker [49]. A chemiluminescence-
based detection tool called ViziLite® (Zila Pharmaceuti-
cals, Phoenix, AZ, USA) is intended to help in the early 
detection of oral potentially malignant lesions (OPMLs) 
and OSCC. In a study by Vashisht et al. [52], 60 patients 
were screened using ViziLite®, that is, 25 patients with 

Fig. 3  Mechanism underlying the chemiluminescent light system. 
The color of healthy tissues is dark blue, whereas that of malignant 
lesions is “aceto-white.” These optical properties result from the 
different manners in which malignant lesions and normal mucosa 
scatter light [52]
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potential malignant epithelial lesions (10 of whom spe-
cifically had oral leukoplakia), 10 patients with OSCC, 
and 25 high-risk patients with no clinically visible lesions. 
Open biopsy was performed. The results revealed that 
ViziLite® exhibited a diagnostic sensitivity of 95.45% and 
a specificity of 84.6% and was able to detect early epithe-
lial dysplasia in a high-risk patient with a clinically nor-
mal oral mucosa.

In a cross-sectional study, Mehrotra et  al. [53] com-
pared the ViziLite® Plus and VELscope systems (LED 
Dental, White Rock, British Columbia, Canada) with 
conventional oral examination to assess their clinical use-
fulness in identifying oral lesions and found that neither 
system demonstrated superiority to the conventional 
approach. Currently, the main drawback of ViziLite® is 
the high percentage of false-positive and false-negative 
test results obtained in the identification of dysplastic 
areas. ViziLite® facilitates the identification of hyper-
keratotic areas and may increase the visibility of mucosal 
lesions [54].

The new ViziLite® Plus gadget incorporates the diag-
nostic capabilities of the toluidine blue marking system. 
The results have been encouraging, demonstrating that 
toluidine blue could decrease the number of false-posi-
tive instances while maintaining the false-negative rate 
[55]. Although some research studies have concluded 
that ViziLite® Plus is ineffective for detecting malignan-
cies in patients with clearly visible lesions [56], other 
lines of evidence support its higher diagnostic accuracy 
for toluidine blue staining alone [52, 57].

Tissue autofluorescence
Tissue autofluorescence is caused by the stimulation 
of endogenous fluorophores (e.g., certain amino acids, 
metabolites, and structural proteins) by an external light 
source. The most important fluorophores in the oral 
mucosa are nicotinamide adenine dinucleotide (NADH) 
and flavin adenine dinucleotide (FAD) in the epithelium 
and cross-linking collagen in the stroma (Additional 
file  1: Figure S1). Fluorophores absorb photons from 
external light sources and emit lower-energy photons, 
resulting in fluorescence [58]. Owing to the interruption 
of the distribution of fluorescent pigments, dysplastic tis-
sues lose their fluorescence emission ability and appear 
darker in color than the surrounding healthy tissues 
[59] (Fig. 4). VELscope®, which was marketed after FDA 
approval in 2006, is a handheld nonamplifying device 
used for the direct observation of oral mucosa self-fluo-
rescence [60]. The lack of a need for technical measures, 
such as the use of dim lighting, pre-washing, and stain 
marking solutions, renders VELscope® easy to use, and 
the emitted light reaches the oral mucosa and stimulates 
endogenous self-fluorescent fluorophores [61]. Scheer 

et  al. [62] studied 41 patients (19 women and 22 men) 
with a history of OSCC. After the clinical evaluation, 
the VELscope® device was used for examination and 
recording, and then, an incision biopsy was performed. 
The results revealed that the sensitivity and specificity of 
VELscope® in detecting oral malignant lesions by auto-
fluorescence were 33.3% and 88.6%, respectively, with a 
positive predictive value of 33.3% and a negative predic-
tive value of 88.6%. There was no statistical correlation 
among sex, lesion appearance, and autofluorescence loss. 
Nevertheless, there is a possibility of overdiagnosis with 
VELscope® if used by nonspecialists [58]. Moreover, 
low specificity values were obtained in various studies 
on individuals with PMDs or OSCC, suggesting possible 
VELscope® limitations [63–65]. The specificity of VEL-
scope® for PMD and OSCC detection may be increased 
by combining the system with additional diagnostic pro-
cedures. For instance, Kaur et al. [66] used salivary pro-
toporphyrin IX levels together with autofluorescence 
to distinguish between normal mucosa and high-risk 
lesions.

Optical coherence tomography
Optical coherence tomography (OCT) is another light-
based method for the detection and assessment of 
OPMLs and OSCC, providing cross-sectional images 
of biological tissues through optical reflection meas-
urements [67]. The noninvasive nature of this imag-
ing modality combined with (i) a penetration depth of 
2–3 mm, (ii) high-resolution (5–15 µm) real-time image 
viewing, and (iii) the ability to yield cross-sectional and 
3D sectional images provides good prerequisites for live 

Fig. 4  Autofluorescence-based diagnostic technique. Apple green 
fluorescence (510 nm) is visible in healthy tissues under blue light at 
400–460 nm, whereas malignant tumors lose their autofluorescence. 
This is related to the filtering effect, autofluorescence of collagen 
cross-links, and redox ratio [52]
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oral screening and diagnosis [68]. In OCT scanning sys-
tems, low-coherence light is coupled with a fiber-optic 
Michelson interferometer that effectively captures 2D 
and 3D images of micron-scale resolution from light-
scattered biological tissues [69]. OCT probes can be 
placed onto the tissue surface to generate surface and 
subsurface images of the microscopic tissue anatomy and 
cell structure in real time, thereby avoiding the discom-
fort, delay, and expense of biopsy [68]. In their study of 
in vitro tissue samples from 14 patients with OSCC, Yang 
et  al. [70] reported that the diagnostic sensitivity and 
specificity of OCT detection reached 97.88% and 83.77%, 
respectively, with a recognition accuracy of 91.15%. Pre-
liminary results suggest that the in-depth mining of hid-
den information in OCT images can accurately guide the 
removal of oral cancers, thereby further promoting the 
clinical application of this diagnostic technique.

Several OCT systems have been approved by the FDA 
for clinical use, and this diagnostic method is an impor-
tant imaging modality in ophthalmology. However, 
despite its superior diagnostic accuracy and enhanced 
user interface, there are several limitations to its adoption 
for clinical application, such as the steep learning curve 
in reading and interpreting the images, unfriendly oper-
ating software and user interfaces, and high cost of the 
system [71].

Nano detection systems
Nano detection technologies are regarded as novel non-
invasive approaches. The manipulation of materials 
with a length scale of 1–100  nm in at least one dimen-
sion is referred to as nanotechnology [72]. Nanopar-
ticles of noble metals, such as gold and silver, exhibit 
unique enhanced optical properties, owing to the sur-
face plasmon resonance that results from the collective 
oscillations of resonant electrons on the particle surface 
with incident light. The size, shape, composition, and 
surrounding microenvironment are all key factors that 
determine the enhancement of the photoelectric per-
formance of these metal nanoparticles [73]. By modify-
ing the manufacturing processes, surface chemistry, or 
performance aspects of nanoparticles, such as their bio-
compatibility, function-specific size and shape, blood 
circulation half-life, and targeting of certain cell surface 
components, they can become effective diagnostic agents 
[74]. Nanotechnology can be applied to oral cancer 
detection methods, molecular imaging (magnetic reso-
nance imaging, OCT, photoacoustic imaging, and surface 
plasmon resonance scattering), and nanoscale ultrasen-
sitive biomarker detection [75]. Legge et  al. [76] com-
bined anti-αVβ6-targeted magnetic nanoparticles with 
thermal ablation and showed the system to be a prom-
ising treatment for OSCC. In that study, biocompatible 

silica-coated magnetic iron oxide nanoparticles were pre-
pared and combined with antibodies targeting αVβ6 inte-
grin, a cell surface biomarker of OSCC. In tissue biopsies 
from patients with OSCC, the expression of αVβ6 integ-
rin is upregulated compared with its level in normal tis-
sue. Functionalization of the silica coating with the αVβ6 
antibodies enabled the nanoparticles to directly target 
αVβ6-overexpressing cells, resulting in significantly 
improved killing of the targeted tumor cells by the ther-
motherapy compared with that of the control group.

Nanoscale agents provide a clearer image, increase the 
penetration depth, and exhibit enough signals and sub-
cellular spatial resolution. Additionally, the less harmful 
nano-based contrast agents used for magnetic resonance 
imaging, OCT, and photoacoustic imaging have a pro-
longed blood circulation half-life for targeting certain 
cell surface molecules. Thus, nano-based diagnosis shows 
promise in providing real-time, convenient, and cost-
effective detection services for patients with oral cancer. 
However, these technologies are still only being tested in 
animal models or ex vivo studies, and clinical trial infor-
mation needs to be collected [75].

Artificial intelligence
The use of artificial intelligence (AI) approaches to 
enhance image-based diagnosis is becoming more popu-
lar [77], with the two main divisions being deep learn-
ing and machine learning. Deep learning networks rely 
on layers of artificial neural networks (ANNs) to gener-
ate their own categories, based on their identification of 
edges (differences) within neural network layers when 
exposed to a large number of data points. By contrast, 
machine learning algorithms typically demand an accu-
rately categorized data input. The efficiency of automated 
cancer diagnosis has significantly increased, owing to the 
invention and improvement of convolutional neural net-
works [78]. To put it succinctly, preprocessing, picture 
segmentation, and postprocessing are the three essential 
processes for implementing AI in medical imaging. For 
each site scanned, the clinical and pathologic diagnoses 
were compared with the AI diagnosis. Compared with 
the histological analysis, the AI system’s spatially resolved 
diagnostic accuracy was 92.2%, with 100% sensitivity and 
specificity for identifying malignancy within the clinically 
characterized tumor and tumor margin areas [71]. More 
significantly, AI methods can assess complicated images 
quickly and offer assistance on decision-making.

Oral brush cytology
Oral brush cytology (OBC) is a minimally invasive and 
safe method for extracting cells from the oral mucosa. In 
addition to identifying potential biomarkers, this tech-
nique is useful for screening and early screening purposes 
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[79, 80]. The primary advantage of OBC is that it is a 
simple, minimally invasive, and relatively painless tech-
nique for representative cell diagnosis of the oral mucosa 
[81]. Data indicate that a cytobrush was the most com-
monly used tool, followed by the OralCDx® brush. Infant 
toothbrushes were also used in some areas (India) [80]. 
Velleuer et al. [82] performed a statistical analysis of 737 
lesions, including 86 lesions in 30 patients with at least 
high-grade oral epithelial dysplasia. The sensitivity and 
specificity of the OBC method were 97.7% and 84.5%, 
respectively, whereas those of DNA ploidy analysis were 
higher at 100% and 92.2%, respectively. Sunny et al. [83] 
investigated the clinical utility and efficacy of remote 
cytology systems and ANN-based risk stratification mod-
els for the early detection of OPMLs. The overall accu-
racy of Cellscope in detecting oral lesions was 84–86%, 
and there was no difference between distal cytology and 
conventional cytology (kappa value = 0.67–0.72). How-
ever, because of the limitations of conventional cytol-
ogy, its detection sensitivity for OPML is low (18%). The 
detection sensitivity for malignant lesions (93%) and 
high-grade OPMLs (73%) was increased via the construc-
tion of a combined image processing and ANN-based 
risk stratification model, leading to an overall accuracy 
improvement of 30%.

Other detection methods
Microfluidic systems can act as a miniature automated 
version of an integrated experimental program on a sin-
gle device—often referred to as a “lab on a chip” [84]—
and can be used for the screening of oral cancer. The term 
“microfluidic” describes the guided control of fluid flow 
that is physically limited to small objects [85]. By making 
analytical systems smaller and more automated, micro-
fluidic systems were enhanced with the goal of acquiring 
certain properties of traditional analytical procedures. 
With typical internal capacities ranging from microliters 
to picoliters, microfluidic instruments are used to handle 
and modify fluids at a submillimeter scale from 1 to 1000 
um [86]. In the early treatment of oral cancer, microflu-
idic systems are used to determine the risk of mucositis 
before disease development. In one study, four biomark-
ers (TNF-α, IL-6, IL-1β, and C-reactive protein) were 
selected and captured using 1 μm magnetic beads coated 
with antibody and enzyme labels in the capture chamber 
[87]. The close correlation between the serum levels of 
the four biomarker proteins and standard ELISA results 
for patients with head and neck cancer demonstrated the 
accuracy and diagnostic utility of this array [87].

Toluidine blue staining has been used in the diagnosis 
of oral cancer for many years. Staining of the oral mucosa 
of patients with OPML, using 1% toluidine blue for 30 s, 
can help distinguish normal tissues from malignant 

lesions [88]. In a hospital-based study that examined the 
accuracy of several diagnostic tests, Vijayakumar et  al. 
[89] performed toluidine blue staining on 55 patients 
with oral mucosal disease, including potential precancer-
ous or malignant lesions, and compared the results with 
histopathological findings. The sensitivity and specificity 
of toluidine blue staining were 92.6% and 67.9%, respec-
tively, and its overall diagnostic accuracy was 80%. In 
another study, toluidine blue staining was used to screen 
60 patients, including 25 with OPMLs (10 with oral leu-
koplakia), 10 with clinically diagnosed OSCC, and 25 
high-risk patients without clinical lesions [52]. These 
patients were then tested with open biopsies. The results 
revealed the sensitivity and specificity of toluidine blue 
staining for the diagnosis of this study group to be 86.36% 
and 76.9%, respectively [52].

Chromosome copy number aneuploidy or abnormality 
has long been considered to be a determinant of cancer 
[90]. As a cellular equivalent, DNA can be used for the 
detection of chromosomal aneuploidy (DNA aneuploidy). 
Maraki et al. [91] analyzed 98 patients with potential oral 
lesions using cytology and DNA analysis, and compared 
the findings with biopsy results. Cytological detection 
combined with DNA analysis had a diagnostic sensitiv-
ity of 100% and specificity of 97.4%, revealing it to be a 
highly sensitive, specific, and noninvasive method for 
the early diagnosis of oral epithelial tumors. Moreover, 
patients showed better compliance with this method.

Limitations of the above‑mentioned methods
In general, these diagnostic methods are minimally inva-
sive, painless, rapid, and economical, and their sensitiv-
ity and specificity indicate their excellent application 
prospects. However, to date, they have all had limited 
application. For instance, compared with other tumor 
anatomical sites, liquid biopsy of OPMLs or OSCC in a 
clinical context is still in its infancy, and future research 
efforts should focus on sizable, prospective, multicenter 
trials [9]. Tissue autofluorescence and chemilumines-
cence techniques have shown limited capacity in recog-
nizing high-risk lesions. For routine screening of OPMLs, 
conventional visual examination is more reliable than 
autofluorescence testing using a visually enhanced light 
scope. The establishment of routine examinations of the 
entire oral cavity remains the gold standard for the early 
detection of OPMLs [49]. Although OCT is a noninva-
sive in  situ imaging technique that can obtain images 
close to histopathological resolution and exhibits great 
potential for intraoperative diagnosis, it is still impossi-
ble to accurately determine the surgical margin solely by 
direct observation of the qualitative characteristics of the 
images [92]. Most preoral malignancies are often asso-
ciated with hyperkeratosis, which has a negative impact 
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on image quality [92]. Additionally, when OCT produces 
intense light absorption or scattering due to bleeding, it 
results in intense light attenuation and shadows of deeper 
structures, thereby reducing the diagnostic value of the 
final image [93]. With regard to OBC, some studies have 
demonstrated poor cytological sensitivity and specific-
ity of the brushes, suggesting that this technique should 
not be used. By contrast, liquid-based brush cytology for 
the diagnosis of OPMLs and OSCC has yielded promis-
ing results. Therefore, clear cytological diagnostic criteria 
and accurate cytological and histopathological studies are 
required to confirm the effectiveness of oral liquid-based 
brush cytology [82]. Further research and exploration are 
also necessary to verify the use of microfluidic systems 
for oral cancer detection, which has rarely been reported.

Conclusions
Herein, we have summarized the various methods used in 
recent years for the early screening of oral cancer, includ-
ing liquid biopsy, optical detection systems, OCT, nano-
technology, and OBC (Table  1). These methods test the 
oral cavity from different dimensions or perspectives and 
possess the advantages of being minimally invasive, pain-
less, fast, and economical diagnostic techniques with great 
clinical application prospects. However, each method has 
its own disadvantages and necessitates further research 
and breakthrough before these methods can be applied 
effectively for the early diagnosis of oral cancer.
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