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Abstract 

Background:  Staphylococcus aureus can colonize various host species, and human-animal interaction is a significant 
factor for cross-species transmission. However, data on S. aureus colonization in animals, particularly on ruminants in 
close contact with humans, is limited. The West African Dwarf (WAD) goat is among the earliest domesticated rumi-
nant associated with rural dwellers and small-holder farmers in sub-Saharan Africa. This study aimed to investigate the 
population structure, antibiotic resistance, and virulence gene determinants of S. aureus from the WAD goat in Nigeria.

Methods:  Nasal samples were obtained from the WAD goat in five markets in Osun State, South-West Nigeria. S. 
aureus was characterized by antibiotic susceptibility testing, detection of virulence determinants, spa typing, and 
multilocus sequence typing (MLST). Representative isolates were selected for whole-genome sequencing, biofilm, 
and cytotoxicity assay.

Results:  Of the 726 nasal samples obtained from the WAD goat, 90 S. aureus (12.4%) were recovered. Overall, 86 
isolates were methicillin-susceptible, and four were mecA-positive (i.e., methicillin-resistant S. aureus [MRSA]). A 
diverse S. aureus clonal population was observed (20 sequence types [STs] and 37 spa types), while 35% (13/37) and 
40% (8/20) were new spa types and STs, respectively. Eleven MLST clonal complexes (CC) were identified (CC1, CC5, 
CC8, CC15, CC30, CC45, CC97, CC121, CC133, CC152, CC522). The MRSA isolates were designated as t127-ST852-CC1-
SCCmec type VII, t4690-ST152-CC152-SCCmec type Vc, and t8821-ST152-CC152-SCCmec type Vc. Phylogenetic analysis 
revealed that 60% (54/90) of all isolates were associated with ruminant lineages (i.e., CC133, CC522). Panton-Valentine 
Leukocidin (PVL)-positive S. aureus was identified in CC1, CC30, CC121, and CC152. For the CC522 isolates, we illustrate 
their pathogenic potential by the detection of the toxic shock syndrome gene and hemolysins, as well as their strong 
cytotoxicity and ability to form biofilms.

Conclusions:  This is the first detailed investigation on the genomic content of S. aureus from the WAD goat in Nige-
ria. The S. aureus population of the WAD goat consists mainly of ruminant-associated lineages (e.g., CC133, CC522), 
interspersed with human-associated clones, including PVL-positive MRSA CC1 and CC152.
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Introduction
Staphylococcus aureus is a commensal inhabiting the skin 
and mucous membranes and a pathogen associated with 
a range of human and livestock diseases [1]. It colonizes 
various hosts mainly through genomic diversification and 
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acquisition or loss of mobile genetic elements (MGEs), 
encoding immune evasion factors, leukocidins, and 
superantigens [2, 3]. The close contact between animals 
and humans and increased industrialization of livestock 
farming facilitate S. aureus host-switching and adapta-
tion events [4]. S. aureus infections are of great concern 
in the dairy industry (comprising mainly cow, sheep, and 
goat) with economic implications [5]. Moreover, animals 
as a reservoir for S. aureus colonization portend serious 
consequences to human health [3].

From 2009 to 2013, an increase (18.3–42.3%) in the 
prevalence of methicillin-resistant S. aureus (MRSA) 
was observed with regional variations in Nigeria [6]. 
Also, studies based on two molecular typing schemes, 
i.e., Staphylococcus protein A (spa) typing and multilo-
cus sequence typing (MLST), have provided evidence 
on some dominant clones. They include t064-CC8, 
t037-CC239 (MRSA) [7], and t084-CC15, t355-CC152 
in methicillin-susceptible S. aureus (MSSA) [8]. Further-
more, the Panton-Valentine Leukocidin (PVL), a bi-com-
ponent pore-forming toxin, is widespread among MSSA 
in CC121 [9, 10] and CC152 [8, 10]. Data on the molecu-
lar epidemiology of animal S. aureus in Nigeria is limited. 
Nevertheless, studies have observed a diverse S. aureus 
population, including human-associated lineages such 
as CC15 (PVL+) [11, 12], CC88 [12, 13], CC121 (PVL+), 
and CC152 (PVL+) [14] from food animals and their 
associated products.

The West African Dwarf (WAD) goat (Capra hircus) 
is a domesticated ruminant associated with humans 
and livestock farming in sub-Saharan Africa [15]. It is 
a major livestock resource, particularly among rural 

dwellers and small-holder farmers in West and Central 
Africa [16]. As of 2012, the goat population in Nigeria 
was 81 million, and it is estimated to reach 208 million 
by 2050 [17]. The close and long-standing interaction 
of the WAD goat with humans underscores the need 
to investigate possible S. aureus cross-species trans-
missions. The aim was to describe the clonal structure, 
antibiotic resistance, and virulence gene determinants 
of S. aureus in the WAD goat in Nigeria.

Materials and methods
Nasal sample collection
This study included WAD goats from the animal mar-
ket located in five towns in Osun State, South-West 
Nigeria (Fig.  1a). The sampling period was from July 
2018 to August 2019. A holding structure held the 
goats (Fig.  1b), and at each sampling event, all the 
animals in the custody of participating sellers were 
included. The subsequent visit to these markets was 
predicated on new animal stock information (provided 
by the sellers), thereby ruling out multiple sampling of 
individual goats. A nasal swab was taken using a sterile 
cotton swab stick (Sterilin, UK), moistened with ster-
ile 0.85% NaCl solution, placed back to the swab pouch, 
and promptly transported to the laboratory. This step 
was followed by enrichment in nutrient broth (MAST 
Diagnostic, UK) overnight at 37 °C. Thereafter, 10 µl of 
the broth culture was streaked on Mannitol Salt Agar 
(MAST Diagnostic, UK) and incubated at 37  °C for 
48 h.

Fig. 1  a The sampling of the WAD goats in markets located in five locations in Osun State, Nigeria. a Map of Osun State indicating the locations 
[62]. The number of nasal samples (in parenthesis) is indicated for each location. b The WAD goats in one of the markets
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Characterization of S. aureus isolates
Preliminary identification as S. aureus was based on 
Gram staining and a positive catalase, coagulase, and 
DNase reaction. Isolates were confirmed as S. aureus 
by MALDI-TOF MS (Bruker Daltonics, Bremen, Ger-
many), PCR detection of the S. aureus specific thermo-
stable nuclease (nuc) [18], and nonribosomal peptide 
synthetase (NRPS) genes [19]. Methicillin-resistant S. 
aureus (MRSA) was confirmed by the detection of mecA 
[20]. Isolates were subjected to antimicrobial susceptibil-
ity testing (Vitek 2 automated system bioMérieux, Marcy 
l’Étoile, France) using EUCAST clinical breakpoints (Ver-
sion 11.0), spa typing [21], and PCR detection of viru-
lence (lukS/lukF-PV, chp, sak, scn) genes [22, 23].

Whole‑genome sequencing
One S. aureus representing each spa type (n = 37) was 
selected for whole-genome sequencing (WGS) on an 
Illumina MiSeq or NextSeq platform (Illumina Inc., San 
Diego, USA) with a 250-/150  bp paired-end protocol 
aiming for 100 × coverage [24]. Subsequently, reads were 
de novo-assembled using the SKESA assembler inte-
grated into the SeqSphere+ software (version 7.0, Ridom 
GmbH, Münster, Germany). The antimicrobial resistance 
and virulence genes and multilocus sequence types (ST) 
were predicted in silico using SeqSphere+ as recently 
described [25]. The staphylococcal cassette chromosome 
mec (SCCmec) types of the MRSA isolates were deter-
mined by the SCCmecFinder 1.2 [26] from the Centre 
for Genomic Epidemiology (https://​cge.​cbs.​dtu.​dk/​servi​
ces/​SCCme​cFind​er/; accessed on 22 April 2021). The raw 
reads of the representative isolates were deposited in the 
European Nucleotide Archive (https://​www.​ebi.​ac.​uk/​
ena) under the project accession number PRJEB44433. 
The Neighbor-Joining (NJ) tree was constructed using 
1861 genes of the S. aureus core genome multilocus 
sequence typing (cgMLST) scheme (Task templates: S. 
aureus cgMLST v1.3, pairwise ignore missing values).

Screening for hemolytic activity and PCR detection 
of hemolysin (hla and hlb) genes
One S. aureus of each spa type in the CC522 lineage 
(n = 9) was screened for hemolytic activity on Columbia 
sheep blood agar (CBA, BD, Sparks, MD, USA). Colo-
nies were examined for hemolysis after CBA plates were 
stored at 4 °C for 24 h with an earlier overnight incuba-
tion at 37 °C [27, 28]. The presence of the hemolysin (hla 
and hlb) genes was also determined by PCR [29, 30]. S. 
aureus identified with an intact hlb (based on WGS) was 
also evaluated, and a positive and negative PCR result 
indicated a non-truncated or truncated hlb, respectively.

Mucoidy and biofilm assay
Isolates representing the CC522 lineage were assessed 
for mucoidy on CBA. Two characteristics determined 
the criteria for mucoidy: (a) colonies stick tightly to the 
CBA plate and (b) colonies with chewing gum-like tex-
ture, as assessed by an inoculating loop, after overnight 
incubation at 37  °C [27]. Mucoid isolates were identi-
fied and further screened on modified Congo Red Agar 
(CRA) composed of brain heart infusion broth (37  g/l, 
VWR Chemicals BDH, Leuven, Belgium), bacteriologi-
cal agar (15 g/l, VWR Chemicals BDH, Leuven, Belgium), 
sucrose (36 g/l, Neofroxx GmbH, Germany) and Congo 
Red (0.8  g/l, Waldeck GmbH & Co KG, Münster, Ger-
many) [31]. The colony characteristics were noted after 
incubation at 37 °C for 72 h. To determine the amount of 
biofilm produced by the mucoid CC522 isolates, a static 
96-well microtiter plate (MTP) assay was performed as 
described previously [32]. The absorbance of adherent 
biofilm cells was measured with a microtiter plate reader 
(Bio-Rad, Hercules, CA, USA) at 655  nm. Moreover, in 
parallel experiments, the nature of biofilms was ana-
lyzed. Biofilms were treated with sodium metaperiodate 
(NMP), which breaks down polysaccharide-mediated 
biofilms, and by proteinase K or DNase I, which dis-
rupts protein- or DNA-dependent biofilms, respectively. 
Each mucoid S. aureus isolate was investigated in three 
biological replicates in eight wells per microtitre plate. 
Four isolates were used as controls: two biofilm-negative 
strains (S. carnosus TM300 and S. aureus 5bpdel−), a bio-
film-positive strain (S. epidermidis RP62A (ATCC 35984) 
and the S. aureus CF-70518005-I (5bpdel+) that produces 
a biofilm, which consists of polysaccharide intercellular 
adhesin (PIA). PCR detection of the icaA and icaC genes 
was also performed, as previously described [32].

Cytotoxicity assay
The representative CC522 isolates (n = 9) were evaluated 
for cytotoxicity. The toxicity of 20% bacterial supernatant 
(overnight culture in tryptone soy broth [TSB]) on A549, 
a human alveolar epithelial cell line (ACC 107, DSMZ, 
GmbH, Braunschweig, Germany), was determined after 
24  h incubation using flow cytometry [33]. Cytotoxicity 
was indicated as the proportion of dead (i.e., % of pro-
pidium iodide [PI]-positive) A549 cells. Cells treated with 
20% TSB served as control.

Statistical analysis
The level of agreement between antibiotic susceptibility 
testing (AST) and detection of antibiotic resistance genes 
(WGS) was determined by Cohen’s κ test [34]. The κ test 
was also utilized to determine the level of agreement 
between PCR and WGS in detecting Panton-Valentine 

https://cge.cbs.dtu.dk/services/SCCmecFinder/
https://cge.cbs.dtu.dk/services/SCCmecFinder/
https://www.ebi.ac.uk/ena
https://www.ebi.ac.uk/ena


Page 4 of 12Shittu et al. Antimicrob Resist Infect Control          (2021) 10:122 

leukocidin (PVL) and immune evasion cluster (IEC) 
genes. The κ coefficient was interpreted as no agreement 
(κ < 0), slight agreement (κ: 0.00–0.20), fair agreement (κ: 
0.21–0.40), moderate agreement (κ: 0.41–0.60), substan-
tial agreement (κ: 0.61–0.80), almost perfect agreement 
(κ: 0.81–1.00) [34]. The analysis was performed using 
GraphPad Prism (https://​www.​graph​pad.​com/​quick​
calcs/​kappa1/). In the static biofilm and detachment 
assay, results were indicated as means and standard devi-
ation on GraphPad Prism 5.0 (GraphPad Software, Inc., 
San Diego, CA). A two-way ANOVA with the Bonfer-
roni posthoc test was utilized to compare the absorbance 
values of the different groups (buffer, NMP, proteinase 
K, and DNase I) in the biofilm assay. In the cytotoxicity 
assay, the percentage of PI-positive mean values were 
analyzed using one-way ANOVA and compared with 
the negative control using Dunnett’s multiple compari-
son test on GraphPad Prism. P < 0.05 was considered 
significant.

Results
Antibiotic susceptibility of S. aureus
Of the 726 nasal samples, 90 were positive for S. aureus 
(12.4%; one isolate per sample). All isolates were suscep-
tible to glycopeptides, clindamycin, daptomycin, fosfo-
mycin, fusidic acid, levofloxacin, linezolid, mupirocin, 
rifampicin, and tigecycline (Table  1). Moreover, 56% 

(50/90) were susceptible to all tested antibiotics (Addi-
tional file  1: Table  S1). Four were identified as MRSA 
(mecA-positive). When comparing AST and WGS, a 
slight agreement was observed for fosfomycin and eryth-
romycin (κ: 0.00). Substantial to almost perfect agree-
ment was noted for gentamicin (κ: 0.65), tetracycline (κ: 
0.72), penicillin (κ: 0.73) and oxacillin (κ: 1.00), respec-
tively (Additional file 2: Table S2).

Genotyping of isolates
The isolate collection consists of 37 spa types, includ-
ing 13 new ones. MLST identified 20 STs with eight 
new STs (Table  2). Overall, the predominant spa-CC 
types comprised t3576-CC522 (n = 15), t10018-CC522 
(n = 12), t18949-CC97 (n = 7), t9268-CC522 (n = 6) and 
t18947-CC133 (n = 4). The MRSA isolates were clas-
sified as t127-ST852-CC1-SCCmec type VII (n = 2), 
t4690-ST152-CC152-SCCmec type Vc (n = 1), and t8821-
ST152-CC152-SCCmec type Vc (n = 1, Table  2; Addi-
tional file 3: Fig. S3). Based on the construction of the NJ 
tree, the isolates were assigned into three main clusters 
(Fig.  2). Cluster A was a divergent group consisting of 
CC1, CC5, CC8, CC15, CC97, and ST6096. Cluster B is 
made up of closely related ruminant-associated lineages 
comprising CC133 and CC522, including CC121. CC30, 
CC45, CC152, and ST6082 were grouped with cluster C.

Table 1  Antibiotic susceptibility of S. aureus isolates from the WAD goat in Nigeria

MSSA: Methicillin-susceptible Staphylococcus aureus; MRSA: Methicillin-resistant Staphylococcus aureus; S, Susceptible; I, susceptible, increased exposure; R, Resistant

MSSA (n = 86) MRSA (n = 4)

Antimicrobial Agent R I S R I S

Penicillin 27 – 59 4 – 0

Oxacillin 0 – 86 4 – 0

Gentamicin 1 – 85 0 – 4

Levofloxacin 0 0 86 0 0 4

Azithromycin 1 0 85 0 0 4

Clarithromycin 1 0 85 0 0 4

Erythromycin 1 0 85 0 0 4

Clindamycin 0 0 86 0 0 4

Linezolid 0 – 86 0 – 4

Daptomycin 0 – 86 0 – 4

Teicoplanin 0 0 86 0 0 4

Vancomycin 0 0 86 0 0 4

Tetracycline 9 7 70 4 0 0

Tigecycline 0 – 86 0 – 4

Fosfomycin 0 – 86 0 – 4

Fusidic acid 0 – 86 0 – 4

Mupirocin 0 – 86 0 – 4

Rifampicin 0 0 86 0 0 4

Cotrimoxazole 6 2 78 3 1 0

https://www.graphpad.com/quickcalcs/kappa1/
https://www.graphpad.com/quickcalcs/kappa1/
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PCR detection of PVL and IEC genes
PVL-positive S. aureus was identified in CC1 (n = 2), 
CC30 (n = 4), CC121 (n = 1) and CC152 (n = 5) including 
MRSA in CC1 (n = 2) and CC152 (n = 2). Furthermore, 
PCR detection of the IEC genes showed that isolates in 
CC30 and CC45 were chp/sak/scn-positive including 
CC1 (n = 2), CC8 (n = 2), and CC152 (n = 1, Additional 
file  1: Table  S1). CC15 isolates were uniquely chp/scn 
positive, while those assigned with CC1 (n = 2), CC5 
(n = 1), CC8 (n = 1), CC97 (n = 1), CC121 (n = 1), CC152 
(n = 3) were sak/scn positive. The IEC genes were not 
detected in CC133, CC522, ST6082, and ST6096 includ-
ing S. aureus in CC1 (n = 1), CC5 (n = 2), CC8 (n = 1) and 
CC97 (n = 1). We observed a high level of agreement (κ: 
0.9–1.00) between PCR and WGS in the detection of the 
above-mentioned IEC genes, while moderate agreement 
(κ: 0.55) was noted for the detection of the PVL gene 
(Additional file 4: Table S4).

Antibiotic resistance genes and S. aureus lineages
WGS and MLST showed that blaZ conferring beta-lac-
tam resistance was identified in all CCs. However, most 
of the isolates in CC133 and CC522 were blaZ-negative 

(Table 2). Only one CC30 isolate with phenotypic resist-
ance to gentamicin was positive for the corresponding 
resistance (aac-aphD and aadD) genes. The tetK was the 
gene determinant for tetracycline-resistant S. aureus in 
CC1, CC8, CC97, and CC152 (Table 2).

Capsule typing, detection of virulence genes, 
and hemolytic activity
WGS of selected S. aureus (n = 37) representing each 
spa type established that capsule type 5 was associated 
with CC1, CC5, CC8, CC97, and CC152. Capsule type 
8 was identified with CC1, CC5, CC15, CC30, CC45, 
CC121, CC133, and CC522 (Table 2). The sea-sep genes 
were detected in CC1, CC5, and CC152. Only one CC1-
MRSA was seh-positive. The distribution of the entero-
toxin genes and clonal lineages revealed that S. aureus 
isolates in CC45, CC133 (sec-positive), and CC522 were 
tst-positive. Moreover, the bi-component leukocidin 
(lukF-P83/lukM) genes and sel were detected only in 
CC133 and CC522 (Table 2). Also, some CC5, CC8, and 
CC15 isolates were positive for lukDE. The majority of 
isolates (62%, 23/37) carried hla across the lineages, but 
this gene was not detected in CC522 by WGS (Table 2). 

Table 2  Characterization and detection of selected antibiotic and virulence genes (WGS) in S. aureus isolates from the WAD goat in 
Nigeria

Code
Name Location Antibiogram

Spa (number 
of isolates) ST CC cap aa

c/
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hD

aa
dD

bl
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er
m
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m
ec
A

te
tK

se
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se
p

se
c

se
h

se
l

ts
t

lu
kD

lu
kE

lu
kF

P8
3

lu
kM
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kF

-P
V

lu
kS
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V

hl
a

hl
aB

hl
gA

hl
gB

hl
gC

ch
p

sa
k

sc
n

et
A

et
D

ed
in
B

ss
pB

ic
aA

ic
aC

ic
aD

1 K102 Osogbo PEN, TET t189 (1) 188 1 8
2 G24 Ile-Ife PEN, OXA, TETα t127 (3) 852 1 8
3 B80 Ede PEN t19037* (1) 2077 1 5
4 G37A Ile-Ife Susceptible to all antibiotics t111 (1) 6091* 5 5
5 G52 Ile-Ife Susceptible to all antibiotics t777 (1) 6091 5 5
6 F45A Modakeke PEN t701 (1) 6093* 5 8
7 B1 Ede PEN, TET t537 (2) 72 8 5
8 C169 Ejigbo PEN t11108 (1) 72 8 5
9 B32 Ede PEN, COT t008 (1) 6094* 8 5
10 K107 Osogbo PEN, COT t5126 (1) 15 15 8
11 C121 Ejigbo PEN, TET, COT t19068* (1) 15 15 8
12 K7B Osogbo PEN, GEN t318 (1) 30 30 8
13 G45 Ile-Ife PEN, COT t18950* (3) 30 30 8
14 G157 Ile-Ife PEN t861 (1) 508 45 8
15 C8 Ejigbo Susceptible to all antibiotics t18949* (7) 97 97 5
16 B164 Ede PEN, TET t903 (1) 6095* 97 5
17 G160 Ile-Ife Susceptible to all antibiotics t359 (1) 6112* 97 5
18 F12A Modakeke PEN, COT t314 (1) 121 121 8
19 B110 Ede Susceptible to all antibiotics t3585 (1) 133 133 8
20 F9 Modakeke Susceptible to all antibiotics t8948 (3) 133 133 8
21 G13A Ile-Ife Susceptible to all antibiotics t18948* (3) 133 133 8
22 G169 Ile-Ife PEN, COT t19067* (1) 133 133 8
23 G9 Ile-Ife Susceptible to all antibiotics t18947* (4) 133 133 8
24 F68B Modakeke PEN, TET t355 (3) 152 152 5
25 F62A Modakeke PEN, OXA, TET, COTβ t4690 (1) 152 152 5
26 K11 Osogbo PEN, OXA, TET, COT∞ t8821 (1) 152 152 5
27 F33B Modakeke Susceptible to all antibiotics t9268 (6) 522 522 5/8
28 C3 Ejigbo Susceptible to all antibiotics t10018 (12) 522 522 8
29 F60B Modakeke Susceptible to all antibiotics t13260 (1) 522 522 8
30 F37B Modakeke Susceptible to all antibiotics t18946* (3) 522 522 8
31 C4 Ejigbo Susceptible to all antibiotics t19031* (2) 522 522 8
32 K116 Osogbo Susceptible to all antibiotics t19066* (1) 522 522 8
33 B65 Ede Susceptible to all antibiotics t3576 (15) 2057 522 8
34 B161B Ede Susceptible to all antibiotics t19064* (1) 6082* - NT
35 G102 Ile-Ife Susceptible to all antibiotics t538 (1) 6092* 522 8
36 G165B Ile-Ife Susceptible to all antibiotics t19065* (1) 6092 522 8
37 B154 Ede Susceptible to all antibiotics t19063* (1) 6096* - NT

PEN, Penicillin; GEN, Gentamicin; OXA, Oxacillin; TET, Tetracycline; COT, Trimethoprim-sulphamethoxazole; spa, Staphylococcus protein A; ST, Sequence Type; CC, clonal 
complex; cap, capsule; Antibiotic resistance genes/product (aacA-aphD, bi-functional aminoglycoside phosphotransferase; aadD, aminoglycoside adenyltransferase; 
blaZ, β-lactamase; ermA, rRNA adenine N-6-methyl-transferase gene; mecA, alternate penicillin-binding 2a; tetK, tetracycline efflux protein variant K). Enterotoxins and 
toxic shock syndrome genes (sea-sep, enterotoxin A and P; sec, enterotoxin C; seh, enterotoxin H; tst, toxic shock syndrome toxin). Leukocidin and hemolysin genes 
(lukD, leukocidin D; lukE, leukocidin E; lukF-P83, bovine Panton-Valentine leukocidin subunit F; lukM, leukocidin M, lukF-PV, Panton-Valentine leukocidin subunit F; 
lukS-PV Panton-Valentine leukocidin subunit S; hla, hemolysin alpha; hlaB, hemolysin B; hlgA, hemolysin gamma component A; hlgB, hemolysin gamma component 
B; hlgC, hemolysin gamma component C). Immune evasion cluster genes (chp, chemotaxis-inhibiting protein; sak, staphylokinase; scn; staphylococcal complement 
inhibitor). Exfoliative toxin and epidermal cell differentiation genes (etA, exfoliative toxin A; etD, exfoliative toxin D, edinB, epidermal cell differentiation inhibitor B). 
Proteases (sspB, staphopain B). Biofilm associated genes (icaA, intercellular adhesion gene A; icaC, intercellular adhesion gene C; icaD, intercellular adhesion gene D) □ 
negative ■ positive; *new spa types and sequence types; α: t127-ST852-CC1-SCCmecVII; β: t4690-ST152-CC152-SCCmecVc; ∞: t8821-ST152-CC152-SCCmecVc
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However, representative CC522 isolates exhibited strong 
hemolysis on CBA (Fig.  3a). PCR confirmed that these 
isolates harbor hla and hlb (Additional file  5: Fig. S5). 
WGS also revealed that some S. aureus in CC5, CC97, 
CC133 (chp/sak/scn-negative), and CC152 (sak/scn-pos-
itive) carried the intact hlb gene and confirmed by PCR. 
The complete hlg operon comprising hlgA, hlgB and hlgC 
was identified in S. aureus assigned with CC1, CC5, CC8, 
CC15, CC30, CC45, CC121, and CC133. The exfoliative 
toxin (etA and etD) genes were detected in CC15 (n = 1) 
and CC1 (n = 1), respectively and only CC152 isolates 
were edinB-positive.

MSCRAMMs genes and screening for mucoid 
phenotype and biofilm assay
The most common protease gene was sspB, and WGS 
identified the intercellular adhesion (icaA and icaC) 
genes in > 80% of isolates across the various CCs but 
absent in CC522 (Table  2; Additional file  6: Table  S6). 
Also, PCR could not detect some portions of the icaA 

and icaC genes in representative CC522 isolates. How-
ever, t9268, t18946, and t19031 S. aureus in CC522 
exhibited the mucoid phenotype on CBA. Besides, 
t9268 and t18946 isolates displayed rough colonies 
with wrinkled edges, while t19031 exhibited round, 
convex brown colonies on CRA (Fig.  3b). The MTP 
assay showed that all three isolates are biofilm produc-
ers. However, the biofilms attached to the bottom of 
the MTP appeared different from those produced by 
the PIA-positive S. aureus CF-7051800-I (5  bp del+) 
(Fig. 4a). The detachment assay also revealed that bio-
films formed by the t9268 and t18946 isolates were 
susceptible to NMP, while the addition of proteinase K 
and DNase I had only minimal effects. This observation 
suggests that the biofilm mainly consists of an extra-
cellular polysaccharide (EPS) and not PIA. The biofilm 
produced by t19031 S. aureus was equally dispersed 
by treatment with proteinase K, NMP, and DNase I 
(Fig. 4b).

CC cap bl
aZ

m
ec

A

te
tK

se
c

ts
t

lu
kD

lu
kE

lu
kF

P
83

lu
kM

ch
p

sa
k

sc
n

1 8

1 8

15 8

8 5

8 5

8 5

5 8

1 5

97 5

5 5

97 5

97 5

- NT

133 8

133 8

133 8

133 8

133 8

121 8

522 8

522 8

522 8

522 8

522 8

522 5/8

522 8

522 8

30 8

30 8

45 8

152 5

152 5

152 5

- NT

A

B

C

Fig. 2  A Neighbor-Joining (NJ) tree of selected S. aureus isolates based on up to 1861 genes of the S. aureus core genome (cg)MLST scheme 
and annotated with Clonal complex (CC), capsule type, and antibiotic and virulence gene carriage. ST, Sequence type; CC, clonal complex; cap, 
capsule; Antibiotic resistance genes and product (blaZ, β-lactamase; mecA, alternate penicillin-binding 2a; tetK, tetracycline efflux protein variant 
K). Enterotoxins and toxic shock syndrome genes (sec, enterotoxin C; tst, toxic shock syndrome toxin). Leukocidin and hemolysin genes (lukD, 
leukocidin D; lukE, leukocidin E; lukF-P83, bovine Panton-Valentine leukocidin subunit F; lukM, leukocidin M). Immune evasion cluster genes (chp, 
chemotaxis-inhibiting protein; sak, staphylokinase; scn; staphylococcal complement inhibitor) □ negative ■ positive



Page 7 of 12Shittu et al. Antimicrob Resist Infect Control          (2021) 10:122 	

Cytotoxicity assay
We observed that WGS detected less virulence (enter-
otoxins and toxic shock syndrome, leukocidins and 

hemolysins, exfoliative toxins) genes in CC522 S. 
aureus (median: 3; range 1–7) compared with CC133 
(median: 10; range 9–11, Table  2). Thus, we explored 

Fig. 3  a Hemolytic activity of representative CC522 S. aureus isolates on Columbia Blood Agar (CBA). Positive control: highly invasive and cytotoxic 
strain S. aureus 6850. Colony sizes might differ due to different camera positions. The zone of hemolysis (β-hemolysis) is indicated with an arrow. The 
spa types of representative CC522 S. aureus are presented. b Mucoid CC522 isolates on CBA and CRA. Key: A: Columbia Blood Agar (CBA); B: Congo 
Red Agar (CRA). A, B, C, D: mucoid phenotype; A1, B1, D1, E: pink/brown colonies with wrinkled, irregular edges; C1: brown colonies with smooth, 
convex, entire edges; F: pink colonies with smooth, convex, entire edges. Positive control: RP62A—S. epidermidis (biofilm-positive); 70518005-I: 
cystic fibrosis (CF) S. aureus isolate with a 5 bp deletion within the intergenic region of the ica operon [32] (biofilm/PIA-positive); Negative control S. 
carnosus TM300 (biofilm-negative). The spa types of mucoid CC522 S. aureus are indicated. Colony morphology is highlighted, and sizes might differ 
due to different camera positions
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the pathogenic potential of the CC522 lineage by 
investigating the cytotoxicity of secreted products 
of representative S. aureus on A549 cells. The assay 

showed that t538, t3576, t10018, t18946, t19031 iso-
lates were strongly cytotoxic compared with the con-
trol (sterile TSB) (Fig. 5).
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Fig. 5  Extracellular cytotoxicity on A549 cells of S. aureus isolates representing spa types associated with CC522. Bars represent the mean and 
standard deviation of five independent experiments. Statistical significance: p-value < 0.0001 (***). Positive control: highly invasive and cytotoxic 
strain S. aureus 6850. Negative control: TSB broth
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Discussion
This study revealed a low prevalence of antibiotic-resist-
ant S. aureus in the WAD goat in Nigeria. Only 4% (4/90) 
were identified as MRSA. Our observation is similar to 
previous goat studies in China [35], Iran [36], Nigeria 
[37], and Poland [38]. Penicillin and tetracycline are com-
monly used antibiotics in poultry and livestock farming 
in Nigeria [39, 40]. Our informal interaction with the 
goat sellers revealed that tetracycline and metronidazole 
are the common antibiotics administered to the ruminant 
animal. However, antibiotic use on the WAD goat is lim-
ited, which could be a plausible reason for the low per-
centage of antibiotic-resistant S. aureus observed in this 
study. Molecular typing and phylogenetic analysis also 
revealed that the S. aureus population of the WAD goat 
comprised primarily of CC133 and CC522 that are well 
adapted with ruminants. CC522 is one of the dominant S. 
aureus lineages among the goat population in China [35], 
Iran [36], Spain [41], and Tunisia [42]. It is also the main 
lineage in the anterior nares of healthy ewes in Tunisia 
[43]. The report of CC522 among the goat population 
in China and Iran suggests that this lineage may not be 
restricted to Africa and Europe, as postulated with sheep 
[44]. In this study, S. aureus assigned with t3576 and 
t10018 were the most common spa types and accounted 
for 64% (27/42) of the isolates in CC522. These geno-
types have been identified from nasal samples of animals, 
including a farmworker (t10018) in Nigeria [37]. Besides, 
WGS showed that the t3576 and t10018 isolates were 
tst-positive (Table 2), which is similar to data from sheep 
[43] and dairy cows [45].

Although CC522 S. aureus was generally susceptible 
to all antibiotics and lacked many virulence genes based 
on WGS, the representative isolates demonstrated strong 
hemolytic activity and were confirmed as hla and hlb-
positive. Moreover, t538, t3576, t10018, t18946, t19031 
isolates showed strong cytotoxicity on A549 cells, unlike 
t9268, t13260, t19065, and t19066 S. aureus (Fig. 5). The 
reason for the variation is not clear. However, we postu-
late that strain specificity and level of expression of the 
hemolysins and/or other toxins [46] could be plausible 
reasons. Several methods have been employed for the 
detection and measurement of microbial biofilms [47]. 
In this study, the combination of touching single colo-
nies with a sterile inoculating loop on CBA to assess the 
consistency and morphological characteristics on CRA 
was helpful in the presumptive identification of biofilm-
producing S. aureus. We also demonstrated that CC522 
S. aureus from the WAD goats could form biofilms. The 
semi-quantitative MTP and detachment assay provided 
evidence that the biofilm consists of an EPS and not PIA, 
as indicated by PCR and WGS. The nature of the EPS-
associated biofilm is earmarked for further investigation. 

Overall, the ability of CC522 S. aureus to form biofilms, 
detection of tst, hla, hlb, and cytotoxic effect on A549 
cells, regardless of their susceptibility to antibiotics, illus-
trate their pathogenic capability.

CC133 was the second most common group, which 
agrees with previous studies that it is frequently associ-
ated with ruminants [5, 44, 48–50]. There is evidence that 
CC133 could have evolved due to a human to ruminant 
host jump followed by adaptive genome diversification 
[51]. In this study, the sec and tst genes located on the S. 
aureus pathogenicity island SaPIov1 were unique for the 
CC133 isolates, as previously noted [5, 50]. CC97, the 
third most common group, is a leading cause of bovine 
mastitis globally [52]. WGS showed that the isolates gen-
erally lacked the leukocidin and enterotoxin genes. How-
ever, PCR revealed that most of the CC97 isolates were 
sak + , suggesting a human host association.

The prevalence of human-associated lineages (CC1, 
CC5, CC8, CC15, CC30, CC45, CC121, and CC152) was 
lower (28%, 25/90) than animal-associated clones (68%, 
65/90). S. aureus in CC1, CC30, CC121, and CC152 pos-
sessed the PVL genes, while the lukDE genes were identi-
fied in CC5, CC8, and CC15 (Table 2). PVL and LukDE 
are bi-component pore-forming leukocidins carried on 
the temperate phage ΦSa2 and S. aureus  pathogenicity 
island vSaβ, respectively [53]. PVL-positive S. aureus is 
associated with subclinical mastitis in goats, while lukDE 
has a remarkable ability to target the lymphocytes of a 
broad host range [53]. Our observation of PVL-positive 
S. aureus from the WAD goat is similar to a study in 
China [35] and food-producing animals in Senegal [54]. 
PVL-positive S. aureus from colonized and clinical sam-
ples of humans has been widely reported in sub-Saharan 
Africa [55]. These findings indicate the possible impact of 
human-animal interaction on cross-species transmission.

MRSA has already been detected from the WAD goat 
in Nigeria [37, 56]. However, their molecular charac-
teristics have not been well described. We identified 
MRSA with the following genotypes: t127-ST852-CC1-
SCCmecVII, t4690-ST152-CC152-SCCmecVc, and 
t8821-ST152-CC152-SCCmecVc. ST852, a single locus 
variant (slv) of ST1, is the third most common MSSA 
clone associated with human infections in five major 
African towns [57]. It is also noteworthy that PVL-pos-
itive CC152-MRSA was recovered from the WAD goat. 
Although the CC152-MRSA lacked most of the entero-
toxin and toxic shock genes, the isolates were positive 
for the hemolysins (hla, hlb, hlgA, hlgB) and epidermal 
differentiation factor B (edinB). WGS also revealed 
that the CC152 isolates (scn/sak-positive) possessed an 
intact hlb confirmed by PCR. This observation suggests 
new non-hlb-converting phages or alternative integra-
tion sites [29, 58]. The PVL-positive CC152 lineage is 
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a successful MSSA clone among humans and animals 
in Africa [55, 59], including Nigeria [6, 12, 60]. The 
emergence of PVL-positive ST852/CC1 and ST152/
CC152 MRSA indicates that it is important to under-
stand the dynamics for introducing and acquiring the 
methicillin resistance (mecA) gene in these two suc-
cessful African MSSA clones. Our work has limitations. 
First, we observed a poor agreement between WGS 
and conventional PCR in detecting some S. aureus 
antibiotic and virulence genes. Targets for WGS were 
considered as present if they were discovered in the 
genome with a range of ≥ 95% sequence identity and 
≥ 99% query overlap to any of the sequences stored in 
the allele library [61]. Testing with appropriate and less 
restrictive threshold settings might provide increased 
concordance with PCR. Second, cultural and reli-
gious barriers could not allow us to investigate nasal 
and hand S. aureus carriage of close human contacts 
with the ruminant animal to address transmission and 
possible spread of antibiotic resistance genes. Social 
engagement and awareness on “One Health” with the 
evaluation of environmental samples are earmarked in 
subsequent investigations.

Conclusion
Our study provides the first detailed analysis of the popu-
lation structure and genomic content of S. aureus from 
the WAD goat in Nigeria. The S. aureus clonal popula-
tion of the WAD goat is diverse, including new spa types 
and STs. This observation indicates limited existing data 
and the need for more surveillance studies on animal S. 
aureus. We present evidence that the S. aureus clonal 
population of the WAD goat consists of both ruminant-
associated lineages, and human-associated clones. We 
also highlight the pathogenic potential of the antibiotic-
susceptible and tst-positive CC522 S. aureus.
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