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Abstract

Background: The presence of macrolide-resistant Myocplasma pneumoniae has been frequently reported in recent
years, especially in China. In this study, we investigated the antimicrobial susceptibility and genotype against M.
pneumoniae isolates from 2014 to 2016, Beijing.

Methods: We investigated the activities of four antibiotics against 81M. pneumoniae isolates in vitro. All isolates
were amplification of domains II and V of the 23S rRNA gene and the L4 and L22 ribosomal protein fragments. All
isolates were genotyped with duplex real-time PCR, MLVA and VNTR detection in p1 gene.

Results: The macrolide resistance rate was 65.4% (53/81). Each of the macrolide-resistant M. pneumoniae isolates was
resistant to erythromycin (Minimum Inhibitory Concentration, MIC, ≥256 μg/ml) and azithromycin (MIC, 2–64 μg/ml), but
susceptible to tetracycline and levofloxacin in vitro. Fifty two macrolide-resistant isolates harbored the A2063G mutation, and
only 1 macrolide-resistant isolates harbored the A2064G mutation in domain V of the 23S ribosomal RNA gene. The C162A,
A430G, and T279C mutations in the L4 and L22 ribosomal protein genes were not responsible for macrolide resistance, but
they were related to the particular genotype of M. pneumoniae. 95.7% of type 1 isolates (45/47) were macrolide-resistance,
and 23.5% of the type 2 isolates (8/34) were macrolide-resistance. Type 2M. pneumoniaemacrolide-resistance rate was
50.6% higher than that of the previous reports in China. The eight macrolide-resistant type 2M. pneumoniae isolates were
belong to 3/5/6/2 and 3/5/7/2 MLVA genotypes.

Conclusion: To our knowledge, this phenomenon likely resulted from a combination of genotype shifting from type1 to
type 2 and antibiotic selection pressure in M. pneumoniae in China in recent years. The increase of resistance in type 2 is not
due to the spread of same clone. However, the relationship between genotype shifts and macrolide resistance in M.
pneumoniae needs to be further verified with more extensive surveillance data.
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Background
Mycoplasma pneumoniae is a common pathogen that
causes human respiratory tract infections, especially in
community-acquired pneumonia, which accounts for
10–40% of cases [1–3]. Although most of the infections
are mild or self-limited, severe clinical symptoms are

increasingly occurring. Furthermore, M. pneumoniae in-
fections may lead to more severe extra-pulmonary con-
ditions, such as erythema multiforme, myocarditis, and
meningitis neuritis [4–6]. It is well known that M. pneu-
moniae is one of the smallest self-replicating organisms
and lacks a cell wall, which makes it non-susceptible to
β-lactam antibiotics. Therefore, macrolides are the pri-
mary drugs of choice for the treatment of M. pneumo-
niae infections in clinical settings [7].
Excessive or inappropriate use of antibiotics provides

selective pressure for the development of macrolide re-
sistance in M. pneumoniae. Since 2000, the emergence
of macrolide-resistant M. pneumoniae strains has
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become a growing global problem. Macrolide resistance
rates were reported to be approximately 3% in Germany
[8], 10% in France [9], 2% in Switzerland [10], 26% in
Italy [11], 3% in Denmark [12], and 11% in the United
States [13]. Finally in Spain, the presence of a
macrolide-resistant M. pneumoniae isolate causing
community-acquired pneumonia was first reported in
2014 [14]. Although Europe and the United States have
lower rates of macrolide resistance, Asiatic countries
have the highest rates. After the first macrolide-resistant
strain of M. pneumoniae was isolated in 2001 [15], Japan
reported a dramatic increase in macrolide-resistant M.
pneumoniae, and the macrolide resistance rate exceeded
90% in 2011 [16–19]. In South Korea, the prevalence of
macrolide-resistant M. pneumoniae increased from 0 to
63% within 10 years [20, 21]. In China, the infection rate
of macrolide-resistant M. pneumoniae has always been
high, ranging from 69 to 100% [22–24] in recent years.
Given the distinct increase in the prevalence of
macrolide-resistant M. pneumoniae, it is crucial to de-
tect macrolide-resistant M. pneumoniae in a timely fash-
ion and facilitate targeted treatment adjustments for M.
pneumoniae-induced infections.
The resistance mechanism employed by M. pneumo-

niae involves point mutations in domain V of the 23S
rRNA gene. Specifically, mutations at positions 2063 or
2064 lead to high-level resistance, whereas mutations at
positions 2067 or 2617 are associated with low-level re-
sistance to macrolides [25, 26]. Furthermore, point mu-
tations that occur in the L4 and L22 ribosomal protein
genes seem to have no impact on resistance to macro-
lides in M. pneumoniae [22, 26]. Until now, many
erythromycin ribosome methylation (erm) and efflux
pump (mef ) genes introduced via transposons or plas-
mids have been reported in many strains of pneumo-
cocci and enterobacteria [27], but these genes have still
not been detected in M. pneumoniae [28]. The existence
of any other macrolide resistance mechanisms of M.
pneumoniae remains unclear and requires further study.
Although early reports have found some potential cor-
relation between macrolide-resistance and genotype in
China, most type 2 isolates are macrolide-susceptible
[22–24, 28, 29]. The data are relatively limited, and the
association of the macrolide-resistance with genotype
does not exist abroad reports [14, 26]. Therefore,
macrolide-resistance and genotypes of M. pneumoniae
need to do further research.
In this study, 81M. pneumoniae isolates were obtained

from 271 throat swabs that were collected between 2014
and 2016 in Beijing, China, to evaluate the prevalence of
macrolide-resistant M. pneumoniae and characterize its
mechanisms of resistance, and analyze the correlation
between genotype and macrolide resistance observed in
M. pneumoniae in China.

Methods
Study design
Microbiological testing was conducted at the Depart-
ment of Communicable Disease Diagnostics of National
Institute for Communicable Disease Control and Pre-
vention, Chinese Center for Disease Control and Preven-
tion. This study was approved by the Research Ethics
Committee of the National Institute for Communicable
Disease Control and Prevention, Chinese Center for Dis-
ease Control and Prevention, the Research Ethics Com-
mittee of the Beijing Centers for Disease Control and
Prevention, and the Research Ethics Committee of the
Beijing Children’s Hospital. The segment of the work
based on molecular analysis was carried out at labora-
tory of National Institute for Communicable Disease
Control and Prevention, Chinese Center for Disease
Control and Prevention.

M. pneumoniae isolates, culturing, and genomic DNA
extraction
From January 2014 to December 2016, total 271 throat
swabs were collected from the Beijing Centers for Dis-
ease Control and Prevention and Beijing Children’s Hos-
pital. None of the patients were immunocompromised,
patients with neutropenia, and patients receiving im-
munosuppressive chemotherapy were excluded. All
specimens were collected from patients with respiratory
tract infections according to clinical symptoms. Each
throat swab was cultured in Mycoplasma selective liquid
media (OXOID) at 37 °C. When the color of the media
changed from red to yellow, approximately 0.1 ml of the
suspension was transferred onto agar to subculture and
purify the bacteria using the filtration-cloning technique
for M. pneumoniae clinical isolates. Genomic DNA from
each obtained isolate was extracted with the QIAamp
DNA MINI kit (QIAGEN) using the protocol for blood
and body fluids, and the identity of each isolate was veri-
fied using real-time PCR [30].

Antimicrobial susceptibility testing of M. pneumoniae
Minimum inhibitory concentrations (MICs) of four anti-
biotics, including erythromycin, azithromycin, levofloxa-
cin and tetracycline (Sigma), were determined via
micro-dilution methods using SP4 broth (Remel). M.
pneumoniae M129 (ATCC 29342) and ICDC P028 (Clin-
ical isolate) were used as macrolide-susceptible and -re-
sistant controls, respectively. The MIC operation was
carried out according to the latest version of CSLI
M43-A. Serial two-fold dilutions of each antibiotic pre-
pared in SP4 broth containing about 105 colony-forming
units (CFU)/ml of M. pneumoniae were plated in
96-well micro-plates. The micro-plates were sealed with
sterilized liquid paraffin oil and incubated at 37 °C for 5
days. Each antimicrobial susceptibility test was
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performed in triplicate. The MIC was determined as the
lowest concentration of antimicrobial agent that induced
a color change in the control media.

Amplification and sequencing domains II and V of the
23S rRNA gene and the L4 and L22 ribosomal protein
genes
Amplification of domains II and V of the 23S rRNA
gene and the L4 and L22 ribosomal protein fragments
were performed using the primers described previously
[26]. Each reaction was performed in a final volume of
20 μl, containing 2 μl 10× Ex Taq Buffer (Mg2+ plus),
0.4 μM primers, 1.6 μl dNTP mixture (each 2.5 μM),
0.2 μl TaKaRa Ex Taq (5 U/μl), 1 μl of template DNA,
and nuclease-free water to achieve a 20-μl final volume.
The cycling conditions were as follows: 95 °C for 3 min,
followed by 30 cycles of 95 °C for 30 s, 55 °C for 30 s, and
72 °C for 60 s with a final extension step of 72 °C for 5
min. All amplification products were sequenced bidirec-
tionally by Sangon Biotech (Beijing) Co. Ltd.

Duplex real-time PCR assay for genotyping of M.
pneumoniae
Amplification of the genotype specific regions from all
obtained isolates was performed with the duplex
real-time PCR assay described previously [31]. Each PCR
mixture was prepared in a total volume of 25 μl and
contained the following per reaction: 12.5 μl Platinum
Quantitative PCR SuperMix-UDG (Life Technologies-
Invitrogen), 1.5 μl MgCl2(50 mM), 0.5 μM final concen-
tration of each primer, 0.2 μM final concentration of
each probe, 1.25 U Platinum Taq DNA polymerase(5 U/
μl; Life Technologies-Invitrogen), 1 μl PCR nucleotide
mix (10 mM), 5 μl nucleic acid extracted from each spe-
cimen, and nuclease-free water to achieve a 25 μl final
volume. Real-time PCR for each target was performed in
the CFX96 Real-time PCR Detection System (Bio-Rad,
Hercules, CA, USA) under the following conditions: pre-
denaturation at 95 °C for 2 min, followed by 45 cycles at
95 °C for 15 s and 56 °C for 15 s. The data were analyzed
with the CFX Manager Software (version 2.1; Bio-Rad).

MLVA genotyping and VNTR detection in p1 gene
Extracted nucleic acids from all 81 isolates were used as
the template for PCR amplification of the four loci se-
lected for multilocus variable-number tandem-repeat
(VNTR) analysis (MLVA), as described previously [32].
Furthermore, all nucleic acids were also as the template
for PCR amplification of the high resolution VNTR se-
quence in the p1 gene [24], The PCR products were se-
quenced by the Sangon Biotech (Beijing) Co., Ltd.

Results
Clinical M. pneumoniae culture and identification
A total of 81M. pneumoniae isolates were obtained from
271 patients. Of the 81 isolates, 27 were isolated in
2014, 19 were isolated in 2015, and 35 were isolated in
2016. Genomic DNAs from all 81 obtained isolates was
identified by real-time PCR, which indicated that each
isolate was indeed M. pneumoniae.

Antimicrobial susceptibility of M. pneumoniae
Of the 81 clinical isolates, 53 (65.4%) were erythromycin
resistant (MIC, ≥256 μg/ml). These erythromycin-resist-
ant isolates, as well as the reference strain ICDCP028,
also showed resistance for the azithromycin. The MIC
for the 15-member macrolide, azithromycin (2–64 μg/
ml), was lower than that of erythromycin. The other 28
isolates, as well as the reference strain, M129, were
macrolide-susceptible with each having an MIC of
≤0.008 for erythromycin and azithromycin. All 81 clin-
ical isolates were susceptible to tetracycline and levoflox-
acin used in this study. (Table 1).

Clinical patient data
Clinical data for M. pneumoniae-related cases of pneu-
monia were available for the 81 patients, 53 (65.4%) of
whom had pneumonia caused by macrolide-resistant
isolates. None of patients had coinfection with Strepto-
coccus pneumoniae (as defined by positive results of spu-
tum culture, blood culture, and urinary antigen testing
for S. pneumoniae) or Legionella pneumophila (as de-
fined by urinary antigen testing). Demographic charac-
teristics and clinical presentations were similar between
the group infected with macrolide-resistant isolates (53/
81) and the group infected with macrolide-susceptible
isolates (28/81) (Table 2).

Amplification and sequencing of the 23S rRNA gene and
the L4 and L22 ribosomal protein genes
98.1%(52/53) macrolide-resistant clinical isolates har-
bored the A2063G mutation in domain V of the 23S
rRNA gene. Only one (1/53) macrolide-resistant clinical
isolates harbored the A2064G mutation in domain V of
the 23S rRNA gene. None 2063 or 2064 mutation was
found in 28 macrolide-susceptible clinical isolates. Fur-
thermore, no other mutations in domain V of the 23S
rRNA gene were observed in the 81 isolates (Table 1).
The C162A and A430G mutations in the L4 ribosomal
protein gene and the T279C mutation in the L22 riboso-
mal protein gene were identified in 34 isolates, including
the reference strain ICDC P028.

Genotyping of M. pneumoniae with three methods
A total of 47 (58.0%) isolates were classified as type 1,
and the other 34 (42.0%) isolates belonged to type 2 with
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duplex real-time PCR. Among the 47 type 1 isolates, 45
were macrolide-resistant, and only two was
macrolide-susceptible. The 34 type 2 isolates, 8 were
macrolide-resistant, and other 26 was macrolide-suscep-
tible. 89.4% (42/47) type 1 isolates were 4/5/7/2 MLVA
type, and 94.1% (32/34) type 2 isolates were 3/5/6/2
MLVA type (Table 1). The numbers of VNTR in the p1

gene from all 81M. pneumoniae isolates were different,
ranging from 5 to 14, as shown in Table 1.

Macrolide-resistant isolates with genotyping from 2014 to
2016
The total Macrolide-resistant rate was 59.3, 73.7 and
65.7% from 2014 to 2016, respectively. However, the

Table 1 Genotype characteristics and MIC ranges of four antimicrobial agents used against 81M. pneumoniae clinical isolates from
2014 to 2016

Year Mutation
in the
23S rRNA

Isolates number MLVA genotype (Numbers) No. of “AGT” VNTRs repeats
in p1 gene (Number)

MIC (μg/ml)

type1 type2 type1 type2 type1 type2 ERY AZM LVX TET

2014 A2063G 13 2 4/5/7/2 (10)
4/5/7/3 (2)
4/4/7/2 (1)

3/5/6/2 (2) 5 repeats(1)
7 repeats(6)
8 repeats(5)
11repeats(1)

6 repeats(1)
8 repeats(1)

≥256 2–32 0.25–1 0.016–0.25

A2064G 1 0 4/5/7/2 (1) 0 7 repeats(1) ≥256 4 0.25 0.032

None 2 9 4/5/7/2 (2) 3/5/6/2 (9) 5 repeats(1)
7 repeats(1)

6 repeats(3)
7 repeats(2)
8 repeats(3)
12 repeats(1)

≤0.008 ≤0.008 0.25–1 0.032–0.25

2015 A2063G 12 2 4/5/7/2 (12) 3/5/6/2 (2) 4 repeats(1)
6 repeats(5)
7 repeats(4)
8 repeats(2)

8 repeats(2) ≥256 2–64 0.125–0.5 0.032–0.5

None 0 5 0 3/5/6/2 (5) 0 5 repeats(1)
8 repeats(4)

≤0.008 ≤0.008 0.25–1 0.032–0.25

2016 A2063G 19 4 4/5/7/2 (17)
4/5/7/3 (2)

3/5/6/2 (3)
3/5/7/2 (1)

6 repeats(2)
7 repeats(5)
8 repeats(4)
9 repeats(6)
10 repeats(1)
12 repeats(1)

7 repeats(3)
10 repeats(1)

≥256 2–64 0.125–1 0.016–0.5

None 0 12 0 3/5/6/2 (11)
3/5/7/2 (1)

0 6 repeats(2)
7 repeats(5)
8 repeats(3)
10 repeats(1)
14 repeats(1)

≤0.008 ≤0.008 0.25–1 0.032–0.5

The MIC of each agent was defined as the lowest concentration of each antibiotic that prevented the color change
ERY erythromycin, AZM azithromycin, LVX levofloxacin, TET tetracycline

Table 2 Clinical data comparing 81 cases of respiratory tract infections caused by M. pneumoniae with different in vitro susceptibility
to macrolides

Macrolide-resistant M.
pneumoniae group
(n = 53)

Macrolide-susceptible M.
pneumoniae group
(n = 28)

Male 22 (41.5%) 11 (39.2%)

Clinical Symptoms

Temperature (°C) 38.12 37.96

Cough 39 (73.6%) 18 (64.3%)

Sputum 33 (62.3%) (53.8%)

Headache 16 (30.2%) 11 (39.3%)

Chest pain 3 (5.7%) 0

Leukocyte count (109 cells/L) 8.44 8.71

Antibiotics usage before detection 14 (26.4%) 10 (35.7%)
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macrolide-resistant rate of type 1 isolates was 87.5%(14/
16), 100.0% (12/12) and 100.0% (19/19), and was only
18.2% (2/11), 28.6% (2/7) and 25.0% (4/16) in type 2 iso-
late from 2014 to 2016 (Table 1).

Disscussion
In general, macrolides are the primary therapeutic agent
for treating M. pneumoniae infections in both children
and adults, but the macrolide resistance rate has been
shown to be very high in clinical isolates of M. pneumo-
niae in China in recent years [22–24, 31]. Basic clinical
data demonstrated that the demographic characteristics,
clinical presentations, and biochemical blood indices
were similar between the group infected with macrolide-
resistant isolates and the group infected with
macrolide-susceptible isolates, which is consistent with
our previous report [22]. This suggests that the patho-
genicity of the macrolide-susceptible and macrolide-re-
sistant isolates is unremarkable. However, our previous
study found that patients infected with macrolide-
resistant M. pneumoniae required significantly longer
durations of antibiotic therapy and needed more time to
recuperate from fevers [22]. Unfortunately, we did not
obtain further clinical treatment data in this study. Al-
though, Lluch-Senar [33] found that type 2 strains show
higher expression levels of CARDS toxin, a protein re-
cently shown to be one of the major factors of inflam-
mation. It proposed that type 2 strains could be more
toxigenic than type 1 strains of M. pneumoniae. Our
basic clinical data still have not found some features in
common for the patients with different genotypes. This
suggests that the pathogenicity may also unremarkable
for M. pneumoniae with genotypes. Therefore, the influ-
ence of the macrolide-resistance and the genotypes of
M. pneumoniae isolates on the effect of the clinical out-
comes requires further investigation.
Macrolide resistance in M. pneumoniae is strongly as-

sociated with mutations in the 23S rRNA gene [34]. Sev-
eral common mutations in the 23S rRNA gene were
found at positions 2063, 2064, and 2617 [15, 35, 36].
Among these genetic loci, the A2063G and A2064G mu-
tations are responsible for high levels of macrolide re-
sistance in M. pneumoniae. Notably, the A2063G
mutation in domain V of the 23S rRNA gene is the most
prevalent in macrolide-resistant M. pneumoniae isolates
in China [22, 28, 31, 37, 38]. In this study, 98.1%(52/53)
macrolide-resistant clinical isolates harbored this
A2063G mutation. Only one (1/53) macrolide-resistant
clinical isolates harbored the A2064G mutation, and no
other mutations in the 23S rRNA gene were observed.
These findings coincided with the results from the anti-
microbial susceptibility tests. Based on our antimicrobial
susceptibility results, each of the A2063G isolates was
responsible for high-level resistance to erythromycin

(≥256 μg/ml), and azithromycin (2–64 μg/ml) in vitro.
The susceptibility data also revealed that all M. pneumo-
niae isolates were susceptible to tetracycline and fluoro-
quinolones. Taken together, these findings suggest that
these antibiotics have the potential to be used as alterna-
tives for treating M. pneumoniae infections in adults
with cases of high macrolide resistance, but this class of
antibiotics is not ordinarily recommended for children,
except in particular cases.
Furthermore, mutations in the L4 and L22 ribosomal

proteins are related to macrolide resistance in other spe-
cies [39]. In this study, we found that the C162A and
A430G mutations in the L4 ribosomal protein gene and
the T279C mutation in the L22 ribosomal protein gene
were observed in all isolates classified as type 2 for the
p1 gene, which is consistent with our previous report
[22]. An intensive study using whole genome sequence
analysis of 20 Chinese clinically isolated strains (unpub-
lished data) and M. pneumoniae genomes available in
NCBI database [33, 40], identified the C162A, A430G,
and T279C mutations in the ribosomal protein gene that
were detected in all type 2 isolates. We reasoned that
the three mutations in L4 and L22 were not responsible
for macrolide resistance, but rather influenced the par-
ticular genotype of M. pneumoniae.
This study showed a comparatively low macrolide

resistance rate of 65.4% in China, in recent 10 years
[22–24, 37, 38, 41–45]. Interestingly, 95.7% (45/47) of
the type 1 isolates were resistant to macrolides, whereas
only 23.5% (8/34) of the type 2 isolates were resistant to
macrolides in this study. To our knowledge, this inter-
esting phenomenon has not been reported in other
counties [26, 46]. Due to the relatively low resistance
rate of type 2 isolates, the overall rate of macrolides
resistance is lower than previously reported in China
[23, 24, 28, 29, 37, 38, 47]. In recent publication, we
found that M. pneumoniae type 1 was the predominate
genotype present during 2008–2012 in Beijing, and a
genotype shift from type 1 to type 2 began to occur in
2013. Here, the percentage of type 2M. pneumoniae iso-
lates was low to19.5% (34/349) before 2012, and was
26.3% (8/41) during 2012, but raised to 39.4% (29/66)
during 2013–2014 [31]. In this study, genotyping results
support this earlier research findings. The percentage of
type 2M. pneumoniae isolates was 42.0% (34/81) during
2014–2016. These indicates that the genotype of M.
pneumoniae isolates in Beijing is shifting from type 1 to
type 2. Based on earlier work [48], which reported that
M. pneumoniae genotype shifts occur every 8–10 years
and that a shift from one type to another requires 2–3
years. Our publication deduced that type 2 will likely be-
come the predominate genotype in Beiijing over the next
few years [31]. However, in this research, the M. pneu-
moniae genotype in Beijing still did not become the
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absolute dominant type 2 till 2016, but entered the stage
where the ratio of type 1 and type 2 was nearly closed.
This is not consistent in the M. pneumoniae genotype
shift cycle reported in publication [48]. Maybe the geno-
type shift cycle takes more longer in Beijing, and perhaps
there is no very regular periodic genotype shifting about
M. pneumoniae [14, 26, 49]. After all, M. pneumoniae
genotyping research is less than 15 years in China, and
requiring researchers to do longer-term monitoring and
research.
Although the macrolide resistance rate of type 2M.

pneumoniae isolates is not very high in this study. Com-
pared with the previous data, we found that the macro-
lide resistance rate of type 2 isolates is also increased
synchronously with the increase of the proportion of
type 2 isolate (Table 3). No macrolide resistance M.
pneumoniae of type 2 isolates was found in 2008 in
Beijing. The proportion of macrolide resistance M. pneu-
moniae of type 2 isolates increased from 15.6% before
2012 to 23.5% in this study. Macrolide resistance rate of
type 2M. pneumoniae increased by 50.6% within 9 years
in China. In contrast, although the proportion of type 1
isolates is decreasing gradually, the macrolide resistance
rate still remains above 90.0%. We deduced that this
phenomenon may be related to the irregular use of anti-
biotics in China. The widespread overuse of antibiotics
is very common in China, especially in some district
hospitals. Under tremendous antibiotic selection pres-
sure, almost all of the predominant type 1M. pneumo-
niae strains isolated in China could certainly turn into
macrolide-resistant isolates. Relatively speaking, the in-
ferior type 2M. pneumoniae strains with little chance to
suffer from antibiotic selection pressure might still re-
main macrolide-susceptible in early years. With the in-
creasing of the proportion of type 2 isolates in recent
year, the chances of exposure to macrolide antibiotics in-
crease greatly. Under the excessive selection of antibiotic
pressure, macrolide -resistant type 2 isolates appear and
spread rapidly, resulting in an increase in the macrolide
-resistant rate of type 2 isolates in recent years in
Beijing. The MLVA and the VNTRs in the p1 gene

results both indicated that the increase of resistance in
genotype 2 is not due to the spread of same clone. We
will continue to monitor the status of the genotypes and
macrolide resistance rates of M. pneumoniae in Beijing
over the next few years to verify our hypotheses.
Our study had limitations. This was a single-center

study conducted over 3 year, and only 81M. pneumoniae
isolates were studied. The statistical power may have
been insufficient to assess other clinical outcomes.

Conclusions
In summary, macrolide-resistant M. pneumoniae in
Beijing, China, has been present at high levels in recent
years. The A2063G transition in domain V of the 23S
rRNA gene was identified in all macrolide-resistant M.
pneumoniae isolates, and we noted that the mutations in
L4 and L22 were not responsible for macrolide resist-
ance but rather influenced the particular genotype of M.
pneumoniae. We deduced that the significant increased
macrolide-resistant type 2 isolates may be due to the
genotype shifting of M. pneumoniae in Beijing. The rela-
tionship between genotype shifts and macrolide resist-
ance in M. pneumoniae needs to be further verified with
more extensive surveillance data.
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