
RESEARCH Open Access

On valuing biopharmaceutical product
pipelines: an effectuation model and
evidence
Mark J. Ahn1, Anne S. York2, Wei Wu3, Yulianto Suharto1 and Tugrul Daim1*

* Correspondence:
tugrul@etm.pdx.edu
1Portland State University, Portland,
USA
Full list of author information is
available at the end of the article

Abstract

New creative approaches are needed to manage emerging biotechnology
innovations, regulations, and payor environments to enhance product pipeline
productivity, valuation, and risk management. Biopharmaceutical firms must make
dynamic resource allocation decisions on their relative levels of internal R&D and
external strategic alliances in furthering their pipelines. As the predominant method
of using discounted cash flow (DCF) methodologies may lead to chronic
underinvestment and performance, we evaluated the integration of traditional DCF
with an effectuation model of analysis. Unlike traditional financial models that begin
with the end goal of assumed known cash flows and recursively solve for portfolio
optimization, the effectuation model—means, affordable loss, partnerships, and
expect the unexpected—begins with resources that are readily available to the firm
and then seeks to maintain strategic flexibility to take advantage of environmental
contingencies as they arise. Using effectuation principles can provide insight into
optimizing pipeline decisions by focusing on the logic of control rather than the
logic of prediction. Using empirical data, we found that investors were able to
effectively differentiate between the pipeline values of among companies. Overall,
these results suggest that the integration of effectuation and DCF provides a lens
from which to explore emerging varieties of small and large company innovation in
the biopharmaceutical industry.

Background
As many of the past decade’s blockbuster drugs, including Pfizer’s $12 billion Lipitor,

continue to come off patent, concerns are growing as to whether and how the bio-

pharma industry will replace revenues lost to generics (Kirchhoff and Schiereck, 2011).

A report of the President’s Council of Advisors (2012) on science and technology

warns, “The pharmaceutical industry is facing the largest ‘patent cliff ’ in its history:

drugs with annual sales exceeding $200 billion will come off patent in the period

2010–2014, resulting in a loss of more than $100 billion in sales to generic substitutions;

only a small fraction is expected to be replaced by new product revenues (p. vii).” Several

studies have noted the R&D productivity paradox: on one hand, molecular medicine is

expanding the numbers of disease targets for more complex unmet medical needs (e.g.,

Parkinson’s, Alzheimer’s) and orphan drug diseases which focus on smaller patient popu-

lations (e.g., Gaucher’s disease, myeloproliferative disorders), and on the other hand, drug
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development in novel, complex diseases increases the risk of failure in the face of rising

R&D costs (Pammolli et al. 2011).1 As noted by Piccart-Gebhart (2014) at the 41st

Karnofsky Memorial Award Lecture:

The pharmaceutical industry is under extreme financial pressure…Given increasingly

cost-constrained health care systems, limited patent durations on blockbuster drugs,

competition from generics, a more demanding regulatory environment, diminishing

marketing exclusivity, and progressively smaller markets resulting from the rapidly

increasing molecular segmentation of the populations of patients…companies are

being forced to overhaul their drug development strategies (p. 348).

As such, new creative approaches are needed to manage emerging biotechnology

innovations, regulations, and payor environments to enhance product pipeline product-

ivity, valuation, and risk management, all of which are critical to future industry devel-

opment and national competitiveness (Beach, 2011; Ford et al. 2008; Lindgren and

Packendorff, 2011; Roy, 2012).

Typically, large biopharma firms create drug development pipelines in three ways: in-

ternal development, strategic alliances (e.g., joint ventures, alliances, co-promotion, co-

development), and mergers and acquisitions (Pavlou and Belsey, 2005). Studies (York et

al. 2011) have examined relative success rates of different acquisition strategies in the

biopharma industry, finding that horizontal mergers, which tend to reduce costs

through scale economies, outperform vertical mergers, in which large pharma firms

typically acquire innovation rich, and cash poor small biotech firms to gain access to

new and emerging products. However, even the relatively more successful horizontal

acquisitions often destroy value for the acquiring firm (York et al., 2011). Further,

Kirchhoff and Schiereck (2011) concluded that at least some of this value destruction

stems from overpayment due to acquisition premiums, often for firms with high profile

drugs in late-stage clinical trials or those that have recently gained FDA approval for

such products. However, because the drug development process is inherently risky and

expensive, large public biopharma firms seem to prefer investing in what they consider

“sure bets,” even if they may end up overpaying. This practice results from perceiving

that the risk of overpaying for late-stage drugs is less serious than the uncertainty asso-

ciated with valuing firms and products in earlier stages of development (Hartmann and

Hassan, 2006).

Further, research does support the widespread practice among biotech industry ana-

lysts to base firm valuation either on existing cash flows (based on the assumption that

future success can be predicted from past performance) or on cash flows based on mar-

ket data that can be more readily measured, such as revenues expected from drugs that

are near FDA approval and thus market launch (Löfqvist, 2009). This is particularly the

case in the biotech industry where “go/no go” decisions are stage-gated to each phase

of product development.2 Analysts also may overestimate discount rates for cash flows

from early stage products, thus dooming them to rejection because their lengthy time

lines result in low net present values. Each of these traditional valuation practices may

lead to under valuation and thus underinvestment in earlier stage drug development

projects, even though some will offer high or breakthrough innovation potential with

the option to abandon them at multiple stages of development (Newton et al. 2004).
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An alternative that would seem to resolve traditional cash flow valuation problems is

to use “real options” techniques. Real options offer firms the right to acquire the

present value of expected cash flows by making an irreversible investment on or before

the date the opportunity is no longer available (the option expiration date). Although

this technique sounds similar to net present value (NPV), real options only have value

when the decision to invest is actually made, thus committing the firm to an irrevers-

ible cost. In the case of long timeframe investments in uncertain environments, break-

ing up projects into stages, each of which has a real option value, can reduce risk.

Thus, real options have been presented as a more robust alternative to valuing bio-

pharma pipelines (Hartmann and Hassan, 2006; Kumaraswamy, 1998). Reasons for this

include the high degree of uncertainty and disagreement regarding future biological

disease pathways, the long timelines and dynamic capabilities involved in novel drug

development, the large sums of money required to conduct clinical trials sufficient to

gain FDA approval, and the high historical risk of failure (Ahn and Meeks, 2008; Ahn

et al. 2010; Brink and Holmén, 2009; Roy, 2012).

Recognizing that traditional valuation models may result in drug development deci-

sions that reward overpayment for products in later stages of the FDA approval process

and also that real options models have not been embraced by industry analysts for the

reasons outlined above, we began searching for alternative strategic frameworks and

valuation models that might more correctly incorporate the value of early stage prod-

ucts. Our search led us generally to the entrepreneurship literature and, more specific-

ally, to Sarasvathy (2001) effectuation model. While initially derived as a model for

predicting the success or failure of early stage startups, unlike traditional financial

models that begin with the end goal and work backwards, the effectuation model be-

gins with resources that are readily available to the firm and then stays flexible enough

to take advantage of environmental contingencies as they arise. In that sense, it is more

similar to real options than to traditional discounted cash flow models.

In this paper, we test the effectuation model against the more traditional model of

discounting existing or late-stage cash flows and also look at which dimensions of ef-

fectuation are most relevant to biopharma pipeline valuation. We believe our results

suggest that, if conceived and operationalized in a way that fits the highly uncertain

biopharma industry environment, applying at least some elements of the effectuation

model to biopharma pipeline valuation may provide a more robust approach to pipeline

development strategy for both practice and research.

Literature review

Competing models of valuation

Traditional finance suggests that decisions such as valuing a going concern are made

under conditions of certainty and thus are economically rational. The discounted cash

flow valuation model used by most financial analysts is based on this idea. Essentially,

present cash flows are known, future cash flows can be reasonably estimated, and the

level of risk and thus required rate of return is a given or at least can be accurately esti-

mated using historical stock price covariance with the market and/or that of bench-

mark companies of the same size, stage of development, and/or therapeutic area

(Stewart et al. 2001).
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However, the usefulness and accuracy of such “rational” models are reduced when

long time horizons and high uncertainty are present as they are in the biopharma in-

dustry (Iskin et al. 2011). On the one hand, drug development costs have rapidly grown

from $100 million constant dollars in 1975, to $300 million in 1987, to $800 million in

2000, and to over $1.3 billion in 2005. Further, the complexity (i.e., increased number

of median procedures, globalization, staffing) and trial length (e.g., average study in

1999 was 460 days to 780 days in 2005) have significantly increased. However, the

probability of success remains modest, with FDA approval rates by stage of develop-

ment at preclinical (8 %), Phase 1 (21), Phase 2 (28), Phase 3 (58 %) in 2011 (DiMasi,

2013; Kola and Landis, 2004; Roy, 2012).

As a result, even analysts who follow the biopharma industry seem to agree that fore-

casting expected cash flows from, and the risk associated with, drugs under develop-

ment is a frustrating and imprecise exercise. Instead, they tend to use current or easily

estimated, late-stage, cash flows as a proxy for future cash flows, presumably because

firms that have learned to develop and commercialize new drugs will continue to do so

at the same rate as in the past (Löfqvist, 2009). Retail investors, who are one more step

removed from the information and analysis process, may be even more likely to assume

that the past is the best predictor of the future.

To take into account these longer timeframes and higher level of risk in the bio-

pharma industry, in the past few decades finance theorists have suggested using a real

options approach (Hartmann and Hassan, 2006). Real options theory, unlike financial

options theory, uses the value of the underlying asset (in this case, biopharma drugs

under development/in the corporate pipeline) as a proxy for future cash flows and then

estimates a value based on the time remaining for the “option” to expire (called the

strike date) and the risk that the event (e.g., FDA approval and commercialization) will

not take place. This approach has many of the same shortcomings of having to estimate

future cash flows, although the valuation technique is far more sophisticated.

Because the estimates are so difficult to develop and the confidence levels in the in-

formation needed tend to be low, very few empirical research papers have attempted to

operationalize and test real options models, although quite a few papers have developed

theoretical models. The results of such attempts tend to reflect the use of a very precise

tool with very crude inputs, the value of which is questionable. As a result, this valu-

ation technique is not much used by researchers, not to mention practicing analysts

(Harrison and Lerer, 2002; Hartmann and Hassan, 2006). A new way of thinking about

how to value success under conditions of high uncertainty—effectuation—may offer a

more robust theoretical framework and approach to more valuing drug development

pipelines.

An effectuation model and hypotheses

Effectuation theory differs from more traditional causal models of venture success in

the sense that it refers to “a set of means as given and focus on selecting between pos-

sible effects that can be created with that set of means,” while causal models rely on

prediction and processes that “take a particular effect as given and focus on selecting

between means to create that effect” (Sarasvathy, 2001, p. 245). The original effectu-

ation model consists of four dimensions: means, affordable loss, partnership, and

expecting the unexpected (Read et al. 2009) (Table 1).
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Effectuation has been widely explored in entrepreneurship (Sarasvathy, 2008) but has

also been considered in the context of corporate R&D (Brettel et al. 2012), management

(Augier and Sarasvathy, 2004; Hitt and Duane, 2002), economics (Dew et al. 2004),

finance (Wiltbank et al. 2009), and marketing (Read et al., 2009). However, to our

knowledge, our research is the first to explore its use specifically within the context of

the biopharma industry and to apply it to valuing drug development pipelines. We first

describe below how each of the four effectuation concepts have traditionally been de-

fined and how they might be operationalized in this new biopharma industry context.

We then end the discussion of each concept with our hypotheses.

Several interesting observations about empirical tests of the effectuation model seem

relevant to mention up front. First, the same concepts have been operationalized on

multiple levels of analysis, including the individual and firm. Also, surveys have been

the predominant method of data collection which focused on exploring new venture

success in terms of individual decision-making (Dew et al., 2004). Our research differs

from these prior studies in that we look only at existing firm level variables, a precedent

suggested and supported by Brettel et al. (2012) who collected their data using surveys

of European technology firms rather than adopting archival financial data as proxies.

As such, their survey-based results are based on management perceptions.

Next, we describe each effectuation dimension—means, affordable loss, partnerships,

and expect the unexpected—in the context of the biopharma industry (Table 1):

1. Means: Traditionally, the “means” construct is a three dimensional variable: “what I

know,” “who I am,” and “who I know.” “What I know” tends to be defined as

domain specific expertise as well as more general variables such as personality,

gender, and management experience. This dimension seems to be operationalized

primarily at the individual level. “Who I am” has been operationalized at both the

individual level of analysis (such as propensity for risk and self-efficacy) and the firm

level (such as patents, capital, and internal R&D). From a face validity perspective,

the “what I know” and “who I am” dimensions would seem to overlap. “Who I

know” includes family and friends who are entrepreneurs and links to universities

and institutions in the innovation process (Hemlin, 2009).

Because pharmaceutical firms enjoy high profit margins percentages, most

multinational biopharmaceutical companies have significant absolute financial

“means” or resources to deploy, including large cash balances, borrowing capacity,

and stock market values. These means allow them to invest heavily in R&D, among

other things. However, their decisions on how much to invest and on what

Table 1 Effectuation elements and dimensions

Effectuation element Dimension

Means “What I know,” “who I am,” and “who I know”

Affordable loss Risk-taking propensity and the ability to thrive through a setback

Partnerships Collaborations with stakeholders and organizations willing to make a significant
commitment to product and market development

Expect the unexpected Embrace surprises that arise from uncertain situations, remaining flexible rather than
tethered to existing goals (Read et al., 2009; Sarasvathy, 2001) refer to this effectuation
dimension as “leverage contingency” and define it as a “willingness to change products,
customize.”
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segments can differ significantly depending on their degree of diversification and

priorities. For example, a diversified biopharma firm like Johnson and Johnson

(J&J) gains about 37 % of sales from its biopharma segment, while a more focused

biopharma firm such as Biogen gains 100 % of revenues from drug sales. While

both earn about the same profit margins on their biopharma sales (24.4 % for J&J

and 23.5 % for Biogen), in absolute terms, the internally generated cash available to

a corporate giant like J&J ($15 billion total, $6.1 billion from biopharma) dwarfs

the internally generated cash available to Biogen ($1.2 billion).

2. Affordable loss: By “affordable loss,” traditional effectuation studies typically mean

risk-taking propensity and the ability to thrive through a setback. In this context,

the affordable loss dimension builds on the resource based view (RBV) of strategy

(Barney, 1991) which posits that firms gain competitive advantage from having

resources that provide them with unique sources of competitive advantage. These

resources may fall into a variety of categories, including physical, financial, human,

and organizational, and confer competitive advantages based on the value, rareness,

uniqueness (inimitability), and embeddedness in the organization fabric. The difficulty

other firms experience in imitating these successful firms’ resources is explained by

the amount of time it takes to create and develop them (often decades), as well as the

difficulty (in the case of embeddedness) others experience in identifying them

as sources of competitive advantage. RBV posits that the more rare, unique,

and embedded the resource, the greater the source of competitive advantage,

so long as those resources fit the environment in which the firm operates.

Further, Makadok (2001) connects resources to the term “capabilities,” defining a

capability as “a special type of resource—specifically, an organizationally-embedded,

non-transferable firm-specific resource whose purpose is to improve the productivity

of the other resources possessed by the firm” (p. 389). He concluded that capabilities

cannot be bought, rather, they must be built. Further, these internal capabilities,

combined with external partnerships, may be seen as a flexible innovation system

(Su et al. 2009).

An example of a large multinational biopharma leveraging its resources to shift

from a traditional internal R&D model to biopharmaceutical alliances to

further its product pipeline is Bristol-Myers Squibb Company (BMY), which

has been strategically aligning with small and mid-sized drug developers and

biotech companies. (Ahn, Wu, and Rahman, 2010). BMY strategically targets

companies whose products and technologies address unmet medical needs and

build on BMY’s R&D strengths and/or create new areas of expertise. The

“String of Pearls” strategy formalized in 2007, threads together a library of

compounds and portfolio of technologies for the purpose of accelerating the

discovery, clinical development, and commercialization of new therapies across

a broad range of therapeutic areas. James M. Cornelius, chairman and chief

executive officer, Bristol-Myers Squibb (BMS) noted about their $2.1 billion

acquisition of Medarex:

Medarex’s technology platform, people and pipeline provide a strong complement to

our company’s biologics strategy, specifically in immuno-oncology. With its product-

ive and proven antibody discovery capabilities, ability to generate interesting

Ahn et al. Journal of Innovation and Entrepreneurship  (2015) 4:14 Page 6 of 19



therapeutic programs and unique set of pre-clinical and clinical assets in devel-

opment, Medarex represents what we’re looking for in terms of our String of

Pearls strategy. This acquisition is another important step in our BioPharma

transformation.

Conversely, BMY’s acquisition of Inhibitex in Phase 3 clinical development for

hepatitis C virus (HCV) for $2.5 billion or 167 % premium resulted in a total

failure. After only 8 months, the lead drug trial was discontinued due to a

patient death, and most of the company was disposed with a $1.8 billion

write-off. As such, a firm’s absolute as well as relative ability to absorb losses

may determine its willingness to invest in risky, long-term projects such as

novel drug development.

3. Partnerships: Effectuation theory frames partnerships as collaborations with

stakeholders and organizations willing to make a significant commitment to

product and market development. Read et al. (2009) distinguish the “means”

dimension from the “who I know” dimension from the “partnerships” dimension

by determining whether success depends on the studied firm (“means”) or the

other party (“who I know”—typically as a result of money, equity, or a product

changing hands).

In the biopharma context, the vast majority of the over 600 public and 8000 private

companies worldwide have no revenues or earnings, which means that their

investment is funded through grants, public or private equity, and/or through

resource partnerships with larger, better capitalized public biopharma firms. The

small percentage of these firms that are successful in moving into later stages of

clinical trials or actually receiving FDA approval to market the drug are often acquired

by larger biopharma firms in these later stages (Kirchhoff and Schiereck, 2011). Thus,

for large, well-established firms, partnering with and/or later acquiring smaller biotech

companies provides a viable option to committing a firm’s R&D investment capital to

internal development programs (Ahn, Meeks, et al., 2010). These partnerships,

collaborative agreements, and joint ventures create powerful innovation network effects

(Hemphälä and Magnusson, 2012), as well as also allow both firms to learn to

work together, providing an option on possible later acquisition.

Despite the greater information asymmetry associated with early stage novel

technologies (e.g., stem cells, checkpoint inhibitors, gene therapy, cancer vaccines,

RNAi), in our view, a number of signaling mechanisms may help investors discern/

discriminate among firms’ pipelines, including clinical data (such as

announcement of clinical results at medical conferences), publicly announced

partnership deals (such as licensing, co-development, co-promotion, all of

which provide technology validation), and/or institutional investment by specialist

mutual and hedge funds, which provides signaling mechanisms to broader investor

groups (Gulati and Higgins, 2003; Nicholson et al. 2002). For example, Agios

Pharmaceuticals, an early stage drug development company which focused on

cancer metabolism with a marquee research partnership with large biopharma

Celgene, successfully completed an IPO at $18 which overshot the range of

$14–16, raised an additional $106 million, and soared 60 % on its first day of

trading—sending the market capitalization to over $800 million.
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4. Expect the unexpected: Effectuation principles encourage companies to embrace

surprises that arise from uncertain situations, remaining flexible rather than

tethered to existing goals (Read et al., 2009; Sarasvathy, 2001) refer to this

effectuation dimension as “leverage contingency” and define it as a “willingness to

change products, customize.”

While all large biopharmaceutical companies have a pressing and ongoing need for

new products, they have approached pipeline and product investment and

development differentially, in the sense that some rely on internal development

and research partnerships, while others rely on purchasing external R&D and/or

smaller firms typically in later stages of FDA approval through mergers and

acquisitions. Illustrating these different approaches, Pfizer has heavily relied on

multibillion dollar acquisitions which have included Warner-Lambert in 2000,

Pharmacia in 2002, Wyeth in 2009, King Pharmaceuticals in 2010; and Roche has

relied on internal development and partnership (e.g., Genentech partnership to

grow a pipeline of blockbuster oncology products such as Herceptin® (trastuzumab),

Rituxan® (rituximab), and Avastin® (bezicuzimab)) each with greater $5 billion in

2012 annual revenues. As discussed above, there is a tradeoff between the perceived

risk of overpaying for late-stage products, often obtained through mergers and

acquisitions and the uncertainty of valuing internally developed earlier stage

products (Ford et al., 2008).

In the biopharmaceutical industry, more positive value may be created by drugs in

the earliest phases of development, rather than the ones closer to FDA approval,

and/or by failed drugs repurposed to another use (Beach, 2011). For example,

Viagra® (sildenafil) was first synthesized in 1989 by two Pfizer chemists at the

company’s Sandwich, Kent research facility in England. Viagra was initially studied

for use in hypertension (high blood pressure) and angina pectoris (a symptom of

ischemic heart disease). After Phase II testing of sildenafil for angina failed to show

promising results, Pfizer decided to pursue its use for erectile dysfunction rather

than for angina. The drug was patented in 1996 and approved for use in erectile

dysfunction by the US Food and Drug Administration in 1998 (and expanded

approvals were obtained for pulmonary hypertension in 2005). Sales of Viagra

exceeded $2 billion in 2012 revenues.

Conversely, a value-destroying variation on the “unexpected” is when unanticipated

safety signals arise, even after extensive clinical studies. For example, Biogen-Idec

and Elan’s Tysabri (natalizumab) was originally approved for all relapsing forms of

multiple sclerosis (relapse-remitting, secondary-progressive, and progressive-

relapsing) in 2004. However, 4 months after its approval in February 2005, the

manufacturer withdrew natalizumab voluntarily after two fatal cases of progressive

multifocal leukoencephalopathy, and the stock price fell from $66 to $38. Eventually,

the drug was reapproved in June 2006 after an extensive safety review and heavy

lobbying by patients, and Tysabri reached $5.5 billion in 2012 revenues.

Effectuation principles can provide insight into optimizing pipeline decisions by fo-

cusing on the logic of control rather than the logic of prediction. Juxtaposing effectu-

ation with discounted cash flow (DCF) may lead to new insights to addressing chronic

underinvestment in the biopharma industry by focusing on what can be done with
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available resources rather than what ought to be done, affordable loss rather than ex-

pected return, partnerships rather than competitive analyses, and leveraging contingen-

cies rather than avoiding them (Sarasvathy, 2001, 2008). Thus, using an effectuation

lens, we pose the following hypotheses in the context of the large multinational bio-

pharmaceutical companies:

� H1: Biopharmaceutical companies with higher absolute R&D expense will have

higher performance in terms of growth in revenues, net income, valuation, and

Price-Earning (PE) multiples relative to peer competitors.

� H2: Biopharmaceutical companies with higher R&D expense as percent (%) of

revenues will have higher performance.

� H3: Biopharmaceutical companies with higher pipeline valuation as a percent of

overall valuation will have higher performance.

� H4: Effectuation dimensions will have higher predictive power than the traditional

discounted value of present cash flow models.

Methods
To test our effectuation theory model and hypotheses against the predominant classic

discounted cash flow/legitimacy model described above, we focused on 11 of the largest

multinational biopharmaceutical firms during the 2000–2012 period. These leading

firms ranged in size from $5 to 67 billion in 2012 revenues, $1 to 8.7 billion in net in-

come, and $10 to 200 billion in market value using the Biocentury database.

All of these companies made explicit and public their decisions on the number of

pipeline projects to pursue, determined the degree of reliance on internal development

versus external partnerships, and decided when to increase investment or discontinue

projects. For example, a recent biopharmaceutical analyst noted using a DCF approach

to valuation:

We are lowering our AZN [Astra Zeneca] EPS [earning per share] to reflect the

impact of modestly lower near-term sales but overall higher spending expectations.

Management commentary…highlighted increased R&D and SG&A spending to

support the renewed commitment to R&D…to advance the Phase I/II oncology

and respiratory pipelines while investing behind new product acquisitions (Pearl

Therapeutics, Omthera). Key internal [pipeline product] readouts and data presentations

are expected for benralizumab (anti-IL-5; eosinophilic asthma & COPD), tralokinumab

(anti-IL-13 in severe asthma) & MEDI-4736 (anti-PD-L1 in solid tumors). Our DCF

valuation increases to $50 from $47–$48 on a lower Pharma group discount rate

(Fernandez & Arabi, 2013).

On average, all of these companies used external partnering for 34 % of their product

pipelines (ranging from a low of 17 % to a high of 57 %). Also of note, these companies

employed external partnering at increasingly later stages of development with Phase I

(15 %), Phase II (24 %), Phase III (38 %), products awaiting approval (34 %), and mar-

keted products (45 %) of the time (Fig. 1).

As a result of independent decisions on how much of current cash flow to reinvest in

various pipeline development products, performance in terms of revenues, net income,

Ahn et al. Journal of Innovation and Entrepreneurship  (2015) 4:14 Page 9 of 19



market capitalization, and PE (price-earnings) multiples change over time. We obtained

pipeline data from Biocentury which tracks technology platforms, product pipelines,

and financial performance for public and private biopharmaceutical companies in the

USA, Europe, Canada, and the Asia-Pacific region. In addition, we obtained financial

performance data such as stock prices, shares outstanding, market capitalization, S&P

500 and BTK (Biotech) indices, net income, R&D expense, revenues from SEC filings,

and Yahoo Finance. We obtained 10-year US Treasury interest rates to determine his-

torical costs of capital.

Of note, biotechnology firms have consistently outperformed traditional multi-

national pharmaceutical companies in the last 20 years. In addition, with increasingly

greater financial resources and global capabilities, large pharmaceutical companies are

increasingly transforming into biopharmaceutical companies (e.g., Roche acquisition of

Genentech in 2009) (Fig. 2).

Thus, the independent and dependent variables are operationalized as seen in Table 2:

Relative to DCF NPV analysis (DiMasi, 2013; Nickisch and Bode-Greuel, 2013), we

explore a broader effectuation framework to consider the relative magnitude and inten-

sity of R&D (i.e., R&D expense in absolute dollars and as a percent of revenues, pipe-

line valuation) over time. In turn, the dependent variables of interest are performance

that is derived from pipeline development decisions in terms of revenues, net income,

market valuation, and PE multiples that can compound competitive advantages.

The measures of both input variables and performance variables in our model were

multivariate. Hence, analytical methods that can be used include the following: (1) ca-

nonical correlation analysis (CCA) which provides a way of making sense of cross-

covariance matrices by considering commonalities among sets of variables; (2) separate

ordinary least squares (OLS) regression to estimate unknown parameters in a linear re-

gression model, which will not produce multivariate results or information concerning

dimensionality; and (3) multivariate multiple regression provides simultaneous observa-

tion and analysis of more than one outcome variable but does not provide information

on dimensionality (Afifi and Clark, 2004; Pedhazur, 1997).

One major reason for use of multivariate procedures for our model is that it keeps

Type I error to a minimum (Fan, 1997; Sherry and Henson, 2005; Thompson, 1985,

Fig. 1 Percent of externally acquired product pipeline by stage of development for large
biopharmaceutical companies
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1991). CCA is used to identify and measure the associations between two sets of vari-

ables. CCA is appropriate in the same situations where multiple regressions would be

but where there are multiple intercorrelated outcome variables. CCA was chosen as

our model because it determines a set of canonical variates, orthogonal linear combina-

tions of the variables within each set that best explains the variability both within and

between sets.

Relationships between sets of multiple dependent variables are analyzed with CCA

(Darlington et al. 1973; Hair et al. 1986; Levine, 1977; Tucker et al. 1980). Furthermore,

in a CCA, there will be as many canonical functions as there are variables in the

smaller of the two variable sets (Sherry and Henson, 2005). In our study, the data on

Table 2 Effectuation model dimensions and metrics

Independent Variable
Dependent 

Variable

H1 R&D expense in absolute dollars ($) Revenues

H2 R&D expense as percent (%) of revenues Valuation

H3 Pipeline valuation as a percent (%) of total valuation Net Income

H4 All effectuation dimensions
Price-

Earning (PE)

Fig. 2 Large biopharmaceuticals stock market performance v. S&P 500 v. long-term interest rate
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the three input variables and the four performance variables were canonically corre-

lated to determine if any significant relationships existed (p < 0.001).

CCA was conducted using the three input variables (R&D expenses in absolute

dollars ($); R&D expenses as percent (%) of revenues; pipelines valuation as percent (%)

of total valuation) as predictors of the four performance variables (i.e., revenues, market

valuation, net income, price-earning ratio) to evaluate the multivariate-shared relation-

ship between the two variable sets.

Results and discussion
The analysis yielded three functions with squared canonical correlations (Rc2) of 0.902,

0.330, and 0.021 for each successive function, as shown in Table 6. Table 7 indicates

that collectively, the full model across all functions was statistically significant using the

Wilks’s lambda (λ) of 0.064, F (12,455.36) = 69.36, p < 0.001. Accordingly, we can reject

the null hypothesis that there was no relationship between the variable sets and con-

clude that there probably was a relationship. The detailed analysis results are in the

Appendix (Tables 5, 6, 7, 8, 9, 10, 11, 12 and 13)

Because Wilks’s λ represents the variance unexplained by the model, 1−λ yields the

full model effect size in an r2 metric. Thus, for the set of three canonical functions, the

r2 type effect size was 0.936, which indicates that the full model explained a substantial

portion of 93.6 %, of the variance shared between the variable sets.

Further, the dimension reduction analysis allows us to test the hierarchal arrange-

ment of functions for statistical significance. As noted in Table 8, the full model (Func-

tions 1 to 3) was statistically significant, F (12, 455.36) = 69.36, p < 0.001. Functions 2 to

3 was also statistically significant, F (6, 346) = 13.57, p < 0.001. Function 3 to 3 (which is

the only function that was tested in isolation) did not explain a statistically significant

amount of shared variance between the variable sets, F (2174) = 1.885, p = 0.155.

Given the effects for each function of the squared canonical correlation (Rc2)—only

the first two functions were considered noteworthy in the context of this study (90.2

and 33.0 % of shared variance, respectively), as shown in Table 5. The last functions

only explained 2.1 % of the remaining variance in the variable sets after the extraction

of the prior functions.

Table 3 presents the standardized canonical function coefficients and structure coeffi-

cients for Functions 1 and 2. The squared structure coefficients (rs2) are also given as

well as the communalities (h2) across the two functions for each variable.

Note: Table 3 summarized Tables 9, 10, 11, and 12. Structure coefficients (rs) greater

than |0.45| are italicized. Communality coefficients (h2) greater than 45 % are italicized

(following a convention in many factor analyses). Coef = standardized canonical func-

tion coefficient, rs = structure coefficient, rs2 = squared structure coefficient, and h2 =

communality coefficient.

Looking at the Function 1 coefficients, we can see that relevant dependent variables

are primarily sales and net income, the expansion of which is the culmination of stra-

tegic choices (i.e., internal versus external R&D, ability to replace revenues lost to pa-

tent expiries). This conclusion is supported by the squared structure coefficients (rs2),

which indicated the amount of variance the observed variable could contribute to the

synthetic performance variable. Furthermore, with the exception of the price-earnings

ratio, all of these variables’ structure coefficients had the same sign, indicating that they
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are all positively related. In this case, the price-earnings ratio is inversely related to the

other performance variables.

Across both Functions, R&D intensity—whether measured as absolute dollars or rela-

tive percent of valuation—drives financial performance. Regarding the independent

variable set in Function 1, R&D expenses in absolute dollars ($) and pipelines valuation

as percent (%) of total valuation variables are the primary contributors to the independ-

ent variables. Because the structure coefficient for R&D expenses in absolute dollars ($)

is positive, it is positively related to all of the performance variables, with the exception

of price-earnings. R&D expenses as percent (%) of revenues and pipelines valuation as

percent (%) of total valuation are positively related to price-earnings variable and nega-

tively related with sales, market valuation, and net income.

Moving to Function 2, the combination of canonical function coefficient and struc-

ture coefficient in Table 3 suggests that relevant dependent variable is market valuation.

As for the independent variables, pipeline valuation as percent (%) of total valuation is

now the dominant predictor. Looking at the structure coefficients for the entire func-

tion, we see that pipelines valuation as percent (%) of total valuation is positively related

to market valuation.

Across both Functions, R&D intensity—whether measured as absolute dollars or rela-

tive percent of valuation—is a significant determinant of financial performance. This

finding supports our hypothesis H1 and H2.This is an encouraging finding because nu-

merous large biopharmaceutical firms have invested heavily in developing R&D activity

and strengthen their competitive advantage. In terms of internal R&D v. external R&D,

Fig. 1 shows us that on average, all of these companies used external partnering for

34 % of their product pipelines (ranging from a low of 17 % to a high of 57 %).

Without looking into dimensionality within and between variables set, Table 5 indi-

cates that R&D intensity—in term of pipeline valuation as a percent (%) of total valua-

tion—has significant correlation (p < 0.01) with market value (r = 0.24) and price

earning (r = 0.25). However, neither of the two significant correlations exceeded r = 0.7,

which is the level at which multicollinearity may become a problem.

Surprisingly, the result of the impact of pipeline valuation as a percent (%) of total

valuation on financial performance was inconsistent with our expectations (H3). Fur-

ther investigation using CCA, our full model across both function demonstrates that

pipeline relative percent of valuation is the dominant predictor and positively related

Table 3 Standardized canonical function and structure coefficients

Canonical correlation analysis for Function 1 and 2

Function 1 Function 2

Variable Coef rs rs
2 Coef rs rs

2 h2 (%)

Sales 1.032 0.999 99.80 % 1.326 0.019 0.04 % 99.84 %

Income −0.037 0.897 80.51 % −1.541 −0.256 6.57 % 87.08 %

MarketVa −0.030 0.117 1.38 % 0.746 0.725 52.59 % 53.97 %

PriceEar −0.027 −0.210 4.41 % 0.140 0.273 7.45 % 11.85 %

rc
2 90.20 % 33.00 %

RnDExpen 0.943 0.988 97.55 % 0.846 0.023 0.05 % 97.61 %

RnDperce −0.155 −0.314 9.87 % −0.094 −0.004 0.00 % 9.88 %

ValuePip −0.030 −0.661 43.72 % 1.308 0.749 56.17% 99.90 %
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with market value and price earning but inversely related to the other performance var-

iables, sales, and net income.

CCA indicates that our full model across all functions was statistically significant,

F (12,455.36) = 69.36, p < 0.001. The effect size was 0.936, which indicates that the

full model explained a substantial portion of 93.6 %, of the variance shared be-

tween the variable sets. This result supports our hypothesis (H4) that effectuation

dimension has a high predictive power. Table 4 below summarizes our hypothesis

testing results.

Conclusions
Given the rapid pace of change in biotechnology platforms, regulations, and payor

environments, enhancing strategic decision-making for managing product pipeline

productivity and risk is critical for analysts and investors and vital to firm and in-

dustry development. Biopharma firms must make resource allocation decisions on

their relative levels of internal R&D, strategic alliances, and/or mergers and acquisi-

tions in furthering their pipelines and managing risk. Moreover, the predominant

method of using DCF methodologies may lead to chronic underinvestment and

performance.

We evaluated the integration of traditional DCF with an effectuation model of ana-

lysis. Unlike traditional financial models that begin with the end goal of assumed

known cash flows and recursively solve for portfolio optimization, the effectuation

model begins with resources that are readily available to the firm and then seeks to

maintain strategic flexibility to take advantage of environmental contingencies as they

arise. In that sense, it is more similar to a real options framework than to traditional

discounted cash flow models.

Further, we juxtaposed the effectuation model against the more traditional model of

discounting existing versus the dimensions of effectuation—means, affordable loss,

partnerships, and expect the unexpected—in the context of the biopharma pipeline

valuation. Using effectuation principles can provide insight into optimizing pipeline de-

cisions by focusing on the logic of control rather than the logic of prediction. Effectu-

ation principles suggest using the following dimensions may lead to addressing chronic

underinvestment in the biopharma industry: (1) means to focus on what can be done

with available resources rather than what ought to be done, (2) affordable loss rather

than expected return, (3) partnerships rather than competitive analyses to create

sources of operating and financial leverage, and (4) leverage contingencies rather than

avoiding them (Sarasvathy, 2001, 2008).

Table 4 Hypothesis testing results

Hypotheses Results

H1: Biopharmaceutical companies with higher absolute R&D expense will have higher
performance in terms of growth in revenues, net income, valuation, and Price-Earning (PE)
multiples relative to peer competitors.

Supported

H2: Biopharmaceutical companies with higher R&D expense as percent (%) of revenues will have
higher performance.

Supported

H3: Biopharmaceutical companies with higher pipeline valuation as a percent of overall valuation
will have higher performance.

Not supported

H4: Effectuation dimensions will have higher predictive power than the traditional discounted
value of present cash flow models.

Supported

Ahn et al. Journal of Innovation and Entrepreneurship  (2015) 4:14 Page 14 of 19



We found that effectuation provides a useful strategic model that can be inte-

grated into traditional DCF cash flow analyses to enhance decision-making. For ex-

ample, instead of absolute focus on cash flows derived from a specific product or

acquisition, considering the decision relative to existing capabilities and resources

may lead to more investment which maximizes value (rather than disproportion-

ately focused on avoiding risk of failure—see for example BMY String of Pearls

strategy above). In this case, biopharmaceutical companies with higher absolute

and relative R&D expense levels were found to have higher performance in terms

of growth in revenues, net income, valuation, and Price-Earning (PE) multiples

relative to peer competitors.

Further, more aggressive investment into R&D portfolios appears to reinforce com-

petitive advantages. We found that biopharmaceutical companies with higher pipeline

valuation as a percent of overall valuation also experienced higher performance over

time, meaning that investors were able to discern and ascribe differential value between

the pipeline values of different companies and those with larger overall market valua-

tions had increased “means” to invest and further extend their dominant positions.

Overall, these results suggest if conceived and operationalized in a way that fits the

highly uncertain biopharma industry environment, applying elements of the effectu-

ation model and mindset to biopharma pipeline valuation may provide a fruitful avenue

for both practice and research. As such, it may be a useful framework for biotechnology

industry managers, charged with accelerating technology platforms, building product

pipelines, developing commercial products for addressing unmet medical needs, and

managing significant binary risk.

In sum, we believe this study contributes to the research literature by expanding and

extending the use of effectuation theory as an integrative framework with the predom-

inant DCF NPV analysis for considering biopharmaceutical firm product pipeline devel-

opment and risk management decision-making. Moreover, this is the first effectuation

research to use empirical data versus prior effectuation analyses, which have relied on

surveys of management perceptions. Further, our integration of effectuation and DCF

provides a lens from which to explore emerging varieties of small and large company

innovation in the biopharmaceutical industry.

Endnotes
1The US FDA Orphan Drug Designation program provides orphan status to drugs

and biologics which are defined as those intended for the safe and effective treatment,

diagnosis, or prevention of rare diseases/disorders that affect fewer than 200,000 people

in the USA or that affect more than 200,000 persons but are not expected to recover

the costs of developing and marketing a treatment drug.
2New biopharmaceutical products generally sequentially progress through the follow-

ing steps: (1) conduct in vitro and in vivo preclinical testing to establish biological ac-

tivity against the targeted disease and preliminary toxicology, (2) file an Investigational

New Drug (IND) application to allow human clinical trials, (3) conduct Phase I, II, and

III clinical trials to establish statistically significant safety and efficacy in humans, and

(4) file a New Drug Application (NDA) for approval for a specific type and stage of dis-

ease (Wierenga and Eaton 2006).
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Appendix 1

Table 5 Descriptive statistics

Number Minimum Maximum Mean Std. deviation

RnDExpense 216 0.00 11.11 2.20 2.30

RnDpercent 216 0.00 12.50 0.28 0.89

ValuePipeline 179 −0.23 1.00 0.72 0.28

Sales 216 0.00 67.22 14.99 16.21

Income 216 −2.07 19.33 2.68 3.28

MarketValue 231 2.29 911.99 107.45 118.24

PriceEarnings 201 −27.49 4185.76 104.63 338.94

Valid N (listwise) 179

Table 6 Bivariate correlations

RnDExpense RnDpercent Value
Pipeline

Sales Income Market
Value

Price
Earnings

RnD expense Pearson correlation 1 −0.122 −0.641a 0.940a 0.837a 0.165b −0.163b

Sig. (2-tailed) 0.074 0.000 0.000 0.000 0.015 0.026

RnDpercent Pearson correlation −0.122 1 0.174b −0.135b −0.119 −0.068 0.144b

Sig. (2-tailed) 0.074 0.020 0.047 0.080 0.316 0.049

ValuePipeline Pearson correlation −0.641a 0.174b 1 −0.619a −0.674a 0.239a 0.245a

Sig. (2-tailed) 0.000 0.020 0.000 0.000 0.001 0.001

Sales Pearson correlation 0.940a −0.135b −0.619a 1 0.888a 0.203a −0.171b

Sig. (2-tailed) 0.000 0.047 0.000 0.000 0.003 0.020

Income Pearson correlation 0.837a −0.119 −0.674a 0.888a 1 0.200a −0.184b

Sig. (2-tailed) 0.000 0.080 0.000 0.000 0.003 0.012

MarketValue Pearson correlation 0.165b −0.068 0.239a 0.203a 0.200a 1 0.108

Sig. (2-tailed) 0.015 0.316 0.001 0.003 0.003 0.128

PriceEarnings Pearson correlation −0.163b 0.144b 0.245a −0.171b −0.184b 0.108 1

Sig. (2-tailed) 0.026 0.049 0.001 0.020 0.012 0.128
aCorrelation is significant at the 0.01 level (2-tailed)
bCorrelation is significant at the 0.05 level (2-tailed)

Table 7 Eigenvalues and canonical correlations

Function no. Eigenvalue Pct. Cum. pct. Canon cor. Sq. cor

1 9.253 94.725 94.725 0.950 0.902

2 0.494 5.053 99.778 0.575 0.330

3 0.022 0.222 100.000 0.146 0.021

Table 8 Multivariate tests of significance

Test name Value Exact F Hypoth. DF Error DF Sig. of F

Pillais 1.25416 31.24925 12.00 522.00 0.000

Hotellings 9.76808 138.92375 12.00 512.00 0.000

Wilks 0.06392 69.3565 12.00 455.36 0.000

Roys 0.90247
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