
Bedane et al. Ecological Processes           (2023) 12:10  
https://doi.org/10.1186/s13717-023-00424-1

RESEARCH

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Open Access

Ecological Processes

Modeling effects of abiotic factors 
on the abundances of eight woody species 
in the Harana forest using artificial networks, 
random forest, and generalized linear models
Girma Ayele Bedane1*   , Gudina Legese Feyisa1 and Feyera Senbeta Wakjira2 

Abstract 

Background  Abiotic factors exert different impacts on the abundance of individual tree species in the forest but 
little has been known about the impact of abiotic factors on the individual plant, particularly, in a tropical forest. This 
study identified the impact of abiotic factors on the abundances of Podocarpus falcatus, Croton macrostachyus, Celtis 
africana, Syzygium guineense, Olea capensis, Diospyros abyssinica, Feliucium decipenses, and Coffea arabica. A systematic 
sample design was used in the Harana forest, where 1122 plots were established to collect the abundance of species. 
Random forest (RF), artificial neural network (ANN), and generalized linear model (GLM) models were used to examine 
the impacts of topographic, climatic, and edaphic factors on the log abundances of woody species. The RF model was 
used to predict the spatial distribution maps of the log abundances of each species.

Results  The RF model achieved a better prediction accuracy with R2 = 71% and a mean squared error (MSE) of 0.28 
for Feliucium decipenses. The RF model differentiated elevation, temperature, precipitation, clay, and potassium were 
the top variables that influenced the abundance of species. The ANN model showed that elevation induced a nega-
tive impact on the log abundances of all woody species. The GLM model reaffirmed the negative impact of elevation 
on all woody species except the log abundances of Syzygium guineense and Olea capensis. The ANN model indicated 
that soil organic matter (SOM) could positively affect the log abundances of all woody species. The GLM showed a 
similar positive impact of SOM, except for a negative impact on the log abundance of Celtis africana at p < 0.05. The 
spatial distributions of the log abundances of Coffee arabica, Filicium decipenses, and Celtis africana were confined to 
the eastern parts, while the log abundance of Olea capensis was limited to the western parts.

Conclusions  The impacts of abiotic factors on the abundance of woody species may vary with species. This ecologi-
cal understanding could guide the restoration activity of individual species. The prediction maps in this study provide 
spatially explicit information which can enhance the successful implementation of species conservation.
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Introduction
Abundances of woody plant species in a forest ecosys-
tem are influenced by various abiotic factors (Feng et al. 
2021; Rahman et al. 2021; Waldock et al. 2022). The abi-
otic factors that commonly affected the spatial distribu-
tions of woody plant species comprise of climatic factors, 
topographic features, and soil properties (Nguyen et  al. 
2015; Feng et al. 2021; Rahman et al. 2021; Waldock et al. 
2022). Climatic factors which include variability of pre-
cipitation and temperature influence the abundance of 
plant species at different geographical scales (Yang et al. 
2006; Qian 2013). Topographical features indirectly affect 
woody plant species by regulating microclimate and soil 
conditions (Nguyen et al. 2015; Feng et al. 2021; Ahmed 
et  al. 2022). Soil physical and chemical properties play 
essential roles at a locale scale in influencing the growth, 
abundance, and distribution of woody plants species 
(Condit et  al. 2013; Nguyen et  al. 2015; Rahman et  al. 
2021; Yaseen et al. 2022).

Understanding the impacts of abiotic factors on plant 
species could have an important implication in sustain-
able forest management. Primarily, it helps to provide 
scientific explanations of how plant species could interact 
with abiotic factors, which might be positive or negative 
interactions (Scarnati et al. 2009; Seo et al. 2021). Second, 
it uses to produce prediction maps that provide spatially 
explicit information to easily differentiate species con-
servation priority areas (Park et  al. 2003; Clément et  al. 
2014; Seo et al. 2021). The prediction maps broadly ena-
ble an understanding of how plant species are distributed 
in relation to the interaction between plants and abiotic 
factors (Barker et al. 2014; Clément et al. 2014). With this 
recognition, a research study about the impacts of abiotic 
factors on plant species has remained an essential topic 
in forest ecology (Guisan and Zimmermann 2000; Park 
et al. 2003; Nguyen et al. 2015; Rahman et al. 2021).

Particularly, it is essential in tropical forests, where the 
impact of abiotic factors on the abundance of plant spe-
cies has not been sufficiently studied (Newbold 2009; 
Condit et  al. 2013). For instance, Ethiopia is the fifth 
largest flora-rich country in tropical Africa, having more 
than 6500 species (Husen et al. 2012). However, previous 
studies in the country have focused mainly on floristic 
composition with less attention to the impacts of abiotic 
factors on the abundance of woody plant species in dif-
ferent forest areas in the country (Asefa et al. 2020).

The Harana Afromontane forest is one of the prior-
ity forest areas in Ethiopia that has experienced a simi-
lar limitation, regarding the effects of abiotic factors on 
individual woody species (Lulekal et al. 2008). Apart from 
this, Harana forest is a center of carbon storage with an 
average above-ground carbon stock of 131.505 tons ha−1 
(Bedane et al. 2022). In addition, Harana forest provides 

a buffering service to the Bale Mountains National Park 
which is one of 34 global biodiversity hotspot areas (Nel-
son 2012).

Therefore, this study targeted the Harana forest to 
investigate the impacts of abiotic factors on the abun-
dance of eight woody plant species. Eight woody species 
were considered in this study with the understanding 
that the analysis of abiotic factors on every individual 
species in the forest could not be manageable (Gowda 
2011). The selection of the first seven woody species was 
made taking into account the ecological contribution of 
those species in accumulating 45% of the above-ground 
carbon stock in the Harana forest (Bedane et  al. 2021). 
These seven species include Podocarpus falcatus, Croton 
macrostachyus, Celtis africana, Syzygium guineense, Olea 
capensis, Diospyros abyssinica and Feliucium decipenses. 
Moreover, Coffea arabica was included considering its 
largest abundance in the forest (Kewessa et al. 2019).

This study was to bridge the identified knowledge 
gaps by addressing two important objectives. The first 
objective was to analyze the impacts of climate, topo-
graphic, and soil factors on the log abundances of eight 
woody plant species using generalized linear models 
(GLMs), random forest (RF), and artificial neural net-
works (ANNs). These models have been commonly used 
in the study of ecology and reported to show good per-
formances (Guisan et  al. 2002; Aksu et  al. 2019; Zhang 
et al. 2019; Yudaputra et al. 2019). Meanwhile, the use of 
more than one model could provide an opportunity to 
look into the reliability and consistency of the impacts of 
abiotic factors on the abundance of woody species under 
applications of different models (Antúnez 2022). The sec-
ond objective was to predict the spatial distributions of 
the log abundances of eight woody species. This infor-
mation is essential to establish a benchmark to monitor 
the potential spatiotemporal dynamics that might occur 
in the future in connection with anthropogenic pressures 
(Barker et al. 2014).

Materials and methods
Description of the study area
Harana forest is an Afromontane forest type that covers 
a total area of 107,298 ha and is located between latitude 
6° 14′ 40″ to 6° 38′30″ N and longitude 39° 22′10″ to 39° 
27′50″ E (Fig. 1). The Harana forest lies in the northern 
parts of Delo Mena and Harana Buluk Districts in the 
Oromia National Regional State (Kewesa et  al. 2019; 
Bedane et  al. 2022). The Northern and North-Eastern 
parts of the Harana forest lie inside the Bale Mountains 
National Park (Nelson 2012).

The elevation of the Harana forest ranges from 1270 
to 3030 m asl with increasing trends from the south to 
north, and from east to west directions. The highest 
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peaks are located in the northwest and western parts 
of the forest, while the central and southern parts are 
characterized by relatively uniform elevation (Ayele 
et al. 2019; Bedane et al. 2022). The study area is char-
acterized by a bimodal pattern of rainfall. The first rainy 
season starts in April and extends to June. The second 

short rainy season begins in the middle of September 
and lasts in early November. The annual rainfall ranges 
from 765 to 1110 mm, while the annual mean tempera-
ture ranges between 14 °C and 22 °C (Ayele et al. 2019).

Harana forest is mainly occupied by dominant woody 
species, which include Podocurpus falcatus, Warburgia 

Fig. 1  Map of the study area in relation to the bigger geographical locations
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ugandensis, Celtis africana, Syzygium guineense, Olea 
capensis, Diospyros abyssinica, and Filicium decipiens 
(Kewesa et al. 2019; Bedane et al. 2022). The composition 
of soil types is characterized by nitosols, chromic, pellic 
vertisols, Ortic acrisols, and Eutric and Calcic cambisols 
(Lulekal et al. 2008).

Data collection and analysis
Sampling methods, species data collection and analysis
The study area was divided into a grid square of 1 km by 
1  km which helped to establish a total of 1122 plots at 
the point, where two grid lines intersect each other. This 
was conducted using ArcGIS version 10.4. The coordi-
nate points of each plot were fed into the GPS receivers 
to identify each location during the field data collection. 
Three nested circular plots with radii of 15, 5, and 2  m 
were established from the center of a plot using meas-
uring tape and ribbons. The count of each tree species 
with ≥ 5  cm diameter at breast height (DBH) was con-
ducted within the circular plot of a 15 m radius. Saplings 
of woody species with DBH of 1–5  cm were counted 
within the circular plot of a 5 m radius, while seedlings 
of less than 1.0 cm root collar diameter were counted in 
the smallest circle. The circular plot was selected for its 
advantage of being less susceptible to the inclusion and 
omission of trees around the boundary of a circular plot 
(UNFCCC 2015).

The abundance of species within different plot sizes was 
standardized to the area of a 15 m radius (0.07065 ha) to 
facilitate the statistical analysis with a uniform unit. The 
Statistical Package for the Social Sciences (SPSS) ver-
sion 20.0 was used to compute the relative frequency and 
relative mean abundance of woody species. The relative 
frequency of each species was computed as a percentage 
of several plots with a specific species divided by a total 
of plots. The relative mean abundance of each woody 
species was also calculated as a percentage of the mean 
abundance of each woody species divided by the mean 
abundance of all woody species.

Selection of predictor variables
We conducted the selection of the predictor variables 
based on an in-depth review of the literature. The vari-
ables included elevation, annual precipitation, annual 
mean temperature, and edaphic factors. The digital eleva-
tion model (DEM) with 30 m resolution was downloaded 
from the USGS data portal, whereas an elevation of the 
study area was clipped from the DEM using the appro-
priate tools in ArcGIS v10.4. The annual mean tempera-
ture and annual precipitation were downloaded from 
the Bioclim data portal (https://​www.​Biocl​im.​org). The 
soil data were accessed from the GIS database of Farm 
Africa. These soil data included soil pH, organic matter 

(OM), total nitrogen (N), carbon to nitrogen ratio (C/N), 
available phosphorus (P), available potassium (K), mag-
nesium, calcium, and clay, silt, and sand contents in per-
centage. Each layer was used to extract values of each soil 
property that corresponded to the location of 1122 plots 
from where data on species abundance were collected. 
The extraction of soil values was conducted using mul-
tiple-point extraction techniques in ArcGIS v10.4. The 
purpose of extracting soil data was to establish the rela-
tionships between species abundance and soil variables 
to determine the effects of soil on the abundance of dif-
ferent woody species at the specified location.

Data exploration and transformation
Statistical procedures assume variable data are normally 
distributed (Osborne 2002). However, ecological data in 
nature do not often follow a normal distribution, where 
there is skewness (Feng et  al. 2014). The abundances of 
woody species in this study did not follow the normal 
distributions and were transformed using the log base 10 
(abundance + 1) and this expression is referred to as the 
log abundance of species through this paper. We did 
the log transformation because the ANN model would 
require the transformed value of a response variable to 
facilitate the computation of complex ecological inter-
actions (Sola and Sevilla 1997; Puheim and Madarász 
2014). Log transformation has been widely used to con-
vert skewed ecological data (Feng et al. 2014), and a con-
stant number is usually added to the original data before 
data transformation. This was done to avoid undefined 
values for the log numbers less than one (Feng et al. 2014; 
Osborne 2002).

The ANN model also requires the normalized value of 
input variables to a similar scale, otherwise, predictors 
with different measurement scales produce unrealistic 
outputs (Puheim and Madarász 2014). Predictor vari-
ables were normalized using Eq.  1 cited in (Olden and 
Jackson 2002):

whereas N refers to a normalized value for observation 
Xi, Xi is a list of observations.

Modelling of the abundance of woody species
Random forest modelling
The random forest regression model in the R software 
ver. 4.1.0 was used to examine the relationship between 
the log abundance of each species and various abiotic 
factors. A total of 1122 samples were classified into 80% 
training and 20% testing. This was done as the RF model 
would not require any independent data set to conduct 
a model validation (Kapwata and Gebreslasie 2016). The 

(1)N = (Xi −Min(X)/(Max(X)−Min(X))

https://www.Bioclim.org
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RF model was run for each species using three steps that 
have been commonly described in the literature (Kapwata 
and Gebreslasie 2016). First, we set ntree = 500 which 
was the number of trees to grow in a model depending 
on bootstrap sampling. Second, we selected mtry = 5 as 
several predictor variables to perform splitting of data at 
each node to grow un-pruned regression trees with iden-
tified independent variables. Third, estimated values of 
regression trees were added and averaged to predict out-
puts of the log abundance of each woody species.

The RF model was further used to produce the map of 
the log abundance of each woody species using raster lay-
ers of 16 predictor variables and the shapefile of the log 
abundance of each woody species. The RF model was 
selected for this purpose because it achieved smaller pre-
diction errors for many species as compared to the ANN 
and GLM models. The accuracy of the RF model could be 
assessed using mean squared error (MSE) and coefficient 
of determination  (R2) (Scarnati et  al. 2009). Meanwhile, 
the RF model identified the variable importance using a 
percent increase in the mean squared errors (%IncMSE). 
A large %IncMSE value shows a high degree of variable 
importance in predicting a given response variable (Scar-
nati et al. 2009; Kapwata and Gebreslasie 2016).

Artificial neural network modeling
We constructed the ANNs with one input layer, one hid-
den layer, and one output layer using the neural net pack-
age in the R Software ver. 4.1.0. A total of 1122 sample 
locations was split into 80% training and 20% testing 
data to run the model for each of the eight woody spe-
cies. The number of hidden layers was determined to be 
one as increasing the number of hidden layers could lead 
to overfitting of the model (Chen et  al. 2022). A super-
vised backpropagation algorithm (BPN) was used to train 
the model using forward and backward processes. Dur-
ing the forwarding learning process, 16 input variables 
were propagated from the input layer to the hidden layer, 
where weights and bias values were assigned to the neu-
ron connection in the ANN model (Chen et  al. 2022). 
Weights were multiplied by the corresponding input vari-
able to determine the contribution of input variables in 
the model (Kukreja et  al. 2016; Aksu et  al. 2019; Chen 
et al. 2022). The sigmoid activation function was used to 
decide whether the sum weight would be transferred into 
the output layer or not (Chen et al. 2022) as the sigmoid 
activation function is advantageous of handling data that 
are characterized by non-linear features (Kukreja et  al. 
2016; Aksu et  al. 2019). The back-propagation learning 
was conducted to adjust weights and biases to minimize 
prediction errors between actual and prediction values 
(Ahmadzadeh et  al. 2017; Aksu et  al. 2019; Chen et  al. 
2022).

The accuracy of the ANN model was determined using 
a coefficient of determination  (R2) and mean squared 
error (MSE) (Chen et al. 2022). The Olden algorithm was 
further used to identify variable importance based on a 
quantified magnitude and direction of the effects of input 
variables on a response variable (Olden and Jackson 
2002). The Olden variable importance in this study was 
standardized using Eq.  2 proposed by Olden and Jack-
son (2002). This standardization process was required to 
display the variable importance graphically to provide a 
clear illustration for better visualization:

where Zn is the standardized value of observation n, Xn is 
the original value of observation n, x̄ is the mean, while 
δX is the standard deviation of the variable X.

Generalized linear modeling
The generalized linear model in R software version 4.1.0 
was used to quantify the impact of predictor variables 
on the log abundance of each woody species. The total 
sample data was divided into 80% training and 20 testing 
data. The GLM model was run by specifying the identity 
link function to compute the linear relationship between 
predictor variables and response variables (Lopatin et al. 
2016; Goldburd et al. 2020). The identity link uses to cre-
ate a linear relationship between response and predictor 
variables (Dunn and Smyth 2018; Goldburd et al. 2020). 
Effects of abiotic factors on the log abundances of woody 
species were interpreted using parameter estimates at the 
given significance levels. The performance of the GLM 
model was assessed using the coefficient of determina-
tion (R2) and the Akaike information criterion  (AIC) 
(Rion 2010; Sakate and Kashid 2016). A higher R2 indi-
cates the selected environmental predictors could better 
explain variation in the response variable (Kapwata and 
Gebreslasie 2016; Chen et al. 2022).

Results
Descriptive statistics
Descriptive statistics of tree abundances and frequencies
The mean abundance of eight woody species was esti-
mated at 2404 plants per plot of 0.07065 ha. The mean 
abundance of C. arabica was 1395 individuals per plot 
which accounted for 58% of the total abundance of all 
woody plants in the Harana forest. The mean abun-
dance of F. decipenses was 376 individuals per plot with 
a relative abundance of 16%. The mean abundance  of 
P. falcatus was 68 individuals per  plot with a relative 
abundance of 3%, while its relative frequency was 39%. 
O. capensis was identified as the smallest woody species 
both in terms of a relative abundance of 1% and a rela-
tive frequency of 22% (Table 1).

(2)Zn = (Xn − x)/δX
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Descriptive statistics of tree stem density within different DBH 
classes
Small trees with < 10 cm DBH accounted for 16% of 
the total stem density for each of P. falcatus    and D. 
abyssinica, while each of C. macrostachyus and F. deci-
penses  accounted for 11% (Table  2). S. guineense, O. 
capensis, and C. africana were characterized by a small 
proportion of the stem density for DBH < 10 cm. A 
large proportion of stem density per ha in each species 
consisted in the DBH class of 20–60 cm, while a pro-
portion of stem density was limited for the DBH class 
that exceeded 60 cm.

Prediction outputs of different models
Random forest model
The RF model in this study identified the elevation, mean 
annual temperature, annual precipitation, clay content, 
and available potassium as the top important predictors 
that could influence the log abundances of the majority of 

woody species (Fig. 2). Specifically, the distribution of the 
log abundances of C. arabica was mainly affected by the 
annual precipitation, elevation, silt content, mean annual 
temperature, and clay content. The spatial distribution of 
P. falcatus appeared to be influenced by the mean annual 
temperature, calcium, available potassium, clay content, 
and carbon-to-nitrogen ratio. Continually, elevation, soil 
cation exchange capacity (CEC), mean annual tempera-
ture, available potassium, and annual precipitation were 
the important predictors that shaped the spatial distribu-
tion of the log abundances of F. decipenses (Fig. 2).

Artificial neural networks
Elevation appeared to exert a negative effect on the 
log abundances of all species showing a more negative 
impact on F. decipenses and C. macrostachyus (Table  3). 
The ANNs indicated that SOM was positively related 
to the log abundances of all species, while a strong posi-
tive relationship was detected with the log abundances of 

Table 1  Descriptive statistics of eight woody species in the Harana forest

Species Frequency Percent (%) Mean abundance Relative 
abundance (%)

Std. Error (+, −)

Coffea arabica 449 40 1395 58 99.57

Podocarpus falcatus 434 39 68 3 5.80

Croton macrostachyus 570 51 60 2 7.24

Celtis africana 491 44 236 10 20.80

Syzygium guineense 384 34 70 3 11.01

Olea capensis 245 22 19 1 5.42

Diospyros abyssinica 318 28 178 7 18.34

Feliucium decipenses 350 31 376 16 57.82

Overall mean stem density 2402 100 150

Table 2  Stem density of each tree species per ha and its proportion in the Harana forest

DBH classes (cm) Proportion of woody species (%)

S. guineense P. falcatus D. abyssinica C. macrostachyus O. capensis F. decipenses C. african

< 10 5 16 16 11 5 11 8

10–20 13 20 17 19 6 25 13

20–30 16 12 19 19 11 25 15

30–40 16 9 20 13 11 14 16

40–50 12 9 9 11 12 10 18

50–60 11 9 8 10 15 7 11

60–70 8 7 3 5 9 4 7

70–80 6 5 3 4 11 2 5

80–90 4 5 2 4 9 2 4

90–100 7 5 2 3 6 0 4

> 100 2 2 0 2 4 2 0

Tree density/ha 86 91 58 73 54 90 67
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D. abyssinica, and C. africana. Total nitrogen exhibited 
a negative impact on the majority of the log abundances 
of woody species with a strong negative impact on the 
log abundances of C. macrostachyus and F. decipenses. A 
carbon-to-nitrogen ratio exhibited a positive effect with 
all species except that  a positive impact was detected on 
the log abundances of C. arabica and F. decipenses, and C. 
macrostachyus. Available phosphorus tended to negatively 

affect the log abundances of all species except for a positive 
impact on the log abundances of C. arabica and F. deci-
penses. Available potassium displayed a negative impact on 
the log abundances of all species apart from the log abun-
dances of C. arabica, C. macrostachyus, and S. guineense. 
Precipitation exerted a strong negative impact on the log 
abundances of D. abyssinica, while temperature appeared 
o show a positive effect on F. decipenses (Table 3).

Soil pH
Cation exchange capacity

Total Phosphorus
Total Potassium

Calcium
Magnesium

Soil Organic matter
Total Nitrogen

Carbon to nitrogen ratio
Clay soil content
Silt soil content

Sand soil Content
Temperature

Precipitation
Elevation

Slope

Width of variables strength to influence the log abundances of woody species 
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C. arabica P. falcatus C. macrostachyus C.  africana S. guineense O. capensis D. abyssinica F. decipenses
Fig. 2  Strength of the impacts of variables in predicting the log abundances of woody species based on %incMSE values using the RF model

Table 3  Impacts of environmental variables on the log abundances of woody species using ANNs

Variables Standardized Olden value on log abundances of woody species

C. arabica P. falcatus C. macrostachyus C. africana S. guineense O. capensis D. abyssinica F. decipenses

Soil pH 0.2 − 0.5 2.7 − 0.2 − 0.1 − 0.1 − 0.2 0.3

CEC 0.7 − 0.4 0.5 0.0 0.1 − 0.3 − 0.3 1.0

Phosphorus 0.1 − 0.6 − 0.8 − 0.3 − 1.5 − 0.4 − 0.5 0.5

Potassium 0.0 − 0.6 0.4 − 0.2 0.1 − 0.3 − 0.3 − 0.6

Calcium 0.3 − 0.5 0.8 − 0.2 − 0.4 − 0.4 − 0.6 0.3

Magnesium − 3.8 3.0 0.0 − 2.1 0.0 − 0.5 − 0.2 0.1

SOM 0.9 2.1 0.4 3.4 2.2 2.6 3.7 1.1

Nitrogen − 0.2 − 0.5 − 2.3 0.6 − 1.1 − 1.1 0.2 − 2.6

C/N − 0.2 1.0 − 0.2 0.5 2.7 2.7 1.0 − 0.1

Clay content 0.7 − 0.5 0.4 0.0 − 0.3 − 0.2 − 0.3 0.6

Silt content 0.1 − 0.5 0.0 − 0.3 − 0.2 − 0.2 − 0.2 0.5

Sand content 0.7 − 0.7 0.0 − 0.3 − 1.0 − 0.8 − 0.1 -0.6

Temperature 0.3 − 0.2 0.0 0.0 0.2 − 0.3 − 0.3 0.9

Precipitation 0.0 − 0.2 − 0.1 − 0.2 0.0 0.1 − 0.4 0.3

Elevation 0.0 − 0.2 − 1.5 − 0.3 − 0.4 − 0.3 − 0.6 − 2.2

Slope 0.1 − 0.5 − 0.2 − 0.2 − 0.3 − 0.2 − 0.3 − 0.1
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Generalized linear model (GLM)
The GLM parameter estimates indicated that elevation 
showed a significant negative relationship with the log 
abundances of C. arabica, C. macrostachyus, C. afri-
cana, and D. abyssinica, while a positive effect of eleva-
tion showed only with the log abundance of P. falcatus 
at  p < 0.05 (Table  3). SOM appeared to show a positive 
effect on the log abundances of all species, but a signifi-
cant effect was detected only with the log abundance 
of C. africana at p < 0.05. C/N ratio exhibited a positive 
impact on the log abundances of P. falcatus, C. africana, 
O. capensis, and F. decipenses, while a significant nega-
tive effect was detected with the log abundance of C. 
arabica at  p < 0.05. Available phosphorus and available 
potassium exhibited significant negative impacts on the 
log abundances of C. arabica, P. falcatus, C. africana, and 
F. decipenses. Annual precipitation showed a significant 
negative impact on the log abundances of C. arabica, C. 
macrostachyus, and C. africana. The mean annual tem-
perature posed a significant negative impact on the log 
abundances of C. macrostachyus but a positive effect on 
the log abundance of S. guineense at p < 0.05 (Table 4).

Prediction accuracy of ANN, RF, and GLM models
The mean squared error in Table  5 shows that the RF 
produced better prediction accuracy as compared 
with the ANN model. The RF model predicted the spa-
tial distribution of log abundances of F. decipenses, S. 
guineense, and P. falcatus with small prediction errors 
(MSE) of 0.28, 0.38, and 0.39, respectively. Consistently, 
the GLM predicted the log abundances of F. decipenses 

and S. guineense with smaller AIC values (Table 4). The 
RF, GLM, and ANN models predicted the log abundance 
of F. decipenses achieving the R2 values of 71%, 64%, and 
59%, respectively. The ANN model produced larger R2 
values for the log abundances of P. falcatus, C. macros-
tachyus, S. guineense, and O. capensis. 

Spatial distribution map
The random forest model predicted the spatial distribution 
of the log of abundances of eight woody species showing 
more species abundance in the eastern parts (Fig. 3). The 
geographical distribution of the log abundance of C. ara-
bica was mainly concentrated in the eastern parts of the 
study area (Fig. 3a). The distribution of the log abundances 
of P. falcatus appeared to have a wider ecological range, 
while its large abundance was detected around a border 
in the south direction, including a few locations in the 
central parts of the study area (Fig. 3b). The spatial distri-
bution of the log abundances of F. decipenses and C. afri-
cana appeared to be confined to the eastern parts (Fig. 3c, 
and  d). The log abundance of D. abyssinica was found 
denser in the southeastern parts of the study area (Fig. 3e). 
The distribution of log abundances of C. macrostachyus, 
and S. guineense were sparsely distributed (Fig. 3f–h).

Discussion
Impacts of multivariate variables on the abundance 
of woody species
Effects of elevation on the abundances of species
The elevation is one of the abiotic factors which con-
trols the spatial distribution of plants at various spatial 

Table 4  Parameter estimates of predictor variables on the log abundances of eight woody species

Significant at ** < 0.01; Significant * at < 0.05

The GLM parameter estimates and significant level under each woody species

Variables C. arabica P. falcatus C. macrostachyus C. africana S. guineense O. capensis D. abyssinica F. decipenses

pH 0.41 0.03 0.5* − 0.11 0.03 0.30 0.05 − 0.16

CEC 4.45* − 0.46 1.58 1.52 0.16 − 0.61 0.13 0.39

P − 0.93* − 1.35* − 0.4 − 1.7* − 0.49 0.78 − 0.74 − 1.61**

K − 1.09** − 0.9** 0.22 − 0.6* 0.12 − 0.06 0.26 − 1.19**

Ca 1.89* − 0.28 0.83 1.35* − 0.16 − 1.17* 0.45 1.14*

Mg − 242** 82.87 − 24.9 − 105* − 3.37 − 38.15 − 50.77 − 34.67

SOM 76.64 0.82 31.6 147.8* 11.18 93.87 96.92 5.84

N − 12.58 1.90 − 7.47 21.7* − 7.07 − 6.39 14.73** − 4.61

C/N − 17.18* 21.8** − 0.36 14.1* 8.42 32.71** 17.06* − 1.8

Clay 3.2* − 0.4 0.93 0.69 − 0.17 − 0.41 0.18 − 1.00

Silt 7.78* − 2 − 2.73 − 3.68 − 0.26 − 0.59 0.69 3.75

Sand 12.36* − 1.97 0.68 − 3.19 − 2.29 − 4.2 0.74 0.84

Temperature − 0.6 1.2 − 1.37* 0.71 1.38* 0.07 − 0.43 0.87

Precipitation − 4.78** 1.18* − 1.6* − 3.1* 0.85 2.58** − 3.73** − 1.94**

Elevation − 3.05** 0.99* − 1.5** − 1.9* − 0.25 0.25 − 2.34** − 1.93*

Slope − 0.53 − 0.19 − 0.04 − 0.2 0.01 − 0.03 0.52* − 0.17
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locations (Nguyen et  al. 2015; Ahmed et  al. 2022). The 
ANN model in this study indicated elevation could exert 
a negative impact on the log abundances of all species. 
The GLM revealed a similar observation except a posi-
tive impact on the log abundance of P. falcatus (Table 4). 
The negative impact of elevation on the log abundance 
of plant species mainly relates to the declined tempera-
ture with an increase in elevation that creates unfavora-
ble conditions for plant growth (Rahman et  al. 2021; 
Ahmed et al. 2022). This is evident that elevation in this 
study area showed a strong negative correlation with 

temperature (Annex 1). The positive effect of elevation 
on the log abundance of P. falcatus can suggest this spe-
cies might be less susceptible to the effect of elevation 
(Lulekal et  al. 2008). Eventually, the impact of eleva-
tion on plant species could not be a linear relationship 
as the effects of elevation can be moderated by slope, 
and edaphic features (Wakjira 2006; Nguyen et al. 2015; 
Ahmed et  al. 2022). For instance, at a medium eleva-
tion range, a steep slope could develop poor soil fertility 
which leads to less abundance of plant species (Nguyen 
et al. 2015).

Table 5  Prediction accuracies of the ANN, RF, and GLM models using MSE, AICs and R2

Species Prediction models with associated prediction accuracy estimators

ANN RF GLM ANN RF GLM

MSE AICs R2 % R2 % R2 %

C. arabica 1.19 0.83 3279 41 58 47

P. falcatus 0.49 0.39 2336 42 32 23

C. macrostachyus 0.52 0.52 2471 8 5 7

C. africana 0.65 0.56 2750 48 48 40

S. guineense 0.38 0.38 2094 7 6 1

O. capensis 0.46 0.49 2448 29 23 21

D. abyssinica 0.54 0.6 2543 29 29 29

F. decipenses 0.44 0.28 2067 59 71 64

Fig. 3  Spatial distribution maps produced by the RF model of the log abundances of the eight woody species



Page 10 of 14Bedane et al. Ecological Processes           (2023) 12:10 

Effects of soil organic matter, total nitrogen, 
and carbon‑to‑nitrogen ratio
The ANN model appears to provide a positive impact of 
the SOM on the log abundances of all species (Table 3). 
The observation with the ANN model looks to be con-
sistent with the understanding that soil organic matter is 
an important variable to support the vigorous growth of 
plant species (Booth et al. 2005; Zhou et al. 2019; Yaseen 
et al. 2022).

Nitrogen is an essential nutrient required in large 
amounts to construct a plant organ, facilitating metabo-
lism activities, and fruit development (Chapin et al. 1987; 
Xu et al. 2020). Contrastingly, the ANN model revealed 
that total nitrogen could exert a negative impact on the 
log abundances of all woody species except a positive 
effect on the log abundances of C. africana and D. abyssi-
nica (Table 3). This observed negative impact is probably 
related to the bondage of nitrogen in the organic materi-
als which could not be easily available for plant use (Mat-
kala et al. 2020). This may create that nitrogen might be a 
limiting factor, where the decomposition rate of organic 
matter is lower (Matkala et al. 2020; Rahman et al. 2021; 
Devi 2022; Gerke 2022).

The ANN and GLM models appear to display a simi-
lar observation in depicting a positive impact of carbon 
to nitrogen ratio on the log abundances of all woody spe-
cies, except a negative impact on the log abundances of 
C. arabica, F. decipenses, and C. macrostachyus. This pos-
itive observation seems to be reasonable as the carbon to 
nitrogen ratio is an indicator of soil fertility (Zhou et al. 
(2019).

Effects of magnesium, available phosphorus, and available 
potassium
The ANN model indicated a positive effect of magnesium 
on the log abundance of P. falcatus (Table 3). This posi-
tive impact could be a plausible observation as magne-
sium is an essential element for plant physiological and 
biochemical processes (Gransee and Führs 2013; Ishfaq 
et  al. 2022). Contrastingly, the ANN and GLM mod-
els showed that magnesium exerts a negative impact on 
the log abundances of C. arabica, and C. africana. This 
negative impact might be explained from two different 
perspectives. First, magnesium tends to form gypsum 
and magnesium carbonate compounds which create an 
unavailable form of magnesium for plants (Gransee and 
Führs 2013). Second, the availability of magnesium could 
be reduced by the acidic soil property, particularly for 

a soil pH < 6 (Gransee and Führs 2013; Chaudhry et  al. 
2021).

The variable importance analysis using the RF model 
indicated that available phosphorus appears to be a strong 
variable to influence the spatial distribution of the log 
abundances of C. arabica, F. decipenses, P. falcatus, C. 
africana, and O. capensis. The ANN and GLM results 
in Tables  3 and 4, respectively, showed that phosphorus 
appears to exhibit negative impacts on the majority of the 
log abundances of woody species. This seems to deviate 
from the understanding that phosphorous plays an impor-
tant role in seed germination and plant growth (Rahman 
et al. 2021; Nguyen et al. 2015; Mathew et al. 2016). How-
ever, the observed negative impacts of phosphorus might 
have occurred as phosphorous exists in unavailable form 
by creating dihydrogen phosphate and iron compounds 
in tropical soil (Vitousek et  al 2010; Yaseen et  al. 2022), 
where our study area is also located in the tropics. It has 
been reported that in the absence of phosphorus species 
can adapt to low-phosphorus and can grow fast in tropi-
cal areas (STRI 2018; Yaseen et al. 2022).

On the other hand, the ANN model in this study shows 
a positive effect of phosphorus on the log abundances of 
C. arabica, and F. decipenses, while the GLM indicates 
the opposite (Table 4). These opposing observations sup-
port Antúnez (2022) who has reported that the use of 
more than one model is important to check the reliability 
and consistency of the impacts of abiotic factors on the 
abundance of woody species under different models.

Available potassium is identified as one of the top 
variables to influence the spatial distribution of the log 
abundances of C. arabica, F. decipenses, C. africana, 
and P. falcatus (Fig.  3). The ANN model identified 
that available potassium could exert a positive effect 
on the log abundances of C. arabica, C. macrostach-
yus, and S. guineense. This positive impact could be 
directly related to the roles of potassium which helps 
to enhance the growth of plants (Nguyen et  al. 2015; 
Xu et  al. 2020). Phosphorus is presumed to show a 
positive effect on plants as it is very essential for plant 
growth and the transfer of energy in plant cells (Long 
et  al 2018; Yaseen et  al. 2022). Differently, The ANN 
and GLM models showed that available potassium 
exerted a negative impact on the log abundances of P. 
falcatus, F. decipenses, and C. africana. This negative 
impact might be attributed to the formation of poorly 
soluble dihydrogen phosphate concentrations in the 
topsoil of tropical areas (Matkala et  al. 2020; Yaseen 
et  al. 2022). Besides, the impact of potassium might 
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be either positive (Nguyen et  al. 2015) or negative, 
depending on the types of plant species (Mathew et al. 
2016).

Effects of climatic factors on the abundances of species
The ANN model in this study showed a positive effect 
of precipitation on the log abundances of C. arabica, 
and F. decipenses; but the GLM displayed a negative 
impact. The GLM finding looks to be logical as increas-
ing precipitation in the natural forest tends to develop 
a cooling effect which creates unfavourable conditions 
for the growth of C. arabica, while this species prefers 
warmer temperatures (Wakjira 2006). The ANN and 
GLM models showed that precipitation could induce 
a negative impact on the log abundances of many spe-
cies. This negative impact might be linked to various 
reasons. First, extreme precipitation may create water 
saturation in the soil which may affect nutrient avail-
ability to plant roots (Stan and Sanchez-Azofeifa 2019). 
Second, high precipitation can cause soil erosion which 
may result in poor soil fertility that limits the growth of 
woody species (Wakjira 2006).

Concerning the impact of temperature on individ-
ual plants, the ANN and GLM models look to fail in 
detecting a similar impact of temperature on the log 
abundance of many species, except that  both models 
showed a positive impact of the temperature on the 
log abundance of S. guineense and a negative impact on 
the log abundance of C. macrostachyus. The tempera-
ture has been widely reported to show a positive impact 
on plant growth and distribution (Amissah et al. 2014; 
Stan and Sanchez-Azofeifa 2019), despite that increase 
in temperature could negatively affect the physiologi-
cal processes of plant species (Clark 2004; Yang et  al. 
2006).

Spatial distribution of the abundance of woody species
The spatial distribution pattern of the log abundance of 
C. arabica looks to be denser in the eastern parts, where 
the elevation range is moderate as compared to a higher 
elevation in the western parts. This may imply C. arabica 
could be sensitive to the effect of elevation as increasing 
in elevation directly drops the temperature to the extent, 
where it would be less suitable for the growth of this spe-
cies. Consistent with this, C. arabica in Ethiopia nor-
mally grows within elevation ranges of 940–2400  m asl 
(Wakjira 2006; Lulekal et  al. 2008; Schmitt et  al. 2009), 
and a suitable mean annual temperature range from 15 to 
20 °C (Wakjira 2006).

The spatial distribution of the log abundance of P. fal-
catus appears to distribute widely in different parts of the 
study area (Fig.  3b) and the GLM revealed that the log 
abundance of P. falcatus does not show significant inter-
actions with a majority of abiotic factors (Table 4). These 
findings support us to argue the abundance of woody 
species with a wider geographical distribution may not 
be significantly influenced by different environmental 
factors. The ecological implication of this observation 
depicts that P. falcatus might not be sensitive to the vari-
ability of abiotic factors and could grow under different 
environmental gradients.

Spatial distributions of the log abundances of F.  deci-
penses, C. africana, and D. abyssinica show dense pat-
terns in the eastern parts of the study area (Fig.  3c–e), 
where the area is characterized by a hot temperature as 
compared to the western parts. This observation implies 
that the ecological requirement of these three species 
is limited to a hotter location. Exceptionally, the spatial 
distribution of the log abundance of O. capensis appears 
to be denser in the southwestern parts of the study area 
(Fig. 3f ). This may suggest O. capensis requires a higher 
elevation which could be characterized by cooler temper-
atures and higher precipitation.

Conclusions
Elevation, precipitation, temperature, clay content, and 
available potassium were identified as the top abiotic fac-
tors to influence the abundance of woody species in this 
study area. The impacts of these factors appeared either 
positive or negative with species. This indicates differ-
ent woody species exhibit various ecological responses 
to the effects of different abiotic factors. The spatial dis-
tribution pattern of the log abundance of P. falcatus in 
this study seems to indicate species with a wider ecologi-
cal range might be less sensitive to the impacts of abiotic 
factors. The log abundances of C. arabica, F. decipenses, 
C. africana, and D. abyssinica could appear more sensi-
tive to the cold temperature, whereas O. capensis seems 
less sensitive to the cold temperatures and it grows at a 
high elevation area in western parts of the study area. 
This empirical finding could be useful to identify eco-
logical requirements for those identified woody species 
to enhance restoration activities. The spatial distribution 
maps of these species could further help to differentiate 
the locations with high or low species richness to guide 
appropriate conservation measures.
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Annex 1: Pearson correlation coefficients between various abiotic factors

Variables pH CEC P K Ca Mg OM N C/N clay Sand Silt Temperature Precp Elevation Slope

pH 1 − 0.138** − 0.003 − 0.061* − 0.140** 0.053 0.503** 0.072* 0.338** 0.143** 0.104** − 0.106** 0.039 − 0.007 − 0.016 0.052

CEC − 0.138** 1 0.079** 0.136** 0.858** 0.202** − 0.01 − 0.104**− 0.037 − 0.867** − 0.919** 0.921** − 0.059* − 0.131**0.039 0.080**

P − 0.003 0.079** 1 0.016 0.129** 0.107** − 0.088** − 0.038 − 0.041 − 0.113** − 0.085** 0.090** − 0.011 − 0.01 0.072* 0.082**

K − 0.061* 0.136** 0.016 1 0.297** 0.049 − 0.252** − 0.064* − 0.180** − 0.320** − 0.101** 0.110** − 0.745** 0.639** 0.717** 0.326**

Ca − 0.140** 0.858** 0.129** 0.297** 1 0.286** − 0.079** − 0.108**− 0.089** − 0.986** − 0.811** 0.816** − 0.216** − 0.03 0.216** 0.116**

Mg 0.053 0.202** 0.107** 0.049 0.286** 1 0.056 − 0.014 0.018 − 0.555** − 0.521** 0.522** − 0.031 0.024 0.058 0.124**

OC 0.513** − 0.009 − 0.087** − 0.252** − 0.079** 0.056 0.999** 0.349** 0.821** 0.079** − 0.008 0.005 0.221** − 0.174**− 0.206** − 0.006

OM 0.503** − 0.011 − 0.088** − 0.252** − 0.079** 0.056 1 0.348** 0.823** 0.080** − 0.008 0.004 0.220** − 0.172**− 0.206** − 0.006

N 0.072* − 0.104** − 0.038 − 0.064* − 0.108** − 0.014 0.348** 1 0.199** 0.105** 0.089** − 0.094** 0.02 0.018 − 0.035 − 0.058

C/N 0.338** − 0.037 − 0.041 − 0.180** − 0.089** 0.018 0.823** 0.199** 1 0.089** 0.034 − 0.039 0.161** − 0.108**− 0.147** 0.022

clay 0.143** − 0.867** − 0.113** − 0.320** − 0.986** − 0.555** 0.080** 0.105** 0.089** 1 0.858** − 0.864** 0.234** − 0.001 − 0.221** − 
0.123**

Sand 0.104** − 0.919** − 0.085** − 0.101** − 0.811** − 0.521** − 0.01 0.089** 0.034 0.858** 1 − 0.994** 0.032 0.126** − 0.018 − 
0.085**

Silt − 0.106** 0.921** 0.090** 0.110** 0.816** 0.522** 0.004 − 0.094**− 0.039 − 0.864** − 0.994** 1 − 0.037 − 0.126**0.023 0.080**

Temp 0.039 − 0.059* − 0.011 − 0.745** − 0.216** − 0.031 0.220** 0.02 0.161** 0.234** 0.032 − 0.037 1 − 0.857**− 0.755** − 
0.328**

Precp − 0.007 − 0.131** − 0.01 0.639** − 0.03 0.024 − 0.172** 0.018 − 0.108** − 0.001 0.126** − 0.126**− 0.857** 1 0.702** 0.337**

Elv − 0.016 0.039 0.072* 0.717** 0.216** 0.058 − 0.206** − 0.035 − 0.147** − 0.221** − 0.018 0.023 − 0.755** 0.702** 1 0.404**

Slope 0.052 0.080** 0.082** 0.326** 0.116** 0.124** − 0.01 − 0.058 0.022 − 0.123** − 0.085** 0.080** − 0.328** 0.337** 0.404** 1

Abbreviations
ANN	� Artificial neural networks
DBH	� Diameter at breast height
GLM	� Generalized linear models
RF	� Random forest
SDMs	� Species distribution models
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