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Abstract 

Background:  Information addressing soil quality in developing countries often depends on results from small 
experimental plots, which are later extrapolated to vast areas of agricultural land. This approach often results in misin-
formation to end-users of land for sustainable soil nutrient management. The objective of this study was to estimate 
the spatial variability of soil quality index (SQI) at regional scale with predictive models using soil–environmental 
covariates.

Methods:  A total of 110 composite soil samples (0–30 cm depth) were collected by stratified random sampling 
schemes at 2–5 km intervals across the Cross River State, Nigeria, and selected soil physical and chemical properties 
were determined. We employed environmental covariates derived from a digital elevation model (DEM) and Senti-
nel-2 imageries for our modelling regime. We measured soil quality using two approaches [total data set (TDS) and 
minimum data set (MDS)]. Two scoring functions were also applied, linear (L) and non-linear (NL), yielding four indices 
(MDS_L, MDS_NL, TDS_L, and TDS_NL). Eleven soil quality indicators were used as TDS and were further screened for 
MDS using principal component analysis (PCA). Random forest (RF), support vector regression (SVR), regression krig-
ing (RK), Cubist regression, and geographically weighted regression (GWR) were applied to predict SQI in unsampled 
locations.

Results:  The computed SQI via MDS_L was classified into five classes: ≤ 0.38, 0.38–0.48, 0.48–0.58, 0.58–0.68, and ≥ 
0.68, representing very low (class V), low (class IV), moderate (class III), high (class II) and very high (class I) soil qual-
ity, respectively. GWR model was robust in predicting soil quality (R2 = 0.21, CCC = 0.39, RMSE = 0.15), while RF was a 
model with inferior performance (R2 = 0.02, CCC = 0.32, RMSE = 0.15). Soil quality was high in the southern region and 
low in the northern region. High soil quality class (> 49%) and moderate soil quality class (> 14%) dominate the study 
area in all predicted models used.

Conclusions:  Structural stability index, sand content, soil oganic carbon content, and mean weight diameter of 
aggregates were the parameters used in establishing regional soil quality indices, while land surface water index, 
Sentinel-2 near-infrared band, plane curvature, and clay index were the most important variables affecting soil quality 
variability. The MDS_L and GWR are effective and useful models to identify the key soil properties for assessing soil 
quality, which can provide guidance for site-specific management of soils developed on diverse parent materials.
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Introduction
Knowing soil quality is essential when considering land 
degradation assessment, soil management, crop produc-
tion, and food security. Soil quality is a prerequisite for 
better planning and utilization of land resources (Amalu 
and Isong 2017b; Okon et  al. 2019; Kalambukattu et  al. 
2018). A decline in soil quality interrupts primary soil 
functions and may hamper crop production and food 
security. However, soil quality evaluation is necessary 
for identifying areas with corresponding high and low 
soil quality, and their suitability for agricultural land use 
in general and cultivated crops in particular. This would 
provide valuable information on the possibility of soil 
degradation and nutrient mining to farmers, land man-
agers, and policymakers to make sustainable land man-
agement decisions. Several models, including fuzzy set 
techniques (Rezaee et  al. 2020), Nemoro soil quality 
index (Nabiollahi et al. 2017), simple additive soil quality 
index (Mukherjee and Lal 2014), weighted additive soil 
quality index (Vasu et al. 2016), among others, have been 
developed and applied for the estimation of soil quality 
index.

Inadequate land use planning and soil suitability 
assessment in most developing countries have become 
a constraining factor for crop production. For example, 
both plantation and arable lands in Nigeria were estab-
lished primarily to forestall land encroachment by land 
speculators and landlords of communities without 
resorting to adequate land use planning (Amalu and 
Isong 2015). As such, no feasibility studies regarding 
soil quality were usually carried out to determine the 
suitability of soils for crop cultivation at the time of 
establishment. However, wider crop yield differences 
observed under similar management practices across 
these farms call for a concerted effort to understand 
the soil quality in the region, with the primary aim 
of managing such soils responsibly. This will guaran-
tee their ever-indisputable usefulness and services to 
humanity.

It is worth noting that soil is not directly consumed 
compared to air and water; hence, estimating its quality 
is quite difficult (Debi et al., 2019). In addition, soil qual-
ity does not depend on a single factor but the integra-
tion of physical, chemical, and biological factors for its 
quantification through soil quality index (Shekhovtseva 
and Mal’tseva 2015). Therefore, the initial approach to 
understanding and evaluating the soil quality of a given 
land under cultivation is to estimate the soil quality index 
using soil quality indicators sensitive to changes in soil 
management practices. The soil quality indices are mod-
els that provide numerical data concerning the capacity 
of soil to carry out one or more functions (Asensio et al. 
2013).

The choice of soil quality indicators (i.e., physical, 
chemical, and biological properties) in soil quality esti-
mation depends on their sensitivity to cause a change in 
soil function and financial budget. However, this study 
applied soil physical parameters and some selected 
chemical and biological properties, as they could serve 
as a proxy to reveal to a greater extent, soil quality in 
sub-Saharan Africa. Soil physical properties have been 
reported in several studies as having an overarching influ-
ence in controlling chemical and microbial soil proper-
ties (Dexter 2004; Igwe et al. 2013; Pulido-Moncada et al. 
2015; Phogat et al. 2015; Jat et al. 2018). Hence, the physi-
cal properties of soils require careful monitoring as they 
strongly affect soil water movement, nutrient absorption, 
nutrient mining, and solute and pollutant movement (Jat 
et al. 2018). They also control plant nutrient storage, soil 
aggregation, structural development, leaching and ero-
sion potential, the energy balance of the soil–plant sys-
tem and pedogenesis, soil organic matter stabilization, 
and optimum plant development (Dexter 2004; Carrizo 
et al. 2015).

Evaluating soil quality requires a large number sam-
pling points, and obtaining a large number of samples 
to quantify soil quality over large areas through conven-
tional soil survey methods is often tedious, expensive, 
and time-consuming. The adventure relies on the experi-
ence of the pedologist and would not provide sufficiently 
detailed information about the soil variation required for 
many environmental applications. Thus, an alternative 
approach, the digital soil mapping (DSM) technique, can 
overcome this problem by predicting soil quality index or 
soil quality classes utilizing soil properties, remote-sens-
ing data, digital elevation model (DEM), micro-climatic 
data, land use and cover data, and geological data (Nabi-
ollahi et al. 2018a, b; John et al. 2021b, c, d; Zeraatpisheh 
et  al. 2020) as covariates or ancillary variables aided by 
geostatistics (e.g. John et al. 2022a, 2022b) and machine 
learning (e.g. John et  al. 2020, 2021a) for unsampled 
areas.

The machine learning and geostatistical models for 
predicting soil properties in sub-Saharan Africa, particu-
larly in Nigeria, have already been used (Ogunwole et al. 
2014). In addition, in West Africa as a whole, Hengl et al. 
(2015) expanded the idea and scope, and in the Africa 
Soil Information Services project (AfSIS) (Hengl et  al. 
2017), these tools were employed to modeled the spa-
tial distribution of selected soil nutrient indicators but 
at a coarser scale. Since then, many sub-Saharan  Afri-
can countries have applied similar methods to produce 
detailed maps of soil nutrients at different scales. Despite 
the acceptability and utilization of machine learning and 
geostatistics in soil nutrient mapping, only a few global 
studies utilize a similar approach to model soil quality 
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(Nabiollahi et  al. 2018a; Paul et  al. 2020; Zeraatpisheh 
et  al. 2020). However, no feasible study has been car-
ried out elucidating this approach in sub-Saharan Africa 
despite the region’s active engagement in food crop 
production.

Nevertheless, there is now a growing interest in apply-
ing machine learning and geostatistical techniques to 
produce detailed maps of soil quality for the zone to mon-
itor soil resources and support crop production, given 
the threat posed by land degradation in African farming 
systems. Therefore, information and knowledge on soil 
quality are keys to guiding management and restorative 
measures and decisions by farmers and other land man-
agers. The information obtained could help curb inappro-
priate land use and soil management, as they could lead 
to the deterioration of soil quality, threatening crop pro-
duction, food security, economic growth, and a healthy 
environment. This study is designed to assist farmers, 
land managers, and policymakers in supporting deci-
sion-making about sustainable cropland management in 
Cross River State, Nigeria. We hypothesizes that parent 

materials and environmental factors strongly influence 
soil quality in tropical soils. The major drivers of spatial 
variability in soil quality index are remote-sensing-based 
variables and topographic data. At the same time, the 
study aimed to estimate soil quality index and map their 
spatial variability using machine learning and geostatisti-
cal models.

Materials and methods
Research location
The present study was conducted in Cross River State, 
situated in southeastern Nigeria. The study location 
(Fig.  1C) has an area of 9456.09 km2, geographically 
bounded between latitudes 5° 00′N–6° 40′N and lon-
gitudes 7° 55′E–9° 10′E. We divided the area of investi-
gation into the northern, central, and southern zones 
corresponding to the Ogoja, Ikom, and Akamkpa Local 
Government Areas. The site is characterized by a diverse 
geological and physiographic setup with rugged topogra-
phy (ranging from 1 m to nearly 1121 m) and wider vari-
ability in climate and normalized difference vegetation 

Fig. 1  Map showing A administrative boundary, B normalized difference vegetation index (NDVI) and C location of the study area and sampling 
points
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index (NDVI) (-0.27 to 0.80) (Fig.  1B) and is character-
ized by udic moisture and isohyperthemic soil tempera-
ture regimes (Soil Survey Staff 2014). The main geology/
parent materials underlying soils in the study area are 
basement complex rocks known as Oban Massif, lime-
stone, basalt, shale, and sandstone (Ofomata 1975; Eshett 
et al. 1990; Aki et al. 2014). The predominant mineralogy 
consists of kaolinite, quartz, Fe and Al oxides, montmo-
rillonite, microcline, and hematite (Njar 2018). In general, 
the study area is characterized by a tropical wet or mon-
soon climate according to the Koppen–Geiger climate 
classification (Beck et al. 2018). The site has two distinct 
seasons: the rainy season, which starts in April and ends 
in early November with a double peak, usually in July 
and September, and the dry season, which spans from 
November to March. The mean annual rainfall is usu-
ally higher in the southern part of the state and lowest in 
the northern part, while temperature increases from the 
southern zone to the northern zone. The average annual 
rainfall across the study area exceeds 2000 mm, while the 
average minimum and maximum temperatures are about 
22 °C and 30 °C, respectively, with a mean relative humid-
ity of 83%. The predominant agricultural land use in the 
region is plain cropland, shrubland, grassland, planta-
tion, and wetland. The principal crops grown in the area 
include maize, sugar cane, rice, cassava, yam, groundnut, 
oil palm, cocoa, rubber, and vegetable crops (i.e., okra, 
Telfairia occidentalis, pepper, water leaf, Amarathus cru-
entus, etc.). In terms of natural vegetation, the southern 
region is characterized by tropical rainforests. In the 
central, the vegetation is the transition between tropical 
rainforest and guinea savannah, while derived savannah 
is in the northern region.

The farming systems in the study area are fallow, shift-
ing cultivation, intercropping, multistorey cropping 
system, relay cropping, and sequential cropping, where 
crops were cultivated on three basic types of agricul-
tural land (compound land, family land, and community 
land). This is similar to what is obtained in other sub-
Saharan African countries (Callo-Concha et  al. 2012). 
As the need to sustainably meet the increasing demand 
for food intensified, the emphasis shifted to large-scale 
production on privatized estates, government-owned 
plantations/farms, and commercial farms. The soils are 
managed via organic and inorganic fertilization, with 
minimal use of herbicides and insecticides to control 
weeds and pests. However, the increasing and continu-
ous utilization of land resources in sub-Saharan Africa 
without prior knowledge of their soil quality may pose a 
serious challenge to achieving food security and sustain-
able development goals by 2030. In a bid to provide a 
solution to the pressing issues, this study was undertaken 

in response to the region’s urgent need to produce a soil 
quality map, given the threat posed by land degradation 
in farming systems. This paper’s idea will help achieve 
this objective by providing more insights on environmen-
tal factors exerting significant influence on soil quality in 
the study area  through a satisfactory, rapid, sustainable, 
and low-cost approach.

Soil sampling
A total of 110 soil samples were collected in strati-
fied random schemes to cover the entire study area. On 
each sampling point, a composite of three sub-samples 
(0–30 cm soil depth) was collected randomly within the 
grid area, hand-mixed, and placed in labeled plastic bags. 
The exact locations of the sampling points were deter-
mined using Global Positioning System (GPS Model 
eTrex Legend H) receiver.

Laboratory methods
All collected soil samples were transported to the labo-
ratory. The soil samples were air-dried, crushed to pass 
through a 2 mm sieve, bagged, labeled, and subjected to 
laboratory analysis, except for samples for aggregate sta-
bility analysis. Samples for the determination of aggregate 
stability were collected using a spade, while those for the 
determination of hydraulic conductivity, bulk density, and 
total porosity were collected using a core sampler. The 
particle size analysis was determined using the Bouyo-
cous hydrometer method after the mixture was dispersed 
with distilled water and Calgon (Gee and Or 2002). Bulk 
density (ρb) was determined using the core method as 
described by Grossman and Reinsch (2002). Particle den-
sity was calculated by the pycnometer method following 
the procedure outlined by Blake (1965). The total poros-
ity was calculated from the particle and bulk densities 
using the relationship established by Vomocil (1965). The 
gravimetric method of determining moisture content was 
used by Gardner (1986). The saturated hydraulic conduc-
tivity of the soil was determined using the constant head 
method according to the procedure described by Klute 
and Dirksen (1986). The wet sieving method of aggregate 
analysis was used following the procedure of Angers and 
Mehuys (1993) using a stack of sieves with 2.0, 1.0, 0.5, 
and 0.25 mm openings. Soil pH was determined follow-
ing the procedure described by Udo  et al. (2009) using 
a pH meter. Soil organic carbon was determined by the 
Walkley and Black wet oxidation method (Nelson and 
Sommers 1996). Soil organic matter was then calculated 
by a factor of 1.724 (Van Bemmelen’s Correction Factor). 
The structural stability index (SSI) was calculated from 
soil organic carbon (SOC) and fine soil texture compo-
nents following Castellini et al. (2016) procedure:
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Environmental data
Table 1 presents the digital elevation model (DEM) and 
its derivatives. The DEM was obtained from ASTER data 
(https://​earth​explo​rer.​usgs.​gov) at the spatial resolution 
of 30  m and processed with the System for Automated 
Geoscientific Analysis and  Geographical Information 
System (SAGA–GIS).

(1)SSI = 1.724 ×
SOC (%)

(silt%+ clay%)
× 100

Remote sensing data (Cloud-free Sentinel-2 imageries) 
were acquired at the European Space Agency’s Coperni-
cus Open Access Hub (https://​scihub.​coper​nicus.​eu/) in 
level 1c tiles which produce the type S2MSI1c imageries 
used for the study. The images of Sentinel-2, level 1c, are 
at TOA (top of atmosphere reflectance). Therefore, in the 
pre-processing step, the images were subject to atmos-
pheric corrections to obtain Sentinel-2 level 2a at BOA 
(bottom-of-atmosphere reflectance). The processing was 
performed using the Sen2Cor module in the SNAP tool. 
These soil–environmental covariates were selected due 

Table 1  Environmental covariates initially considered for soil quality prediction

Sentinel-2 (B2: blue, B3: green, B4: red, B5: red edge, B8: NIR, B8A: NIR, SWIR1: 11, SWIR2: 12); DEM digital elevation model

Environmental covariates Variable Description

 DEM AHShad Analytical hillshade

Aspect Aspect

CNBL Cannel network base level

CIndex Convergence index

Elv (m) Elevation

LS (m) Slope length factor

Plcurv Plane curvature

Prcurv Profile curvature

Slope (degree) Land surface slope

TCA​ Total catchment area

TWI Topographic wetness index

VDepth Valley depth: The relative height differ-
ence to the immediate adjacent channel 
lines

 Sentinel-2 B2 0.46 − 0.52 μm

B3 0.54–0.58 μm

B4 0.65–0.68 μm

B5 0.70–0.71 μm

B6 0.73 − 0.7 μm

B7 0.77 − 0.79 μm

B8 0.78 − 0.90 μm

B8A 0.85 − 0.87 μm

B11 1.56 − 1.65 μm

B12 2.10 − 2.28 μm

Carbonate index (CBI) CBI = RED
GREEN

Iron index (Fe) Fe = RED
BLUE

Clay index (CI) CI = SWIR1
SWIR2

Normalized Difference Build-up Index (NDBI) NDBI = (SWIR - NIR)
(SWIR + NIR)

Ratio Vegetation Index (RVI) RVI = NIR
RED

Modified Soil Adjusted Vegetation Index (MSAVI) MSAVI =
2×NIR+1−

√
(2×NIR+1)2−8×(NIR - RED)

2

Normalized Difference Vegetation Index (NDVI) NDVI = (NIR - RED)
(NIR + RED)

Green Normalized Difference Vegetation Index (GNDVI) GNDVI = (NIR - GREEN)
(NIR + GREEN)

Land Surface Water Index (LSWI) LSWI = (NIR - SWIR)
(NIR + SWIR)

https://earthexplorer.usgs.gov
https://scihub.copernicus.eu/
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to their proven correlation with soil properties (Campos 
et al. 2018) and are reported in Table 1.

Soil quality computation procedure
In this study, the soil quality index (SQI) was computed 
using three methods (Karlen et  al. 2003; Andrews et  al. 
2004). The methods involved the selection of soil quality 
indicators using both total data set (TDS) and minimum 
data set (MDS), indicator transformation, and indicator 
integration into the overall index.

Minimum data sets (MDS) selection: principal com-
ponents analysis (PCA) was used as a method of MDS 
selection. In using PCA, only the principal components 
(PCs) with eigenvalues ≥ 1, which explained at least 5% 
variation of the data, were retained for interpretation. 
Andrews and Carroll (2001) suggested that indicators 
with weighted absolute values within 10% of the high-
est indicator value for each PC should be selected as the 
MDS. However, this criterion only accounted for the 
loading of the variable to a single PC and did not pro-
vide information for the variable on a multi-dimensional 
space; hence norm values, as suggested by Yemefack et al. 
(2006), were used for grouping and selection of variables 
as MDS.

The norm value was calculated using the following 
equation:

where Nik = load for ith soil property on PCs with eigen-
values ≥ 1; uik = load for the ith soil property on the prin-
cipal component of k; ʎik = the eigenvalue of the ith soil 
property on the principal component of k.

When more than one soil property within a PC ful-
fills the selection criteria, the multivariate correlation 
matrix was used to determine the correlation between 
them, and the non-correlated parameters (r < 0.60) under 
a particular PC were considered important and retained 
(Andrews et al. 2002). Conversely, among correlated vari-
ables within a PC, the variable with the highest correla-
tion sum was selected for the MDS.

Indicator transformation: since each soil indicator has 
different units, they were transformed and normalized 
into a unitless score between 0 and 1 using both linear 
and non-linear scoring approaches before final integra-
tion into the overall soil quality index (SQI). Three estab-
lished soil scoring functions (SSFs) based on if it has a 
"negative" or "positive" relationship with soil quality or if 
it is positively or negatively related within an "optimum 
range" (Li et al. 2018) were used. This research presents 
the linear and non-linear functions (Eqs.  3–6) used 

(2)Nik =

√

√

√

√

k
∑

i=1

(

u2ik�ik
)

below. Equations  (3), (4), and (5) are linear functions 
and correspond to "more is better" function (M), "less is 
better" function (L), and "optimal range" function (O), 
respectively:

where x = measured value of the soil quality indicator. M, 
L, and O = values of the variables after transformation for 
"more is better", "less is better" and "optimal range" scor-
ing functions. L and U = the lower and the upper thresh-
old values of soil indicators, respectively.

Similarly, Eq.  (6) depicts a non-linear function, where 
x is the soil property value, b is the slope assumed to be 
− 2.5 for "more is better" and + 2.5 for "less is better", and 
xo is the mean value of the soil variable:

Indicator integration into the overall index: the soil qual-
ity index (SQI) of each sampling site was calculated using 
the integrated quality index (IQI) (Eq. 7):

where IQI is the weighted additive soil quality index, n 
is the number of selected soil properties, Si is the score 
of soil properties i, Wi is the assigned weight of each soil 
property for the TDS and MDS based on the communal-
ity of principal component analysis (PCA).  The weights 
were computed as

where ith is the soil variable, and Ci is the communality 
value of a soil variable ith.

(3)M =

0.1 x ≤ L

0.1+ 0.9× x−L
U−L L ≤ x ≤ U

1 x ≥ U

(4)L =











1 x ≤ L

1− 0.9×
�

x−L
U−L

�

L ≤ x ≤ U

0.1 x ≥ U

(5)

O =



















0.1 x < L1 or x ≥ U2

0.1+ 0.9×
�

x−L1
L2−L1

�

L1 ≤ x ≤ L2

1 L2 ≤ x ≤ U1

0.1+ 0.9×
�

x−U1
U2−U1

�

U1 ≤ x ≤ U2

(6)SNL =
1

[

1+ (x
/

xo)
b
]

(7)IQI =

n
∑

i=1

WiSi

(8)
Wi =

Ci
n
∑

i=1

Ci



Page 7 of 22Isong et al. Ecological Processes           (2022) 11:66 	

Soil quality classification scheme: according to the 
classification criteria in Guo et al. (2017) "an ideal soil 
would have SQI value of 1 for the highest quality soil 
and 0 for the severely degraded soil, soil quality was 
divided into five grades: very high, high, moderate, low, 
and very low". Chen et al. (2013) suggested using "val-
ues 10% more than or less than the average as Grade 
III in classifying soil quality, and other grades can be 
derived as the increments or decrements of 20% from 
the adjacent grades". According to the authors, "the 
quality of soil decreased as the grade increases". Thus, 
Grade I soil should be considered suitable for plant 
growth; Grade V soil is characterized by having the 
most severe limitations for plant growth. According to 
Li et  al. (2018), "Grade I is described as having a very 
high value, which is the most suitable for crop growth; 
Grade II showed a high IQI value and is suitable for 
crop growth; Grade III had a moderate value and had 
some limitation; Grade IV showed a lower IQI value 
and had more limitations than Grade III; grade V was 
characterized as having a very low IQI value and the 
most severe limitations". Soil quality grade was mapped 
with the aid of ArcGIS software.

Soil quality index validation: the proposed models’ per-
formance was validated using the sensitivity index (SI), as 
presented in the following equation:

where  SQImax = maximum soil quality index value, and 
SQImin = minimum soil quality index value

In addition, the efficiency ratio (ER) was computed to 
assess the efficiency of each SQI in evaluating the soil 
quality index (Eq. 10).

where K is the number of significant paired correlations 
between the specific SQI and all indicators; N is the 
number of all feasible paired correlations in the data set, 
which equals 4 and 11 for MDS and TDS in this research, 
respectively.

Predictive models
I. Multiple linear regression (MLR) and geographically 
weighted regression (GWR): MLR and GWR were uti-
lized to model the relationship between SQI and selected 
predictors (i.e., soil–environmental covariates).

In MLR, the target soil property is modelled as a lin-
ear combination of predictors. It is a global model and 
assumes variables’ independence, stationarity, and isot-
ropy as the precondition but overlooks the spatial het-
erogeneity of the response variable and its auxiliary 

(9)SI =
SQImax

SQImin

(10)ER = (K/N )× 100

information. Thus, the SQI of interest is predicted by the 
simple formula:

where ŷ(i) is the predicted SQI at location i, β̂0 is the esti-
mated intercept, β̂k is the estimated regression coefficient 
for predictor k, and Xk(i) is the value for the kth predictor 
at location i. The regression coefficients are estimated by 
ordinary least squares (OLS).

The GWR model is a local form of linear regression 
that overcomes the limitation of the MLR model. GWR 
is a spatial regression model applied in DSM. The model 
is based on the local smoothing idea that considers the 
spatial locations of samples and uses the locally weighted 
least square method to model the observations of soil 
parameters. It can be written as

where (ui,vi) are the coordinates of point i, β0(ui, vi) is 
the coefficient of different explanatory variables, x*ik is 
the value of explanatory variable k at point i, p is the total 
number of explanatory variables, εi is the error term that 
is generally assumed to be explanatory and normally dis-
tributed with zero mean and constant variance, and the 
values of the above parameters vary with the location. 
The parameters can be estimated using a weighting func-
tion as in the following equation:

where X is the matrix formed by x*ik, Y is the vector 
formed by values of the response variable, and W(ui,vi) 
is a weight matrix to ensure that those observations near 
the point i have more influence on the results than those 
that are farther away. The parameters of the GWR are 
Kernel type and bandwidth selection criteria (AICC).

ii. Regression Kriging (RK): RK combines OK and a lin-
ear regression model. It combines a regression of depend-
ent variables on predictors with kriging of the prediction 
residuals. RK has been proposed in several studies as a 
way to account for spatial autocorrelation in regression 
modelling (Fayad et al. 2016). For RK, a prediction at an 
unvisited site is given by summing the regression predic-
tion and the kriging prediction of the regression residual.

iii. Random Forest (RF) model: Random Forest (RF) 
modeling has become a popular technique for regres-
sion and classification with complex environmental data 
sets (Freeman et al. 2015; Fox et al. 2020). In contrast to 
multiple regression, RF is an algorithmic procedure that 
makes no a priori assumptions about the relationship 

(11)ŷ(i) = β̂0 +

k
∑

k=1

β̂kXk(i)

(12)ŷi = β0(ui, vi)+

P
∑

K=1

βk(ui, vi)x ∗ik +εi

(13)β̂(ui, vi) = (XTW (ui, vi)X)
−1XTW (ui, vi)Y
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between the predictor variables and the response. RF has 
a reputation for good predictive performance when the 
data contain many predictor variables, complex non-line-
arities, and interaction effects in the relationship between 
the predictors and response variables (Biau 2012; John 
et al. 2020). In addition, RF provides several measures of 
variable importance that allow the interpretation of the 
fitted model (Hastie et al. 2009).

iv. Support vector regression (SVR): support vector 
regression (SVR) is a supervised learning method that 
has recently gained popularity for predicting soil prop-
erties (Lamichhane et  al. 2019). SVR is an extension of 
SVM and is used as a regression technique. This tech-
nique generates an optimal separating hyperplane to 
differentiate classes that overlap and are not separable 
in a linear way. In this case, a large, transformed feature 
space is created to map the data with the help of kernel 
functions to separate it along a linear boundary. More 
detailed explanations about SVR can be found in (Brei-
man 2001). The optimal function developed by SVR can 
be expressed as

where x is a vector of the input predictors (environmental 
variables), f (x) is an optimal function developed by SVR, 
b is a constant threshold, K(xk, xj) is the Gaussian radial 
basis kernel function with the best bandwidth parameter 
σ and αk andα∗

k
 are the weights (Lagrange multipliers) 

with the constraints given in the following equation:

v. Cubist regression: the Cubist model was developed 
by Quinlan (1992) as a rule-based model, which is an 
extension of the M5 tree model. According to Kuhn and 
Johnson (2013), the model structure consists of a con-
ditional component or piecewise function acting as a 
decision tree, coupled with multiple linear regression 
models. The trees are reduced to a set of rules eliminated 
via pruning or combined for simplification. The Cubist 
method’s main benefit is adding multiple training com-
mittees and boosting to make the weights more balanced 
(Quinlan 1992; Wang 1997; Kuhn and Johnson 2013). 
The Cubist model adds boosting with training commit-
tees (usually greater than one) which is similar to the 
method of "boosting" by sequentially developing a series 
of trees with adjusted weights. The number of neighbours 
in the Cubist model is applied to amend the rule-based 
prediction (Kuhn and Johnson 2013). This model will 

(14)f (x) =

P
∑

k=1

(αk − α∗

k )K (xk ,xj)+ b

(15)







P
�

k=1

(αk − α∗

k ) = 0

0 ≤ αk , α
∗

k ≤ C

be implemented in R by tuning two hyper-parameters: 
neighbours (Instances) and committees (Committees). 
These two parameters are the most likely to have the larg-
est effect on the final performance of the Cubist model.

Modelling approach and evaluation
Covariates used in building a more efficient soil quality 
model were selected via stepwise regression with for-
warding selection and backward elimination of predic-
tors following the procedure of Zounemat-Kermani et al. 
(2020). The data set was randomly calibrated into two 
with a 75% and 25% ratio, respectively. 75% of the data set 
was used for training the model, while 25% was used for 
validation. The following metrics were used, coefficient of 
determination (R2), root mean square error (RMSE), and 
Lin’s concordance correlation coefficient (CCC) was used 
to compare and select the best model. The formulas are 
given as follows:

where Zpi = predicted values, Zoi = observed values, 
n = the size of the observations, for the ith term obser-
vation, = average of the predicted values, Zo = average 

(16)R2
= 1−

∑n
i

(

Zoi − Zpi

)2

∑n
i

(

Zoi − Zpi

)2

(17)RMSE =

√

1

n

n
∑

i=1

(

Zpi − Zoi

)2

(18)CCC =
2rσoσp

σ 2
o + σ 2

p + (Zp_Zo)

Table 2  Summary statistics for studied soil quality indicators

SOC soil organic carbon, Ks saturated hydraulic conductivity, ρb bulk density, MC 
moisture content, TP total porosity, MWD mean weight diameter, SSI structural 
stability index

Soil indicators Min Max Mean SD CV (%)

pH (H2O) 4.90 6.55 5.70 0.48 8.49

SOC (%) 0.78 3.39 1.99 0.58 29.13

Ks (cm/h) 0.12 175.56 19.91 24.50 123.04

ρb (Mg/m3) 0.82 1.88 1.33 0.24 18.15

MC (cm3/cm3) 0.00 0.61 0.18 0.11 62.39

TP (%) 15.38 66.67 45.02 10.24 22.74

MWD (mm) 0.23 1.62 0.52 0.23 45.14

Sand (%) 41.60 86.00 66.86 9.77 14.62

Silt (%) 9.00 47.00 24.53 7.48 30.48

Clay (%) 3.00 28.70 8.04 4.78 59.47

SSI 4.42 32.78 11.22 4.48 39.93
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of the predicted values, CCC = Lin’s concordance cor-
relation coefficient, σ 2

o  and σ 2
p  are the variances of the 

predicted and observed values; and r is the Pearson cor-
relation coefficient between the predicted and observed 
values.

Results
Basic statistics of soil quality indicators and indicator 
selection methods
Summary statistics of physical and chemical properties 
are presented in Table 2. The soil pH of the studied loca-
tions ranged from 4.90 to 6.55, with a mean of 5.70. SOC 
had a minimum value of 0.78% and a maximum value of 
3.39%. Ks value ranged from 0.12 to 175.56  cm/h. Bulk 
density ranged from 0.82 to 1.88  Mg/m3, sand content 
in all the regions was high (86.0%), companied by a low 
silt content of 47%, and lower clay content of 28.7%. The 
characteristics of other measured variables are shown 
in Table  2. The 11 soil properties reported in Table  2 
were used as the total data set based on their sensitivity 
to cause a change in soil functions. The indicators were 
screened for the MDS using correlation and principal 
component analysis (PCA) with varimax rotation.

Positive and significant correlations were observed 
between SOC and SSI (r = 0.64), SOC and silt (r = 0.26), 
Ks and SSI (r = 0.35), Ks and sand (r = 0.37), MC and 
clay (r = 0.31), MC and silt (r = 0.25), and SSI and sand 
(r = 0.56) at 1% significant level (Fig. 2). Similarly, among 
the negative correlations, those that were highly sig-
nificant were between pH and SOC (r = −  0.40), pH 
and Ks (r = − 0.25), pH and SSI (r = − 0.32), ρb and SOC 
(r = − 0.42), MC and Ks (r = − 0.30), silt and Ks (− 0.28), Fig. 2  Correlation between soil quality indicators

Table 3  Results of the principal component analysis

PC Principal component, Bold PC loadings are considered highly weighted. Bold and underlined factor loadings are selected as minimum data set (MDS); Com 
Communality, TDS Total data set, MDS Minimum data set. Grouping was based on norm values; Kaiser–Meyer–Olkin Measure of Sampling Adequacy; Bartlett’s Test 
of Sphericity; MC moisture content, df degree of freedom; KMO Kaiser–Meyer–Olkin, BTS Bartlett’s test of Sphericity, ρb bulk density, MWD mean weight diameter, Ks 
saturated hydraulic conductivity, SOC soil organic carbon, SSI structural stability index

Indicators Principal component (PC) Norm values Grouping TDS MDS

PC1 PC2 PC3 PC4 Com Weight Com Weight

pH  − 0.511  − 0.228  − 0.093 0.215 0.9896 1 0.510 0.058

SOC 0.904 0.125 0.331  − 0.048 1.6260 1 0.826 0.094 0.877 0.279

Ks 0.059 0.608  − 0.189  − 0.263 1.0432 2 0.929 0.105

ρb  − 0.709  − 0.014 0.631  − 0.154 1.4333 1 0.4960 .056

Moisture 0.331  − 0.472 0.105 0.366 1.0291 2 0.941 0.107

Porosity 0.534  − 0.031  − 0.796 0.132 1.3035 1 0.498 0.056

MWD 0.242  − 0.247 0.304 0.490 0.8382 4 0.890 0.101 0.447 0.142

SSI 0.502 0.779 0.223 0.142 1.5553 2 0.957 0.108 0.980 0.312

Sand  − 0.315 0.888  − 0.029 0.272 1.5562 2 0.893 0.101 0.835 0.266

Silt 0.370  − 0.684 0.024  − 0.544 1.3899 2 0.503 0.057

Clay 0.024  − 0.628 0.018 0.331 1.0664 2 0.504 0.057

eigenvalue 3.008 2.594 1.294 1.032

Variance (%) 27.32 23.61 11.75 9.10

Cumulative variance (%) 27.32 50.93 62.68 71.78

KMO 0.502

BTS 785.085

df 55

Sig  < 0.01
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Ks and clay (r = −  0.28), ρb and TP (r = −  0.85), ρb and 
SSI (r =  −  0.25), MC and sand (r = −  0.36), SSI and 
silt (r = − 0.41), clay and SSI (r = − 0.42), sand and silt 
(r = − 0.85), and sand and clay (r = − 0.58) at 1% signifi-
cant level. The observed relationships from the correla-
tion analysis indicated the intricate connections among 
the various soil properties, which can hardly be observed 
when using raw data obtained directly from laboratory 
analysis.

Computed soil quality indices and indices validation
The indicators were screened for the MDS using correla-
tion and principal component analysis (PCA) with vari-
max rotation (Table 3). The studied soil indicators were 
grouped into four PCs, as they had eigenvalues > 1, each 
explaining at least 5% of the data variation and account-
ing for 71.78% of the total variance in the data set. Com-
munalities for the soil indicators showed that the four 
components explained more than 80% of the variance in 
SOC, Ks, MC, MWD, SSI, and sand: > 50% of the vari-
ance in pH, silt, and clay, and < 50% of the variance in 
total porosity (TP) and bulk density (BD). In Group 1, 
SOC had the highest norm value (1.6260), and no other 
soil indicators had a norm value falling within the scope 
of 90% of the highest value. Hence, SOC was selected 
as MDS for Group 1, and other indicators were elimi-
nated. Similarly, in Group 2, sand had the highest norm 
value (1.5562), which exceeded that of SSI (1.5553), but 
the norm value of SSI fell within the scope of 90% of 
the highest value. The correlation between sand and SSI 
was < 0.60; hence, SSI and sand were retained in Group 
2 as MDS, and other indicators in this group were elimi-
nated. There was no indicator under Group 3. Finally, 
MWD was the only indicator in Group 4 and was selected 
as MDS. Therefore, this study selected SOC, sand SSI, 
and MWD as MDS.

The weight value for TDS showed that SSI (0.108) had 
the highest weight, while SOC (0.094) had the lowest 
value. Similarly, for MDS, SSI (0.312) also had the high-
est weight, while MWD (0.142) had the lowest value. 
The screened indicators for both TDS and MDS were 
scored using linear and non-linear scoring functions, 
and the summary results are presented in Table  4. The 

sensitivity index shows that MDS_L is the most sensitive 
index, with a value of 8.60 for evaluating the soil quality 
index in Cross River State. At the same time, TDS_NL 
had the least sensitivity index value of 2.48 (Table  5). 
Efficiency ratios (ER) were further calculated to specify 
the power of each SQI. The calculated efficiency ratios 
for the four developed soil quality indices are presented 
in Table  5. The TDS_NL, having an ER ratio of 90.90%, 
was ranked first, followed by MDS_L and MDS_NL, with 
ER ratios of 75% and 75%, respectively. In addition, to 
make a decision, the final prioritizing of different indi-
ces was conducted by summation ranks of two criteria 
with an assumption that two selected criteria (SI and 
ER) have an equal quota on the final decision. The least 
ranked indicator was selected as the representative, and 
MDS_L falls under this scope and hence was selected 
for further analysis and modelling. The MDS_L selected 
through validation using ER and sensitivity analysis was 
further correlated with SOM and NDVI (Fig. 3) to check 
its scientific credibility. There is a strong positive corre-
lation between MDS_L and OM (r = 0.809, p < 0.01) and 
NDVI (r = 0.37, p < 0.01). This implies that improvement 
in soil organic matter content would subsequently lead 
to a corresponding increase in soil quality and, by exten-
sion, crop yield. This result indicates that MDS_L could 

Table 4  Summary statistics soil quality indices

SQI Min Max Mean SD CV (%)

MDS_L 0.10 0.86 0.53 0.17 17

MDS_NL 0.21 0.71 0.48 0.10 10

TDS_L 0.27 0.72 0.49 0.094 9.4

TDS_NL 0.23 0.57 0.41 0.069 6.9

Table 5  Sensitivity index and efficiency ratio between each soil 
quality index value and soil indicators

NS  Not significant

* and ** mean correlation is significant at the 1% and 5% level 
respectively (2-tailed) 

Indicators/indices MDS_L MDS_NL TDS_L TDS_NL

Pearson correlation

 pH  − 0.425**  − 0.411**

 SOC 0.808** 0.934** 0.683** 0.745**

 Ks 0.153 NS 0.176 NS

 ρb  − 0.592**  − 0.602**

 MC 0.445** 0.480**

 Porosity 0.473** 0.408**

 MWD 0.230* 0.406** 0.140 NS 0.439**

 SSI 0.485** 0.690** 0.378** 0.339**

 Sand  − 0.127NS  − 0.064 NS  − 0.137  − 0.337**

 Silt 0.195* 0.289**

 Clay  − 0.044 NS 0.192*

 ER (%) values 75 75 72.72 90.90

 ER rank 2 2 3 1

 SI values 8.60 3.38 2.67 2.48

 SI rank 1 2 3 4

 Rank scores 3 4 6 5

 Final ranking 1 2 4 3
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be applied to monitor soil quality and crop yield in the 
study area.

Modeling approach and variables’ importance 
in the individual models
The MDS_L was selected through validation using ER, 
and sensitivity analysis was used for prediction. The 
MDS_L was split into training (calibration) and testing 
(validation) data sets, and its summary statistics are pre-
sented in Table 6. The basic statistics of calibration and 
validation data sets were similar to those of the entire 
data set. The values for all the data sets had moderate 
variability (15% < CV < 35%), demonstrating the high 
variability of MDS_L within the study area (Table 6), and 
were slightly negatively skewed.

Several models used in this study, including multiple 
linear regression (MLR), random forest (RF), support 
vector machine regression (SVR), and Cubist were first 
fitted with the covariates selected from stepwise regres-
sion to quantify their importance with the soil quality 
index. Predictors with at least 15% important to the soil 
quality index were finally selected and used for mode-
ling. The relative importance of variables for the applied 
models is presented in Fig. 4. LSWI [ranked first (100%)], 

Plcurv, B8A, clay index, and TCA were the most effec-
tive covariates in predicting SQI utilizing RF and MLR 
models. Similarly, LSWI, B4, B7, B8A, clay index, and 
TCA were the most effective covariates in predicting SQI 
utilizing the SVR model. The results also indicated that 
LSWI, B3, B7, B8A, and clay index showed high impor-
tance with the soil quality index using the Cubist model. 
However, the importance of variables to soil quality pre-
diction through RK was from those already provided by 
the RF model, and those for prediction of SQI via GWR 
were from the MLR model. This implementation was 
appropriate because RK in this study utilizes the residual 
obtained from the RF model. Similarly, GWR is a local-
ized form of MLR.

The importance of variables (Fig.  4) in the RF, Cub-
ist, SVR, and MLR models was slightly different, reveal-
ing different dominating environmental features in these 
models. The result showed LSWI as the most important 
variable in all models, with a relative importance of about 
100%. The spectral indicators derived from Sentinel-2 
imagery, ranging from VIS to NIR reflectance bands (e.g., 
B8A, B7, B4, and B3), have strong relationships with SQI. 
However, the importance of different spectral indicators 
varied. Although the ranking order was different across 

Fig. 3  Linear relationship between soil quality index (MDS_L) and organic matter (A) and normalized difference vegetation index (B)

Table 6  Summary Statistics of MDS_L soil quality index

N number of sampling points

MDS_L N Min Max Mean SD CV (%) Skewness Kurtosis

Calibration data set 79 0.10 0.80 0.53 0.17 32.07  − 0.91  − 0.28

Validation data set 31 0.17 0.86 0.54 0.17 31.48  − 0.59  − 0.29

Total data set 110 0.10 0.86 0.53 0.17 32.07  − 0.81  − 0.31
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the five studied models, LSWI was considered the most 
relevant variable in all the five models, as it was consist-
ently ranked 1st, and B8 was among the top four impor-
tant variables across all the models.

Spatial prediction and mapping of soil quality
The spatial distribution of soil quality index (SQI) and 
class predicted by RF, SVR, Cubist, RK, and GWR is 
illustrated in Figs.  5 and 6. The mean and standard 
deviation of the MDS_L soil quality index for the entire 
study area based on the Cubist predicted map were 0.58 
and 0.084, respectively. In RF predicted map, they were 
0.56 and 0.066; in RK predicted map, they were 0.56 
and 0.066, respectively; in SVR predicted map, they 
were 0.61 and 0.055, while in GWR predicted map, they 
were 0.58 and 0.086, respectively. Similarly, the pre-
dicted mean value for SQI by RF (0.56) and RK (0.56) 
was closer to the mean of the measured value (0.53) than 
Cubist (0.58), GWR (0.58), and SVR (0.61). This suggests 
RK and RF could perform well in predicting soil quality 
index over other proposed models, although this would 
later be validated. The spatial distribution maps of soil 
quality index and class obtained using the RF, SVR, RK, 
Cubist, and GWR models indicated that soil quality in 

Cross River State varies with classes ranging from very 
low to very high quality. All models showed almost the 
same overall spatial pattern, with a high soil quality 
region mostly found in the central and southern parts 
of the study area with values ranging from 0.72 to 0.90. 
In contrast, low soil quality areas were located mostly in 
the northern part of the study area, with values ranging 
from 0.19 to 0.35.

The soil quality index in this study was classified into 
five classes, with values of SQI ≤ 0.38, 0.38–0.48, 0.48–
0.58, 0.58–0.68, and ≥ 0.68, representing very low (class 
V), low (class IV), moderate (class III), high (class II) and 
very high (class I) soil quality, respectively. From the spa-
tial distribution map, areas that required high input for 
optimized crop production are mostly in the northern 
area. As these maps indicate, soil quality decreased spa-
tially from south to north. The maps reflect that most of 
these areas may be affected by some soil degradation. In 
Table 7, with the different predictive models, the domi-
nant grade, called grade II (high class), covered more 
than 49% of the study area, and this was closely followed 
by moderate class (grade III), which also covered approx-
imately 14% of the study site. Conversely, the very low 
class (grade V) was the least observed grade in the area, 

Fig. 4  Importance of variables in the A random forest model (RF), B support vector regression model (SVR), C Cubist model, and D multiple linear 
regression model (MLR). PlCurv plane curvature, PrCurv profile curvature, TCA​ total catchment area, TWI topography wetness index, LSWI land 
surface water index, B3 Sentinel-2 green band, B4 Sentinel-2 red band, B7 Sentinel-2 red edge band
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covering less than 4%, and the very high class also occu-
pied a small portion (< 8%).

Evaluation of the performance of machine learning 
in predicting soil quality index
The average RMSE, R2, and CCC for SQI prediction by 
cross-validation are shown in Table  8. The proposed 
machine learning models showed different abilities to 
predict SQI at unsampled locations in the study area. 
This could be related to the various mathematical func-
tions of each algorithm and covariates used for fitting. 
Prediction values of SQI using RF, SVR, Cubist, RK, 
and GWR were compared, and the results showed dis-
crepancies between these models. SVR had the highest 
coefficient of determination (R2 = 0.24), indicating high 

precision; RK and GWR had equal and the highest CCC 
(0.39), implying good agreement with the 45o line, while 
SVR, RK, and GWR had an equal and lowest root mean 
squared error (RMSE = 0.15). The RK and GWR models 
predicted SQI better than other models; this is evident, 
because the regression lines observed against the pre-
dicted are closer to the 1:1 line than what is obtainable by 
SVR, RF, and Cubist. Lin’s concordance correlation coef-
ficient (CCC) is used to compare the regressions to the 
1:1 line. For the RK and GWR models, concordance was 
0.39 and 0.39. Upon visual examination of Fig. 7, the RK 
and GWR models show more variability or scatter in the 
data than the other models.

The RF, Cubist, and SVR models showed a high ten-
dency for overestimation or underestimation, while 

Fig. 5  Spatial distribution of soil quality index and class predicted by A, B RK and C, D GWR​
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RK and GWR showed a minimal tendency for over-
estimation or underestimation. RF and Cubist models 
underestimate high values and overestimate low values 
of SQI, while the SVR model overestimates high val-
ues and underestimates low values of SQI as shown by 
the 1:1 regression line (45º line) (Fig.  7). Overall results 
considering all validation indices showed RK with 

criterion (R2 = 0.20, CCC = 0.39, RMSE = 0.15) and 
GWR (R2 = 0.21, CCC = 0.39, RMSE = 0.15) to be the 
best performing models. This was followed by SVM with 
a slightly inferior performance for each error criterion 
(R2 = 0.24, CCC = 0.32, RMSE = 0.15). Cubist and RF 
showed a higher deviation of predicted to measured val-
ues. From the results, it can be concluded that the GWR 

Fig. 6  Spatial distribution of soil quality index and class predicted by A, B support vector regression C, D random forest and E, F Cubist
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model showed better performance in  predicting SQI at 
new locations than other models, given its lowest RMSE 
and highest R2 and CCC. The GWR approach applied 
regressions locally, which accounted for both the spatial 
trends and local variations resulting in superior estima-
tions of SQI.

Impact of geological materials on soil quality
The study indicated that about 53,509.23 ha (75.95%) and 
12, 851.01 ha (18.24%) of soil with the very high-quality 
class were found in soil developed on basement complex 
formation and sandstone, while only 2.59%, 3.14%, and 
0.08% were found for soil developed on shale, limestone, 
and basalt, respectively (Table  9 and Fig.  8). Similarly, 
under the high soil quality class, 317,625.40 ha (68.19%) 
and 107, 533.10 ha (23.08%) were found in soil developed 
on basement complex formation and sandstone, whereas 
4.86%, 2.17%, and 1.70% were associated with shale, 
basalt and limestone soils. In addition, in the moderate 
soil quality class, 46.51%, 37.54%, 10.25%, 5.58%, and 
0.11% of soils developed on basement complex forma-
tion, sandstone, shale, basalt, and limestone were associ-
ated with moderate soil quality class.

However, low soil quality classes were associated with 
sandstone (42.84%) and shale (41.67%) as well as very 
low soil quality classes: sandstone (41.49%) and shale 
(52.93%). The results revealed that very high, high, 
and moderate soil quality was mostly associated with 
soil developed on basement complex formation and 

sandstone, whereas low and very low soil qualities were 
associated with soil developed on basalt, limestone, and 
shale. The result of this study pointing out basement 
complex formation has been very high, high, and mod-
erate in soil quality is not surprising. A relatively high 
soil quality index was observed in the Alesi in the central 
part of the study area and Oban, Aningeji, among other 
locations in the southern part, while a relatively low soil 
quality index was observed in Winnimba, Abakpa, and 
Alok, among others in the northern part of the study area 
(Fig. 8). These mentioned areas are the major crop pro-
duction base in Cross River State.

Discussion
In this study, eleven soil quality indicators were assessed 
as TDS based on their sensitivity to cause a change in 
soil functions (Andrews et  al. 2004), and later screened 
to four indicators (SOC, MWD, SSI, and sand) via PCA 
procedures. In the context of soil quality estimation, PCA 
is recognized as one of the most effective tools for reduc-
ing the number of variables by identifying those that 
are most significant in the field scale for estimating soil 
quality (Andrews and Carroll 2001; Fathizad et al. 2020). 
The MDS selected via PCA are indicators of soil texture, 
nutrient and soil aggregation, and structural develop-
ment (Phogat et al. 2015; Jat et al. 2018), and could play 
an important role in assessing soil quality in the study 
area. These properties have also been utilized elsewhere 
to study soil quality. For instance, Chen et  al. (2013), 
Fathizad et  al. (2020), Choudhury and Mandal (2021), 
and Nabiollahi et  al. (2018b) have also used soil qual-
ity indicators utilized in this study as a data set in their 
studies on soil quality assessment. Prior to the advent 
of precision agriculture and geospatial technologies, 
numerous soil variables were required for sustainable 
soil management. The introduction of soil quality aided 
by machine learning and geostatistics became robust in 
identifying key soil indicators for nutrient management, 
which reduce both the time and costs associated with 

Table 7  Location falling within different soil quality grades according to the utilized predictive models

Soil quality grade RF SVR Cubist RK GWR​

Area (ha) % Area (ha) % Area (ha) % Area (ha) % Area (ha) %

Very high (class I) 7405 0.79 15,876 1.69 48,832 5.19 7405 0.79 70,978.05 7.54

High (class II) 477,602 50.74 749,193 79.59 525,479 55.82 477,602 50.74 469,098.09 49.83

Moderate (class III) 341,259 36.25 132,478 14.07 244,495 25.97 341,259 36.25 258,513.75 27.46

Low (class IV) 92,883 9.87 42,796 4.55 87,426 9.29 92,883 9.87 120,964.14 12.85

Very low (class V) 22,182 2.36 989 0.11 35,100 3.73 22,182 2.36 21,777.93 2.31

Total 941,332 100 941,332 100 941,332 100 941,332 100 941,332 100

Table 8  Performance of predictive models in predicting soil 
quality index

Models R2 CCC​ MSE RMSE Bias

RF 0.02 0.16 0.027 0.17 0.002

SVR 0.24 0.32 0.022 0.15 0.039

Cubist 0.07 0.26 0.026 0.16 0.022

RK 0.20 0.39 0.022 0.15 0.031

GWR​ 0.21 0.39 0.022 0.15 0.034
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in-situ and laboratory analyses of numerous soil variables 
required for soil nutrient management.

In the studied soil, the mean bulk density of the plough 
layer ( ρb = 1.33 Mg/m3) was lower than the ’optimum’ value 
of 1.40 Mg/m3 (USDA-NRCS 2001), stipulated for sandy 
loams, loams, sandy clay loams, loams, clay loams which 

were the dominant observable texture in the study area. 
Nevertheless, a maximum bulk density of 1.88 Mg/m3 was 
obtained. The soil bulk density values exceeding the critical 
value in the studied soil can impede crop root growth and 
development, thereby reducing soil quality and crop yield. 
Similarly, saturated hydraulic conductivity (Ks) in the soil 

Fig. 7  Measured and predicted values of soil quality index using five machine learning algorithms: A RF, B SVR, C RK, D GWR and E Cubist. (RF 
random forest, GWR​ geographically weighted regression, RK regression kriging, SVM support vector regression)
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was found to be moderate. Ks is often used as a measure of 
soil physical quality (Andrews et al. 2004). Ks and texture 
are interrelated; areas with the higher Ks value are expected 
to have high sand content and low clay content. This effect 
can be illustrated by a study conducted by Lim et al. (2016), 
where Ks of 5.98 m/day for coarse sand decreased by 57%, 
88%, and 96%, with the successively decreasing sand con-
tent in fine sand, loam, and clay textured soils. The pH value 
of 5.7 obtained in this study indicates that the region’s soil is 
moderately acidic. Most of the nutrient elements are avail-
able at a pH range of 5.5–7.0 for optimal growth, hence, the 
soil of the area can be utilized with minimum application 
of lime in places where pH is less than 5.5 (Brady and Weil 
2002). Soil organic carbon ranged from 0.78% to 3.39%. 
Low SOC in topsoil (0–30 cm) was expected in the north-
ern region, where the temperature is hot, and vegetation is 
low compared to the southern part. Very low NDVI values 
predominate the northern part of the study area, indicat-
ing poor vegetative growth. This impacted soil organic car-
bon, and perhaps soil quality in these areas. However, areas 
dominated by moderate and high NDVI values were found 
in the central and southern parts of the study area. This 
reflects thick vegetative cover, and soil quality in these areas 
is expected to be very high. Most of the studied soil prop-
erties were correlated. Several researchers also observed 
such correlations in their studies. For instance, MacCarthy 
et al. (2013) in their research found a negative relationship 
between SOC and ρb , Evrendilek et al. (2004) had a similar 
relationship between SOC and ρb , and SOC with soil pH, 
while Adhikari and Bhattacharyya (2015) found such a rela-
tionship existing between SOC and sand.

The physical indicators investigated in this study provide 
information on root growth, ease of plant emergence, and 
water infiltration. In contrast, the chemical indicators pro-
vide information on the proliferation of soil organisms and 
nutrient availability. The major parameters used in estab-
lishing regional soil quality indices in the study area are 
SSI, sand, SOC, and MWD. Hence, understanding these 
parameters is essential for illustrating the potential steps 

of proper soil management for sustainable agricultural 
production.

In many countries of the world, soil quality is declining 
rapidly. Therefore, the estimation and prediction of soil 
quality are considered the basis for monitoring and main-
taining sustainable agricultural systems. In the literature, 
soil quality index  ranged from 0.0 to 1.0 (Andrews et  al. 
2004). The soil quality index in this study was classified into 
five classes, with values of SQI ≤ 0.38, 0.38–0.48, 0.48–0.58, 
0.58–0.68, and ≥ 0.68, representing very low (class V), 
low (class IV), moderate (class III), high (class II) and very 
high (class I) soil quality, respectively. The delineation and 
reclassification were guided by previous studies (Andrews 
et al. 2004; Chen et al. 2013; Guo et al. 2017; Fathizad et al. 
2020). In addition, the delineation of soil quality into classes 
for homogeneous management can serve as a cost-effective 
approach for responsibly improving and managing soil 
resources. This present study revealed more accurately dif-
ferent soil classes (very high, high, moderate, low, and very 
low) with the combination of soil-covariates and predictive 
models.

The most important covariates for predicting SQI with 
RF and MLR models were LSWI, Plcurv, B8A, clay index, 
and TCA. In contrast, LSWI, B4, B7, B8A, clay index, 
and TCA were the most important covariates for predict-
ing SQI using the SVR model. In previous studies, the 
normalized difference water index (NDWI) was the most 
important variable that detected SOC variability in a study 
conducted by Falahatkar et  al. (2016). Plane curvature 
controls the flow of solutes, water, and sediments and can 
affect soil development and the spatial distribution of soil 
properties (Li et  al. 2013), and  it was also found among 
the most effective covariates that could predict SQI in this 
study. Similar to the results of this study, Paul et al. (2020) 
and Fathizad et  al. (2020) found that topographic vari-
ables were the most important predictors for soil quality 
prediction. Zeraatpisheh et al. (2019), in a study for mod-
elling SOC in surface soils of central Iran, also reported 
clay index (CI), ranking 4th in order of importance for 

Table 9  Impact of geological materials on soil quality

Parent 
materials

Very high class High class Moderate class Low class Very low class

Area (ha) % Area (ha) % Area (ha) % Area (ha) % Area (ha) %

Sandstone 12,851.01 18.24 107,533.10 23.08 96,024.87 37.54 50,898.51 42.84 8982.54 41.49

Basalt 58.23 0.08 10,107.90 2.17 14,267.34 5.58 2131.83 1.79 199.26 0.92

Basement 
complex

53,509.23 75.95 317,625.40 68.19 118,961.6 46.51 16,266.06 13.69 1009.08 4.66

Limestone 1826.1 2.59 7901.64 1.70 292.05 0.11 0 0.00 0.00 0.00

Shale 2212.2 3.14 22,656.33 4.86 26,227.44 10.25 49,504.41 41.67 11,457.72 52.93

Total 70,456.77 100 465,824.30 100 255,773.3 100 118,800.8 100 21,648.6 100
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predicting SOC. The spectral indicators derived from Sen-
tinel-2 imagery, ranging from VIS to NIR reflectance bands 
(e.g. B8A, B7, B4, and B3), have strong relationships with 
SQI. Thus, the result of this work collaborates with the 
findings of John et al. (2020) and John et al. (2021c). They 
confirmed the high suitability of remotely sensed data and 
terrain attributes for predicting soil attributes.

The spatial trend of soil quality decreases from the 
southern to the northern region of the study area, and 
this trend is consistent with current conditions of the 
studied soil, as low soil quality in the north may be due 
to a low percentage of SOC, low soil structural stability 
and a high bulk density, as well as intensive mismanage-
ment practices in agriculture. Zhang et  al. (2016) and 
Mukherjee and Lal (2014) have shown that SOC, bulk 
density, clay, and pH are the most influential factors in 
the determination of SQI, confirming the importance of 
using these parameters in the current study. Develop-
ing soil quality classes can minimize agricultural man-
agement costs and input wastage. In the study area, soil 
nutrient recommendations for agricultural soils are usu-
ally uniform, with the spatial heterogeneity of nutrient 
content in soils often neglected, and the major source of 
chemical fertilizers in Nigeria and sub-Saharan Africa 
at large is NPK, urea (46% N), superphosphate [triple 
superphosphate (46% P)], muriate of potash (60% K) 

(Liverpool-Tasie et  al. 2010). In addition, poultry, pig 
and cow manure, and other soil amendments are also 
applied in the garden and on small-scale farms (Uko 
et  al. 2019). These similar nutrient recommendations 
at a regional scale sometimes lead to over-fertilization 
in areas with high nutrient levels and vice versa. There-
fore, classifying soils based on their potential to support 
crop production could increase nutrient use efficiency in 
commercial farms and decrease the risk of nutrient pol-
lution. Improving soil quality for a moderate soil quality 
class requires fewer management costs than a very low 
soil quality class with the most severe limitations. The 
study showed that areas that could provide optimum 
plant growth conditions and lower sensitivity to erosive 
processes were found in the southern and central regions 
of the study area and have been rated as having higher 
soil quality.

In the last two decades, more emphasis has been 
placed on food security and sustainable management 
of resources (Okon et  al. 2019; Uko et  al. 2019; Zeraat-
pisheh et al. 2020). Soils are a resource base where crop 
production takes place and are important in ensuring 
food security because over 97.5% of the human food sup-
ply comes from the soil while less than 2.5% comes from 
aquatic systems (Brevik 2013), thus making soils critical 
to food security. Santos-Francés et al. (2022) stated that 

Fig. 8  Spatial distribution of soil quality A within different parent materials B in important agricultural areas. pcm basement complex formation
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"there has been an increased global demand to establish 
criteria for determining soil quality for quantitative indi-
ces that can be used to classify and compare that qual-
ity in different places." In previous studies, soil quality 
models have been performed using different methodolo-
gies and scales of analysis. For instance, Nabiollahi et al. 
(2018a) and Paul et al. (2020) utilize RF in modelling soil 
quality. However, most models utilized in this study have 
not been employed previously in soil quality mapping, 
although they have been widely used in assessments of 
other environmental issues and soil properties variability 
(Afu et al. 2021; John et al. 2020, 2021a, 2021b). Besides, 
there is now a growing interest in and the application of 
machine learning and geostatistical models in the spa-
tial prediction and production of maps to monitor soil 
resources, support crop production, and reveal attention 
to the threat posed by land degradation in African farm-
ing systems. Compared with the traditional soil studies 
(Asensio et al. 2013; Chen et al. 2013; Amalu and Isong 
2017), the results from digital soil mapping could ensure 
greater efficiency and better representation of the hori-
zontal distribution of soil quality across a large region. 
Planners and farmers can easily use the digital soil map 
output in this study to identify suitable soils best suited 
for crop cultivation in this region.

Similar to the agricultural soils elsewhere, the soils 
of the present study site are developed on diverse par-
ent materials and support different arable crops. In 
addition, comparing the potential of soil developed on 
diverse parent materials for agricultural productivity 
had mixed results as reported by (Abam and Orji 2019; 
Donatus et al. 2018; Corbett 2006; Gonçalves et al. 2013; 
Graham et  al. 2017). However, Afu et  al. (2021) and 
Ofem et  al. (2020) have reported limestone, shale, and 
basaltic-derived soils to be suitable for agricultural pro-
duction. The geographical location may have influenced 
their results as the soils were located in residential and 
industrial areas. In addition, the soils may either be con-
taminated with heavy metals or unavailable for crop pro-
duction. Eshett et al. (1990) reported the potential of soils 
developed on basement complex formations to support 
peasant food crops and commercial tree crop production 
in sub-Saharan Africa for many years. Other scholars 
(Floyd 1969; Ofomata 1975; Eshett et al. 1990) reported 
in their studies that certain areas within the study site 
with soils from basement complex formation are actively 
utilized for both peasant and commercial crop produc-
tion. In general, basement complex formation and sand-
stone are high in soil quality. This finding is associated 
with the fact that parent materials play a significant role 
in soil physical characteristics and nutrient supply, espe-
cially the release of basic cations, including but not lim-
ited to Ca, Mg and K (Afu et al. 2021).

Conclusion
Among several predictors considered in this study, land 
surface water index (LSWI), plane curvature (PlCurv), 
clay, and near-infrared band (B8) significantly affected 
soil quality in the study area. At the same time, soil sta-
bility index (SSI), soil organic carbon (SOC), and mean 
weight diameter (MWD) of aggregates  were parameters 
to establish regional soil quality indices. They are valu-
able indicators in soil quality prediction on soil devel-
oped on diverse parent materials. The minimum data 
set (MDS) linear method and geographically weighted 
regression (GWR) are effective and useful models to 
identify the key soil properties for assessing soil quality 
for soils developed on diverse parent materials. The joint 
use of soil quality indicators, environmental covariates, 
and machine learning algorithms allows for an accurate 
and effective assessment of soil quality index. The result-
ing soil quality map from the GWR prediction showed 
low soil quality in the northern region and high soil qual-
ity in the southern and central regions. This indicates that 
the study area is advancing towards poor soil quality in 
the northward direction. Soil quality was poorer in soils 
developed on shale, basalt, and limestone parent materi-
als and richer in soils developed on basement complex 
and sandstone parent materials in the studied region. 
Typically, low and very low soil quality requires the 
application of organic manures/crop residues and fallow 
cropping systems, in addition to other soil management 
practices, to achieve high soil quality.

Based on the findings from this study, we recommend 
soil management approaches (e.g., biochar and/or biofer-
tilizer application, integrated nutrient management, 
etc.) before using soils developed on basalt, shale, and 
limestone for crop production. The predictive soil qual-
ity maps derived from this study should serve as a guide 
in establishing regionalized soil nutrient management 
programmes.
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