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scenarios
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Abstract

Background: As global temperatures continue to rise, species distribution modeling is a suitable tool for identifying
rare and endangered species most at risk of extinction, along with tracking shifting geographical range.

Methods: The present study investigates the potential distribution of Swertia bimaculata in the Darjeeling-Sikkim
region of Eastern Himalaya in current and future climate scenarios of GFDL-CM3 (Geophysical Fluid Dynamics
Laboratory-Climate Model 3) for the year 2050 and year 2070 through MaxEnt presence data modeling. Two sets of
variables were used for modeling current scenario. The models were evaluated using AUC (area under the curve)
values and TSS (true skill statistic).

Results: Habitat assessment of the species shows low and sporadic distribution within the study area. A significant
decrease is observed in the possible range of the species in the future climate scenario with the habitat decreasing
from 869.48 to 0 km2. Resultant maps from the modeling process show significant upward shifting of the species
range along the altitudinal gradient. Still, results should be taken with caution given the low number of
occurrences used in the modeling.

Conclusions: The results thus highlight the vulnerability of the species towards extinction in the near future.
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Introduction
The Intergovernmental Panel on Climate Change (IPCC)
fifth assessment report (2014) reiterates that recent cli-
mate change caused by heightened concentrations of
greenhouse gasses generated by anthropogenic activity
consequently impacted both natural and human systems.
The occurrences of climate change are easily observable
from the increasing average global temperatures (Fischer
and Knutti 2015), disappearances of mountainous
glaciers (Roe et al. 2017), melting polar ice caps (Chen
et al. 2006), increasing sea levels (Nerem et al. 2018),

and desertification (Guo et al. 2017) to name a few. One
of the impacts of climate change is human-driven bio-
diversity loss predicting the extinction of an overall 7.9%
of total species on the planet (Urban 2015). Four repre-
sentative concentration pathways (RCPs) have been
described based on the mitigation scenarios fulfilled
(IPCC 2014). The current climatic trend affects moun-
tainous regions across the world including the Hima-
layas (Hamid et al. 2019), where several plant and
animal species have had a notable upward altitudinal
shift (Dullinger et al. 2012). Changes in climatic patterns
have further complicated downstream effect on species
conservation. This highlights the importance of predict-
ive tools for quicker assessment of priority species.
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Species distribution modeling (SDM) is a tool used for
designing effective conservation strategies by generating
predictive maps of the range of a species in a given area
(Kumar and Stohlgren 2009). SDMs are often used to
prioritize areas for conservation (Chunco et al. 2013)
and assess the immediate and future impact of climate
change under different scenarios (Ranjitkar et al. 2016).
The main principle based on which most SDMs function
is the correlation of presence and sometimes absence
data, with different environmental variables to create a
predictive map of the species range (Pearson et al. 2006).
SDMs essentially estimate the geographic distribution of
a species, both actual and potential which is done pri-
marily by characterizing environmental conditions most
suitable for the species and then, identifying where these
environments are distributed across the geographic
space on a spatial scale (Pearson 2007).
MaxEnt is one such SDM program widely used for dis-

tribution modeling both internationally, such as China
(Yi et al. 2016), New-Caledonia (Kumar and Stohlgren
2009), and the USA (Mingyang et al. 2008), and also in
the Indian context (Sarma et al. 2018, Rawat et al. 2017).
MaxEnt has been used previously in the Himalayas for
modeling several species such as Justicia adhatoda
(Yang et al. 2013), Rhododendrons (Kumar 2012), and
Berberis aristata (Ray et al. 2011). MaxEnt is based on
the principle of maximum entropy, a machine-learning
technique that uses presence (occurrence of a species)
and background environmental data. The information
provided by the environment and the presence records
of a species limit the probable distribution of a species
(Pearson 2007). It can also predict the hypothetical habi-
tat of a species in a future scenario. Such predictions
have assessed possible habitat for invasive species like
Arundina graminifolia (Kolanowska and Konowalik
2014) and endangered species like Thuja sutchuenensis
(Qin et al. 2017). As the expected impact on biodiversity
could be high, it is thus necessary to understand the
exact effect of climate change over a set period of years
at the species level.
The Eastern Himalaya is one of the extensions of the

Himalaya biodiversity hotspot (CEPF 2020) in the Indian
subcontinent with an estimated 5800 species of plants
(Pande and Arora 2014). The Darjeeling and Sikkim
Himalayas, a contiguous part of the Indian Eastern
Himalaya (Starkel and Sarkar 2014), harbors 14 genera
under the family Gentianaceae with about 70 species
(Grierson and Long 1999). Swertia bimaculata is one of
the few species under genus Swertia (Gentianaceae)
found in the Darjeeling-Sikkim Himalayas (Grierson and
Long 1999). Worldwide, this species has been recorded
primarily in East Asian and Southeast Asian countries
like Japan, China, Republic of Korea, Bhutan, and India.
One of the factors negatively impacting S. bimaculata

population is habitat degradation (Kanade and John
2018, Pal et al. 2016). Only seventeen occurrences have
been recorded previously in India (GBIF 2020). While
far less in demand than the medicinal plant Swertia
chirayita (Pandey et al. 2012), the value of S. bimaculata
as an adulterant has resulted in the decline of the
population of the species making it less common in
Darjeeling-Sikkim Himalaya. Das et al. (2013) report that
S. bimaculata is a species with valuable bioactive com-
pounds, with a rapidly declining population. Hence, it is
crucial to understand the distribution pattern and assess
the current and future spatial range of the species for
conservation measures.

Materials and methods
Location
The present study area focuses on the Darjeeling-
Sikkim part of Eastern Himalaya (Fig. 1). The con-
tiguous part of the Eastern Himalaya, the exclusively
mountainous region of Darjeeling-Sikkim Himalaya,
extends from 26° 31′ to 28° 10′ N Latitude and 87°
59′ to 88° 58′ E Longitude covering a total area of
about 9020 km2. The region is composed of two
transverse ranges Dongkya in the east and Singalila in
the west with the countries Nepal, Bangladesh,
Bhutan, and China bordering the region that occupies
a 100-km-long segment of the highest mountain bar-
rier on the globe (Starkel and Sarkar 2014). The alti-
tudinal range varies from ca. 132 m at Sukna in
Darjeeling to 8598 masl at Sikkim, the summit of the
third highest peak of the world, Mount Kanchenjun-
gha. A combination of factors like geographic location
and climate makes the vegetation of Darjeeling-
Sikkim Himalaya a meeting ground for the Indo-
Malaysian and Indo-Chinese tropical lowland flora,
the Sino-Himalayan east Asiatic, and the Western
Himalayan flora comprising about 9000 species with a
high percentage of endemic plant species (Das 1995).
Due to the altitudinal variation, the area exhibits a
characteristic monsoon climate, with wet summer and
dry winter caused by the direct exposure to the moisture-
laden southwest monsoon flowing upwards from the Bay
of Bengal that lies at proximity. This region is also a part
of the designated Himalayan biodiversity hotspot as se-
lected by Conservation International and the home to
many endemic species (Conservation International 2005).

Swertia bimaculata
The genus Swertia of the family Gentianaceae is repre-
sented by nearly 150 species worldwide (WFO 2019) of
which 40 species are distributed in India and 15 within
the Eastern Himalaya (Samaddar et al. 2014). Taxonom-
ically, S. bimaculata is identified by its ovate leaves with
three distinct nerves in its vegetative state, flowers with
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black spots at the apex of each corolla lobe, and two
usually distinct green orbicular glands in the middle of
each corolla lobe (Grierson and Long 1999, Pandey et al.
2012). In India, 17 occurrences of the species have been
recorded previously, with only two recorded from the
eastern region (GBIF 2020).

Population assessment
The phytosociological assessment of the habitat for S.
bimaculata was carried out with the help of quadrat
sampling method. The quadrat size of 2 × 2 m was
placed in the habitat where the S. bimaculata showed its
occurrence at eleven occurrence points. The data col-
lected for the associated species was pooled to compute
and estimate frequency, density, abundance, and domin-
ance using the following equations (Curtis and McIntosh
1950, Phillips 1959).

Frequency %ð Þ ¼ Number of quadrats in which the species occured
Total number of quadrats studied

� 100

Density ¼ Total number of individuals of a species in all quadrats
Total number of quadrats studied

Abundance ¼ Total number of individuals of a species in all quadrats
Total number of quadrats in which the species occured

The relative values were summed up using IVI =
∑ [RF + RD + RA] to extract the importance value index
(IVI) for each taxa associated in the habitat. Several differ-
ent diversity indices for the associated species in the habitat
of S. bimaculata were estimated using PAST version
3.24, namely, Shannon index H ′ = − ∑ [(ni/N) ln(ni/N)]
(Shannon and Weaver 1963); Richness index D ¼ S=

ffiffiffiffi

N
p

(Menhinick 1964); Evenness index J =H ′ / ln S (Pielou
1966); and Index of dominance CD = ∑ (ni/N)

2

Fig. 1 Map of study area (shaded portion indicates protected areas)
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(Simpson 1949). The spatial distribution pattern of the
species was also studied (Whitford 1949).

Species occurrence data
The occurrence data was collected for S. bimaculata
through field investigation, and the coordinate data for
the species was recorded using Garmin eTrexH. The
population count for S. bimaculata was done with habi-
tat assessment through studying the associated species
in the ecological niche. Occurrence points for Sikkim
Himalayas were also consulted (Das et al. 2013). Simul-
taneously, the coordinates were taken in the field for cli-
mate change modeling, which was used to determine the
IUCN threat status of the species in the study area using
GeoCAT (Bachman et al. 2011). During modeling, how-
ever, the two coordinates obtained from GBIF (GBIF
2020) were excluded as while they were within India,
they were outside the study area. The coordinates ob-
tained from field visit and literature review were com-
bined and used and are presented in Table 1.

Environmental variables
Environmental variables (Table 2) for the current and
future climate condition were sourced from the World-
Clim database (Hijmans et al. 2005). The current climate
data were obtained from the WorldClim database ver-
sion 2.0 at ~1 km2 (30 arc second) resolution. In case of
future climate change predictions, the nineteen biocli-
matic variables were obtained for RCP 2.6, RCP 4.5, and
RCP 8.5 for the year 2050 and the year 2070 based on
the global climatic model GFDL-CM3 (Griffies et al.
2011, Chaturvedi et al. 2012). The data obtained were
first clipped and then converted to the ASCII file format
by using QGIS 3.4 Madeira. The elevation data were ob-
tained from the Global Multi Resolution Terrain Eleva-
tion Data in 1-km2 resolution (Danielson and Gesch
2011), and the data was used to generate slope and as-
pect layers in ASCII format in QGIS 3.4 Madeira.

Modeling procedure
The modeling was done using MaxEnt algorithm version
3.4.1 (Phillips et al. 2006). First, a complete model was
run with all 22 bioclimatic variables with default settings
applied except for using linear, quadratic, and hinge

features as the number of data points was 16, along with
10 percentile training presence threshold rule and repli-
cated 10 times. ENM Tools 1.3 (Warren et al. 2010) was
used to perform multi-collinearity test to eliminate
highly correlated variables, i.e., any correlation where the
value of r was greater than 0.9 (Jueterbock et al. 2016),
and the second model was run using nine bioclimatic
variables. Both models were generated by setting the
random test percentage to 30% (Thapa et al. 2018). For
future climate predictions, the model was run using the
nine uncorrelated bioclimatic variables and the occur-
rence points first calibrated with the current environ-
ment layers and then projected on future climate layers
for RCP 2.6, RCP 4.5, and RCP 8.5 for both years 2050
and 2070. The variables used for each model are given
in Table 3. The quality of all models was assessed using
the average AUC (area under the curve) values and are
recorded in Table 5. Models were also evaluated by cal-
culating true skill statistic (TSS) (Allouche et al. 2006).
By default, MaxEnt performs multivariate environmental
similarity surface (MESS) analysis, which was also used
(Elith et al. 2010).

Table 1 Species occurrence data

Sl. No. Source of data No. of data
points

Reference

1 Field survey 11 Obtained from field
survey

2 Literature review 5 Das et al. (2013)

Total 16

Table 2 Environmental variables used for species distribution
modeling in MaxEnt

Variable abbreviation Variable name

BIO1 Annual mean temperature

BIO2 Mean diurnal range

BIO3 Isothermality

BIO4 Temperature seasonality

BIO5 Max temperature of warmest month

BIO6 Min temperature of coldest month

BIO7 Temperature annual range

BIO8 Mean temperature of wettest quarter

BIO9 Mean temperature of driest quarter

BIO10 Mean temperature of warmest quarter

BIO11 Mean temperature of coldest quarter

BIO12 Annual precipitation

BIO13 Precipitation of wettest month

BIO14 Precipitation of driest month

BIO15 Precipitation seasonality

BIO16 Precipitation of wettest quarter

BIO17 Precipitation of driest quarter

BIO18 Precipitation of warmest quarter

BIO19 Precipitation of coldest quarter

ELEV Altitude

ASP Aspect

SLOPE Slope
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Mapping
Mapping was prepared in the QGIS 3.4 Madeira soft-
ware, and for each of the generated maps for each
model, the corresponding 10th percentile training pres-
ence was set as the threshold in order to remove areas
with low probability of occurrence (Young et al. 2011).
Area was calculated from the generated maps using the
QGIS 3.4 Madeira software.

Results
Population assessment
The surveyed habitat revealed that the population of S.
bimaculata (Fig. 2) is quite low with only 36 individuals
(n=36) counted across eleven suitable habitats in the
Darjeeling region. The lowest count of individual S.
bimaculata was one whereas the maximum count within
a quadrat was observed to be nine individuals. The esti-
mated density was 3.27 with abundance score of 3.3.
The abundance to frequency ratio was found to be 0.03,
indicating random distribution of the taxa across the
habitat.
The phytosociological assessment of the habitat of S.

bimaculata showed the occurrence of tree species like
Acer campbellii, Acer sikkimense, Acer thomsonii,
Cryptomeria japonica, Eriobotrya dubia, Eriobotrya

petiolata, Eurya acuminata, Exbucklandia populnea,
Macaranga denticulata, Neolitsea impressa, and species
of Symplocos. The estimation of different phytosociologi-
cal parameters in recognized habitat of S. bimaculata
revealed 45 species of shrubs and herbs that belonged to
38 genera and 27 families with a total of 183 individuals
in eleven recognized sites from Darjeeling Himalaya.
The family Rosaceae showed highest number with 8
species under 4 genera followed by Compositae and
Urticaceae with 3 species each. Acanthaceae, Araliaceae,
Balsaminaceae, Hydrangeaceae, Primulaceae, and a fern
family Pteridaceae showed 2 species each within the
habitat.
The total density calculated for the shrubs and herbs

was 16.64 with highest density of 1.45 expressed by
Melissa axillaris and Oplismenus compositus. The total
abundance of taxa associated with S. bimaculata in its
niche was estimated to be 134.6 with highest abun-
dance expressed by Melissa axillaris. The score for
importance value index for the shrubs and herb taxa
within the habitat ranged between 2.85 and 22.19
with highest score for Melissa axillaris and lowest for
Helwingia himalaica, Lysimachia japonica, Maesa chisia,
Osbeckia melastomacea, Rubus splendidissimus, Smilax
aspericaulis, and Viburnum mullaha as recorded in
Table 4.
The estimation for the diversity indices showed that

the Shannon index was 3.52, the richness index was esti-
mated as 3.32, the evenness index as 0.92, and the Simp-
son’s index of dominance was recorded to be 0.96 for
the associated species within the habitat.

Species distribution modeling
The predicted distribution of S. bimaculata for the
complete model (all 22 variables) and the uncorrelated
model (9 uncorrelated variables) is shown (Fig. 3).
Both of these models performed well in MaxEnt,

since for each, the AUC values were higher than 0.9,
with the mean AUC values being 0.982 and 0.980 for
the complete and the uncorrelated model respectively
(Table 5). The TSS value was approximately 0.78 and
0.64 for the complete and uncorrelated model re-
spectively (Table 5). For each of the complete and
uncorrelated model, the spatial distribution of the
species in the study area is 3.92% (451.89 km2) and
7.55% (869.48 km2) respectively (Table 5). In the
complete model, the percentage of contribution was
highest for BIO13 (precipitation of wettest month) at
39.1%. In the uncorrelated model, BIO18 (precipitation of
warmest quarter) showed the highest contribution at
40.2% (Table 5). Figure 4 depicts the ROC curves along
with the AUC value. Overall, both the complete and un-
correlated models show very similar curves and AUCFig. 2 Swertia bimaculata in its natural habitat

Table 3 Species distribution models

Model name Environmental variables

Complete BIO1, BIO2, BIO3, BIO4, BIO5, BIO6, BIO7, BIO8,
BIO9, BIO10, BIO11, BIO12, BIO13, BIO14, BIO15,
BIO16, BIO17, BIO18, BIO19, ASP, SLOPE, ELEV

Uncorrelated BIO3, BIO7, BIO14, BIO15, BIO18, BIO19, ASP,
SLOPE, ELEV

Year 2050 (RCP 2.6, RCP
4.5, RCP 8.5)

BIO3, BIO7, BIO14, BIO15, BIO18, BIO19, ASP,
SLOPE, ELEV

Year 2070 (RCP 2.6, RCP
4.5, RCP 8.5)

BIO3, BIO7, BIO14, BIO15, BIO18, BIO19, ASP,
SLOPE, ELEV
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Table 4 Phytosociological status of the associated species in S. bimaculata habitat

Species Family F D A A/F IVI

Ageratina adenophora Compositae 9.09 0.45 5.0 0.55 8.01

Aleuritopteris formosana Pteridaceae 9.09 0.27 3.0 0.33 5.43

Anaphalis contorta Compositae 18.18 1.00 5.5 0.30 13.22

Arisaema tortuosum Araceae 9.09 0.18 2.0 0.22 4.14

Artemisia vulgaris Compositae 9.09 0.36 4.0 0.44 6.72

Begonia flaviflora Begoniaceae 9.09 0.18 2.0 0.22 4.14

Chamabainia cuspidata Urticaceae 18.18 1.00 5.5 0.30 13.22

Dactylicapnos scandens Papaveraceae 9.09 0.27 3.0 0.33 5.43

Dennstaedtia scabra Dennstaedtiaceae 9.09 0.18 2.0 0.22 4.14

Dichroa febrifuga Hydrangeaceae 9.09 0.18 2.0 0.22 4.14

Dryopteris sp. Dryopteridaceae 18.18 0.36 2.0 0.11 6.80

Fragaria nubicola Rosaceae 36.36 0.64 1.8 0.05 11.37

Helwingia himalaica Helwingiaceae 9.09 0.09 1.0 0.11 2.85

Hemiphragma heterophyllum Plantaginaceae 9.09 0.55 6.0 0.66 9.30

Hydrangea aspera Hydrangeaceae 18.18 0.27 1.5 0.08 5.88

Hydrocotyle himalaica Araliaceae 36.36 0.73 2.0 0.06 12.11

Hydrocotyle javanica Araliaceae 9.09 0.27 3.0 0.33 5.43

Impatiens longipes Balsaminaceae 9.09 0.18 2.0 0.22 4.14

Impatiens puberula Balsaminaceae 9.09 0.27 3.0 0.33 5.43

Lepisorus contortus Polypodiaceae 9.09 0.45 5.0 0.55 8.01

Lysimachia japonica Primulaceae 9.09 0.09 1.0 0.11 2.85

Maesa chisia Primulaceae 9.09 0.09 1.0 0.11 2.85

Melissa axillaris Lamiaceae 9.09 1.45 16.0 1.76 22.19

Neillia thyrsiflora Rosaceae 9.09 0.36 4.0 0.44 6.72

Oplismenus compositus Poaceae 36.36 1.45 4.0 0.11 17.96

Osbeckia melastomacea Melastomaceae 9.09 0.09 1.0 0.11 2.85

Pilea scripta Urticaceae 18.18 0.55 3.0 0.17 8.63

Pilea pumila Urticaceae 18.18 0.36 2.0 0.11 6.80

Polygonum runcinatum Polygonaceae 9.09 0.36 4.0 0.44 6.72

Potentilla sundaica Rosaceae 9.09 0.27 3.0 0.33 5.43

Pteris biaurita Pteridaceae 9.09 0.18 2.0 0.22 4.14

Rubus acuminatus Rosaceae 27.27 0.36 1.3 0.05 7.86

Rubus buergeri Rosaceae 9.09 0.18 2.0 0.22 4.14

Rubus ellipticus Rosaceae 9.09 0.18 2.0 0.22 4.14

Rubus lineatus Rosaceae 9.09 0.18 2.0 0.22 4.14

Rubus splendidissimus Rosaceae 9.09 0.09 1.0 0.11 2.85

Selaginella monospora Selaginellaceae 9.09 0.45 5.0 0.55 8.01

Smilax aspericaulis Smilacaceae 9.09 0.09 1.0 0.11 2.85

Strobilanthes divaricata Acanthaceae 9.09 0.36 4.0 0.44 6.72

Swertia paniculata Gentianaceae 9.09 0.55 6.0 0.66 9.30

Tetrastigma serrulatum Vitaceae 9.09 0.18 2.0 0.22 4.14

Thunbergia lutea Acanthaceae 18.18 0.18 1.0 0.06 4.96

Viburnum mullaha Adoxaceae 9.09 0.09 1.0 0.11 2.85

Viola hookeri Violaceae 18.18 0.36 2.0 0.11 6.80

Zanthoxylum oxyphyllum Rutaceae 9.09 0.18 2.0 0.22 4.14
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values. Figure 5 illustrates the Jackknife of the complete
and the uncorrelated model.
The potential spatial distribution of each generated

model for future distribution in RCP 2.6, RCP 4.5, and
RCP 8.5 in the year 2050 and year 2070 are shown in
Fig. 6. The percentage of the study area where S. bima-
culata occurs after applying the threshold is recorded in
Table 5. For each of the six future predictions, the AUC
value ranged from 0.982 to 0.985 making all six models
well-performing. The TSS value ranged from approxi-
mately 0.63 to 0.79. Among the future models, the prob-
able area of occurrence for S. bimaculata is highest for
the year 2050 with 2.07% (238.38 km2) in RCP 4.5 and

the lowest estimated area is 0 (0 km2) for the year 2070
in RCP 8.5 (Fig. 6).
Figure 7 illustrates the ROC curves of the six

future models with the graphs being very similar.
The corresponding AUC values are given in Table 5.
Figure 8 shows the jackknife of all future models
computed. Here, elevation (elev) is the most influen-
tial variable while the coldest quarter precipitation
(bio_19) is the most influential bioclimatic variable.
Figure 9 shows the result of MESS analysis of the
species for all future models. Figure 10 shows the
response of the species to the different bioclimatic
variables.

Table 5 Prediction accuracy of Swertia bimaculata distribution models

Present Year 2050 Year 2070

Comp. Uncor. RCP 2.6 RCP 4.5 RCP 8.5 RCP 2.6 RCP 4.5 RCP 8.5

AUC value 0.982 0.980 0.985 0.982 0.985 0.986 0.985 0.982

TSS value 0.783 0.645 0.714 0.728 0.638 0.689 0.733 0.796

Percentage of contribution Variable code BIO13 BIO18 BIO18 BIO18 BIO18 BIO18 BIO18 BIO18

Value 39.1% 40.2% 40.5% 41.2% 40.9% 40.8% 41.2% 43.3%

Permutation of importance Variable code BIO6 BIO15 ELEV ELEV ELEV ELEV ELEV ELEV

Value 53.3 26.4 50.8 42.3 49.5 39.6 48.9 45.3

Area in km2

(10th percentile training presence threshold)
451.89 869.48 84.03 238.38 48.88 3.43 147.49 0

Percentage of area
(10th percentile training presence threshold)

3.92% 7.55% 0.73% 2.07% 0.42% 0.03% 1.28% 0%

Highest probability of species occurrence 0.843 0.902 0.658 0.640 0.605 0.493 0.539 0.301

Fig. 3 Potential distribution of Swertia bimaculata under current climate: a complete and b uncorrelated models
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Discussion
The present study explores both the habitat assessment
of S. bimaculata and its spatial distribution in the
present and future climate change scenarios. Only 36 in-
dividual plants were recorded with abundance to fre-
quency ratio of 0.05 indicating random distribution in
the study area. Since the individual count of S. bimacu-
lata was observed to be low in number, the species was
modeled under the present and projected under the pre-
dicted future climate conditions in Darjeeling-Sikkim
Himalaya. The species most dominant in the habitat of
S. bimaculata were Melissa axillaris and a grass species
Oplismenus compositus.

As S. bimaculata is considered endangered by area of
occupancy in India (Bachman et al. 2011), the MaxEnt
algorithm was used to assess habitat suitability of S.
bimaculata using two different suites of environmental
variables. Such species distribution modeling is guided
by both spatial coordinates and ecological variables in
MaxEnt (Phillips and Dudík 2008). Preceding studies in-
volving species distribution modeling in India has ex-
plored medicinally significant species such as Berberis
aristata (Ray et al. 2011), Justicia adhatoda (Yang et al.
2013), and Brucea mollis (Borthakur et al. 2018); endan-
gered species such as Gymnocladus assamicus (Menon
et al. 2010), Ilex khasiana (Adhikari et al. 2012), and

Fig. 4 ROC curve of Swertia bimaculata under current climate: a complete and b uncorrelated
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Neottia cordata (Tsiftsis et al. 2019); invasive species
such as Hyptis suaveolens (Padalia et al. 2014); and the
bamboo Yushania maling (Srivastava et al. 2018) along
with tree species like Fagus sylvatica (Castaño-Santa-
maría et al. 2019). In the present study, all the models
had AUC values higher than 0.9. Similar AUC values are
reported for Vincetoxicum arnottianum (Khanum et al.
2013), Hyptis suaveolens (Padalia et al. 2014), Scutellaria
baicalensis (Zhang et al. 2016), and Oxytenanthera abys-
sinica (Gebrewahid et al. 2020). TSS value is an alterna-
tive measure of model performance (Allouche et al.
2006). The TSS values ranged from 0.6 to 0.8 for all
models, indicating that the models are not very robust.
The nine variables used in the uncorrelated model

were utilized for future climate change projections of
RCP 2.6, RCP 4.5, and RCP 8.5 for both the year 2050
and the year 2070. It should be noted that the threshold

used to calculate area was 10th percentile training pres-
ence, which removes areas with very low probability of
species occurrence. In RCP 8.5, no mitigation strategies
are applied, and the temperature is expected to rise to
2.0 °C above the pre-industrial level in the year 2050 and
3.7 °C in the year 2070 (IPCC 2014). In such a scenario,
suitable habitat disappears completely in the year 2070
(Table 5). In RCP 4.5, moderate mitigation strategies are
adopted, and the temperature increases to 1.4 °C in the
year 2050 and 1.8 °C in the year 2070 (IPCC 2014). The
percentage of area for the year 2050 is 2.07%, and in the
year 2070, the area is 1.28%. It is possible that due to
moderate mitigation, warming results in opening up of
previously colder regions. In RCP 2.6, all expected cli-
mate change alleviation goals have been fulfilled, and
temperature increases by 1.0°C above pre-industrial
levels in the year 2050 and does not further increase in

Fig. 5 Jackknife of regularized training gain for Swertia bimaculata under current climate: a complete model and b uncorrelated model

Boral and Moktan Ecological Processes           (2021) 10:26 Page 9 of 16



Fig. 6 Potential distribution of Swertia bimaculata under future climate: RCP 2.6, a year 2050 and b year 2070; RCP 4.5, c year 2050 and d year
2070; RCP 8.5, e year 2050 and f year 2070
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the year 2070 (IPCC 2014). The percentage of area in
2050 for RCP 2.6 is 0.73%, and it decreases to 0.03% in
the year 2070. The smaller increase of global
temperature may mean that areas of higher elevations
remain unsuitable while other bioclimatic variables are
influenced enough to decrease suitable habitat area.
Overall, a similar trend is observed across all three RCPs
wherein suitable habitat decreases with time. It was ob-
served that the largest area for the year 2050 and the
year 2070 was for RCP 4.5. This could be due to the
warming climate, which lets the species spread towards
higher altitudes, but more elevated temperatures of RCP
8.5 result in a restricted range for the species. Studies
conducted by Parolo and Rossi (2008) and Matteodo
et al. (2013) demonstrate that changing climate pushes
plants towards higher elevations and latitudes. Similarly,
S. bimaculata migrates northwards.
Overall, elevation had the most influence on species

distribution with it having the highest training gain
among all the variables both by itself and by its absence
regardless of the combination of variables used. In MESS

analysis of future models, the similarity of the future and
the current bioclimatic variables are compared. Dar-
ker areas show that future data is outside the range of
the current data. The species response curves demon-
strate the response of S. bimaculata to each variable,
particularly altitude (peaking at 2000 m AMSL),
temperature (between 18 and 34 °C) and precipitation.
Climate change therefore perceptibly affects the spatial
range of S. bimaculata in the future with the range first
decreasing in the year 2050 and then further declining in
the year 2070 (Remya et al. 2015).
Samaddar et al. (2013) reports the presence of high

concentrations of bioactive compounds such as swertia-
marin and amarogentin, which makes this species fur-
ther vulnerable to exploitation. The species of Swertia
are traditionally precious in this part of the Himalaya,
and S. chirayita, a critically endangered plant of the
Himalaya, has numerous medicinal properties including
anti-cancerous potential (Joshi and Dhawan 2005, Saha
et al. 2004). Yonzone (2017) reports the use of S. bima-
culata mainly as a substitute for S. chirayita. A

Fig. 7 ROC curve of Swertia bimaculata under future climate: RCP 2.6, a year 2050 and b year 2070; RCP 4.5, c year 2050 and d year 2070; RCP
8.5, e year 2050 and f year 2070
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decoction of either fresh or dried plant mass S. chirayita
is orally administered to treat common ailments. The
collection of S. chirayita has extensively reduced the
population of the species, and therefore, as its substitu-
ent, S. bimaculata, locally known as “Bhaley chirauto,” is
used widely in this part of the Himalaya. Thus, overhar-
vesting coupled with rapid urban development in the
Darjeeling-Sikkim Himalaya makes this species a vulner-
able one. Due to such activity, the population of S. bima-
culata has reduced extensively with sporadic distribution
and decline in population in natural vegetation. A de-
crease in the spatial range of a species increases the po-
tential risk of local extinction (Thomas et al. 2004).
Climate change is another hazard to this species as it
can lead to further shrinkage of the potential habitat.
Human-induced climate change is directly affecting the

biological species from genes to ecosystems (Hoffmann
et al. 2019). Active conservation efforts and management
strategies are utmost necessary at this point to preserve
the species in situ as the population of the species is
seemingly declining at an alarming rate.
While MaxEnt is an efficient tool for modeling endan-

gered species (Gebrewahid et al. 2020), the accuracy is
limited by the methodology and data applied during
modeling. For instance, the collection procedure of the
occurrence data alongside the low number of occurrence
points can make the modeling approach biased. Thus, it
is necessary to use correct and reliable habitat models to
reduce the biasness (Sobek-Swant et al. 2012). However,
the models generated in this study provide an insight to
the possible distribution of Swertia bimaculata in
present and future.

Fig. 8 Jackknife of regularized training gain of Swertia bimaculata under future climate: a RCP 2.6 in year 2050, b RCP 2.6 in year 2070, c RCP 4.5
in year 2050, d RCP 4.5 in year 2070, e RCP 8.5 in year 2050, and f RCP 8.5 in year 2070 using only the nine uncorrelated variables
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Fig. 9 MESS analysis of Swertia bimaculata under future climate: a RCP 2.6 in year 2050, b RCP 2.6 in year 2070, c RCP 4.5 in year 2050, d RCP 4.5
in year 2070, e RCP 8.5 in year 2050, and f RCP 8.5 in year 2070
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Conclusion
In the present study, the MaxEnt algorithm predicted
the presence of suitable habitat for S. bimaculata in both
present and future scenarios. With the changing climate
depending on the climate mitigation strategies, the
adopted area of suitable habitat for S. bimaculata con-
tinues to decrease. Coupled with its sporadic distribu-
tion, low population count, and its use in traditional
medicine, this species would require aggressive conser-
vation strategies in order to prevent its probable extinc-
tion in the future. Such conservation strategies would
require collaboration between the requisite government
agencies, forest departments, and research institutes in-
cluding active participation of the locals with a variety of
measures employed.
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