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Abstract

Introduction: The effects of nutrients on stream conditions within individual streams or small areas have been
studied extensively, but the same effects over a large region have rarely been examined due to the difficulty of
applying large-scale manipulative experiments. In this study, we estimated the causal effects of nutrients within the
Western United States on invertebrate richness, an important biological indicator of stream conditions, by using
observational data.

Methods: We used the generalized propensity score method to avoid the common problem of statistical inference
using observational data, i.e., correlation established based on observational data does not imply a causal relationship
because the effects of confounding factors are not properly separated.

Results: Our analysis showed a subsidy-stress relationship between nutrients and invertebrate taxon richness in the
whole Western United States and in its sub-ecoregions. The magnitude of the relationship varies among these sub-
ecoregions, suggesting a varying nitrogen effect on macroinvertebrates due, in large part, to the varying natural and
anthropogenic conditions from ecoregion to ecoregion. Furthermore, our analysis confirmed that causal estimation
results using regression can be sensitive to the imbalance of confounding factors.

Conclusions: Stratifying data into ecoregions with relatively homogeneous environmental conditions or adjusting data
by generalized propensity score can improve the balance of confounding factors, thereby allowing more reliable causal
inference of nutrient effects. Invertebrates respond to the same nutrient levels differently across different site conditions.

Keywords: Nutrient criteria, Water quality, Environmental management, Ecoregion

Introduction
Nutrients are essential for maintaining an ecosystem’s
structure and function. Knowledge of the effects of ex-
cessive nutrients on ecosystems is important for envir-
onmental management. In streams, increased nutrient
concentrations have altered biological structures and
functions such as species richness, composition, abun-
dance, and decomposition rate (Dodson et al. 2000;
Freeman et al. 2009; Smith et al. 1999; Gulis and
Suberkropp 2004; Rosemond et al. 1993). Excessive nu-
trients can also reduce water quality causing problems
for drinking water and can deplete dissolved oxygen,

leading to fish kills (USEPA 1996). For example, 40% of
rivers in the USA have been impaired primarily as a re-
sult of excessive nutrients (USEPA 1996).
Invertebrates occupy an important ecological niche in

streams, and their aggregated measures such as total
taxon richness are widely used for stream condition as-
sessments (Fore et al. 1996; Moss et al. 1987). However,
while a few key invertebrate taxon grazers have been ex-
amined in many field and laboratory studies, relatively
little work has been done to examine the effects of nutri-
ents on aggregate measures of invertebrate assemblages
(e.g., richness) (Yuan 2010; Cross et al. 2006; Quinn et
al. 1997). As a result, our current understanding of the
causal effects between increased nutrients and inverte-
brate richness (IR) is still limited.* Correspondence: yangzuta@msu.edu
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How responsively does the IR change with nutrients,
and does the causal relationship vary regionally? The
causal relationship details are necessary to inform man-
agement actions and provide proper measures. A causal
relationship is ideally quantified using manipulative ex-
periments where treatments are randomly applied to
replicated samples. This approach eliminates the effects
of confounding factors by adequately resolving the coun-
terfactual problem (Maldonado and Greenland 2002) in
a causal analysis. Such manipulative studies (e.g., Cross
et al. 2006; Gafner and Robinson 2007; Hart and
Robinson 1990; Slavik et al. 2004) have increased our
understanding of the effects of nutrients on streams but
were usually conducted in a very small area or single
whole stream/channel representing limited conditions.
As a result, it is difficult to draw general conclusions
from those studies for a region (e.g., the regional average
effect) for setting regional nutrient criteria. Applying
randomized experiments is difficult in the case of many
streams across a large landscape. An alternative ap-
proach to study regional average effect is to use observa-
tional data that have been collected from many streams
spanning different conditions/locations, which might
produce complemental knowledge to that what we have
gained from manipulative studies.
Observational data, by definition, are collected without

a random sampling mechanism with respect to the effect
of the variable of interest. When observational data are
used without properly addressing potential problems in-
duced by the non-random nature of the data collection
process (e.g., imbalance of factors other than the variable
of interest, i.e., confounding factors), results can be
biased (Qian and Harmel 2016). However, rare studies in
the ecological literature have addressed this problem of
confounding factors, which can lead to divergent results
of the same problem. For example, Clenaghan et al.
(1998) reported a positive association between nutrients
and benthic macroinvertebrates in one catchment in
Ireland; Heino et al. (2003) reported the same positive
association in a river in Finland; Bergfur et al. (2007)
found a negative correlation in streams of central
Sweden; Wang et al. (2007) demonstrated a negative as-
sociation in some wadeable streams in Wisconsin; and
Harding et al. (1999) and Niyogi et al. (2007) showed no
clear link between macroinvertebrates and nutrient con-
centrations in one river and in a suite of 21 streams of
southern New Zealand, respectively. These divergent re-
sults are expected, as these studies focused on local
streams and each stream may have different confound-
ing factors (e.g., watershed land use patterns, habitat
quality, and flow conditions). Because nutrient criteria
are usually developed for a large geographic region and
not for individual streams or at a local level, understand-
ing the regional (average) effects of nutrient enrichment

is necessary. In this study, we aim to evaluate the re-
gional average effects of nutrients on stream invertebrate
taxon richness in the Western United States and its indi-
vidual ecoregions from observational data.
An effect, or more specifically a causal effect, of a nu-

trient on invertebrate richness cannot be equated to the
correlation between the two variables when the data
used are observational data. In observational data, a
treatment (i.e., nitrogen concentrations) is “assigned” to
each site through some unknown and likely non-random
processes. The resulting data are not balanced with re-
spect to confounding factors. In other words, observed
values of a confounding factor cannot be the same for
streams with different observed treatment levels (nitro-
gen concentration). This imbalance often leads to a
biased estimate of the causal relationship. One statistical
approach to this problem is the use of propensity score
matching (Rosenbaum and Rubin 1983; Rubin 2006).
The propensity score matching approach was designed
for binary treatment variables. It has been used for
assessing the effectiveness of agricultural conservation
practices on nutrient loss (Qian and Harmel 2016). In
our study, the treatment variable, nitrogen concentra-
tion, is a continuous variable. We use the generalized
propensity score method (Hirano and Imbens 2004; Imai
and van Dyk 2004), which estimates the causal relation-
ship by averaging out the effects of known confounding
factors. The generalized propensity score for continuous
treatments is an extension of the well-established and
widely used propensity score methodology for binary
treatments (Rosenbaum and Rubin 1983) and multiva-
lued treatments (Rubin 2006).
Here, we used the generalized propensity score

method of Hirano and Imbens (2004). This method does
not presume any specific linear or nonlinear relationship
and allows for flexibility. Our specific questions were
“How does the invertebrate taxon richness change with
increased eutrophication in the Western United States,
and does this causal relationship vary by ecoregion?”
Answers to these questions can provide baseline scien-
tific information for nutrient criteria development.

Methods
Data
We used observational data collected by the USEPA at
wadeable stream reaches from 12 western US states
(Washington, Montana, North Dakota, South Dakota,
Wyoming, Idaho, Oregon, Nevada, Utah, California,
Colorado, and Arizona) during the summers of
2000–2002 (Fig. 1) (Stoddard et al. 2006). Randomness
was achieved through a probability-based sample design
under the Environmental Monitoring and Assessment
Program (EMAP) (Blair 2001). Extensive biological,
physical, chemical, and landscape-scale measurements
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were collected at each sampled site (USEPA 2000), but
we only used those related to our study (Table 1). In
total, 670 randomly sampled stream sites that had a
complete observation of these variables were included in
this study. We used total invertebrate taxon richness as
our response variable. Invertebrate richness (IR) was
measured as the total number of distinct invertebrate
taxa observed in each sample.
Nutrient conditions in these streams are represented

by total nitrogen (TN, in μg/L). It is used as the treat-
ment variable. Stream periphyton could either be

nitrogen (N) or phosphorus (P) limited, but both P and
N additions stimulate periphyton growth (Francoeur
2001; Elser et al. 2007). Total P is highly correlated with
TN in this dataset (Fig. 2a), and the stoichiometric ratio
of N:P in our dataset is mostly below the Redfield ratio
(Fig. 2b), suggesting N limitation. Therefore, we assumed
that both TP and TN influenced stream biota and that
TN concentrations can represent the effects of both nu-
trients across this wide range of streams in our study.
We considered 13 important covariates (variables

that co-varied with nutrient concentration) as major

Fig. 1 The sampled stream sites as well as their associated level I ecoregions defined by USEPA. Three subsets (strata) were extracted for analysis:
the Great Plains’ streams (blue points), the Northwestern Forested Mountains’ streams (red points), and the North American Deserts’ streams (green points)

Table 1 Covariates of total nitrogen (TN) included in the study and their correlation with log (TN) within all streams

Variable Description Units r

ELEV Elevation m − 0.18

Longitude Longitude Degree 0.57

Log(PRECIP) Annual precipitation in log scale mm − 0.58

Log(AREA) Catchment area in log scale km2 0.47

Log(CL) Cl− concentration in log scale μg/L 0.62

Log(HCO3) HCO3
− concentration in log scale μg/L 0.55

Log(SO4) SO4
−2 concentration in log scale μg/L 0.61

SED Sand and fine substrate in the stream (< 2 mm in diameter) μg/L 0.63

STRMTEMP Stream temperature Degree 0.49

Percent.AGT Percentage of catchment in agricultural land use μg/L 0.57

Percent.URB Percentage of catchment in urban land Percentage 0.30

Percent.Canopy Percentage of open canopy Percentage 0.47

Riparian.Disturb Riparian agricultural disturbance index Index 0.49

All correlation coefficients are statistically significant (p < 0.05)
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confounding factors of the TN-IR dose-response relation-
ship (Table 1). Covariates were identified by examining bi-
variate scatter plots and by investigating the correlation
between TN and each candidate variable. We used vari-
ables with statistically significant correlation with TN (p <
0.05). Methods of field collection and variable extraction
of the 13 covariates can be found in Yuan (2010) and
Stoddard et al. (2006). TN, precipitation, and other chem-
istry measurements (e.g., chloride ion) were highly skewed
and were thus log-transformed (base 10) prior to analysis
(Table 1).

Data stratification
When using data from regions where the average natural
conditions are systematically different, different TN-IR
dose-response models may be produced. We illustrated
this by stratifying the data into level I ecoregions of
North America (Omernik 1987) (Fig. 1). Our full dataset
fell into six different ecoregion categories. However, we
only included the three ecoregions (strata) that had a
sample size large enough to run our models. Stratum
one included streams in the Northwestern Forested
Mountains (n = 345), stratum two included all streams
within the Great Plains (n = 120), and stratum three in-
cluded all streams within the North American Deserts
(n = 99). These three ecoregions have different natural
conditions as well as different levels/types of human

activities (Table 2) and are thus good candidates to dem-
onstrate regional divergence.

An overview of statistical methods for causal inference
The fundamental concept in causal inference is the con-
cept of counterfactual, which requires that the responses
to treatment and control be measured from the same
subject (Maldonado and Greenland 2002). For example,
assessing the causal effect of TN ideally requires the
quantification of the IR increase/decrease due to the
only change in TN, which means that we have to com-
pare potential outcome IR observed at two different
levels of TN (e.g., 0.1 mg/L, 0.2 mg/L) under identical
conditions (e.g., the same site and the same moment) to
avoid any confounding factors. However, only one of the
two potential outcomes can be actually observed; there-
fore, it is the counterfactual. The statistical solution to
the counterfactual problem is Fisher’s randomized exper-
iments (Fisher 1966), such that the average effect of a
treatment can be quantified with a reasonable level of
confidence. The propensity score matching method of
Rosenbaum and Rubin (1983) is the most widely used
method for causal inference with a binary treatment for
observational data. The propensity score is defined as
the conditional probability of a subject receiving the
treatment given all observed covariates and is modeled
as a function of the observed covariates. Instead of
matching observed units either directly or by using a
nearest-neighbor method in multiple dimensions, this
propensity score makes matching possible in one dimen-
sion. Rosenbaum and Rubin (1983) proved that match-
ing and sub-classifying with propensity scores can
sufficiently remove bias due to confounding factors (see
Qian and Harmel (2016) for an example of environmen-
tal application). Hirano and Imbens (2004) and Imai and
van Dyk (2004) extended the propensity score method
to include a continuous treatment variable, which they
called a generalized propensity score (GPS). Like the
propensity score, a GPS is defined as the conditional
probability density function of the treatment given the
covariates:

r t; xð Þ ¼ f T jX tjxð Þ ð1Þ

where f is the probability density function and T is the
treatment set, X is the covariate(s), and t∈T and x∈X.
Under a weak unconfoundedness assumption (which im-
plies that all important confounding factors are included
in the model for deriving the propensity score), Hirano
and Imbens (2004) showed that the GPS is a balancing
score, which means that sample units with similar pro-
pensity scores have similar covariates independent of
treatment levels. Hence, grouping sampling units with
similar generalized propensity scores is an effective

Fig. 2 The correlation between total nitrogen and total phosphorus
at log scale (a) and the stoichiometric relationship (b)
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means of removing or reducing confounding effects
(Hirano and Imbens 2004; Imai and van Dyk 2004).

Implementation of the generalized propensity score
We implemented the generalized propensity score
method presented in Hirano and Imbens (2004) to both
the full dataset and the three strata. First, we used re-
gression to derive the probability distribution of the
treatment variable (log(TN)). This is a purely mathemat-
ical step. The distribution (f(t|x)) in Eq. (1) is usually de-
veloped using an empirical (e.g., linear regression)
model:

T ¼ Xβþ ε ð2Þ
where T represents the treatment (log(TN)), X repre-
sents the vector of covariates (Table 1), and ε is the re-
sidual term assumed to follow a normal distribution N
(0, σ). The regression coefficients and σ are estimated by
using maximum likelihood. After fitting the model, the
model’s residuals σ were used as a measure of how well
each observed log(TN) was predicted by the covariates.
Probability densities of these residuals are:

r T i;Xið Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ̂2

p exp −
1

2σ̂2 Ti−Xβ̂
� �2

� �
ð3Þ

The generalized propensity score for each observation
(i) is the probability density Ri = r(Ti, Xi) (i.e., the likeli-
hood of receiving treatment Ti, given observed covari-
ates Xi), which was used to account for the aggregated
effects of all the covariates in Eqs. (4) and (5). We

emphasize here that the generalized propensity score is
not the predicted treatment outcome, as in Eq. (2), but
instead was the probability density of the residuals of the
prediction, as in Eq. (3).
The second step is the estimation of the expectation of

the outcome IR conditional on the observed covariates
and treatment levels. For each observation, we have the
calculated generalized propensity score R that represents
the effects of all confounding factors and expect that the
response variable is a function of both the treatment and
confounding factors; therefore, we can use a polynomial
regression model to approximate the functional depend-
ency of IR on T and R:

E Y ijTi;Ri½ � ¼ a0 þ a1 � Ti þ a2 � T 2
i þ a3 � Ri

þ a4 � R2
i þ a5 � Ti � Ri ð4Þ

where E is the expectation operator. The parameters in
Eq. (4) are estimated by ordinary least squares. This
process is similar to conventional multiple regression
where the covariates are included as predictors. As a re-
sult, it is still too early to interpret the regression in
Eq. (4) as a causal effect (Hirano and Imbens 2004), be-
cause the conditional expectation of the outcomes is still
conditional on the observed covariates (e.g., represented
by GPS) which are different among all units, and a
causal interpretation should compare expected outcomes
with the same score but different treatment levels. One
approach is to divide samples into groups with similar
scores and then apply Eq. (4) to approach causal inter-
pretation by averaging the coefficients from the groups

Table 2 The mean and standard deviation of all confounding factors, the treatment log TN, and the response invertebrate richness
within all streams and within the three strata

Variable Means ± standard deviation

All streams Forested Mountains Great Plains North American Deserts

Log(TN) 2.33 ± 0.51 2.04 ± 0.35 2.95 ± 0.36 2.64 ± 0.38

Invertebrate richness 48.30 ± 15.15 55.19 ± 12.58 33.72 ± 11.76 40.03 ± 11.49

ELEV 1252.06 ± 722.10 1455.84 ± 688.03 783.80 ± 379.71 1701.97 ± 501.16

Longitude − 114.04 ± 7.55 − 166.85 ± 5.48 − 102.06 ± 3.16 − 113.58 ± 4.06

Log(PRECIP) − 0.31 ± 0.56 − 0.07 ± 0.49 − 0.81 ± 0.18 − 0.74 ± 0.27

Log(AREA) 4.07 ± 2.34 3.09 ± 1.68 6.77 ± 1.73 4.53 ± 2.56

Log(CL) 4.35 ± 1.85 3.05 ± 1.20 6.04 ± 1.21 5.28 ± 1.73

Log(HCO3) 7.34 ± 1.12 6.76 ± 1.06 8.44 ± 0.55 7.75 ± 0.77

Log(SO4) 5.48 ± 2.42 3.97 ± 1.52 8.70 ± 1.61 6.42 ± 1.90

SED 35.45 ± 30.35 1.82 ± 8.95 12.79 ± 32.54 4.85 ± 20.45

STRMTEMP 15.16 ± 5.55 12.39 ± 4.19 20.58 ± 5.02 16.08 ± 5.70

Percent.AGT 8.10 ± 21.28 0.58 ± 5.59 38.72 ± 33.44 2.90 ± 9.58

Percent.URB 0.17 ± 0.47 0.06 ± 0.22 0.33 ± 0.44 0.13 ± 0.47

Percent.Canopy 0.37 ± 0.38 0.23 ± 0.31 0.72 ± 0.32 0.59 ± 0.39

Riparian.Disturb 0.56 ± 0.64 0.36 ± 0.57 1.10 ± 0.53 1.03 ± 0.56
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(Imai and van Dyk 2004). Alternatively, Hirano and
Imbens (2004) suggested that the average dose-response
model could be estimated by integrating out the aggre-
gated confounding factor represented by Ri. Numerically,
we can approximate the integration by averaging equa-
tion over Ri evaluated at a series of treatment levels.
That is, for a given log(TN) concentration t, the average
treatment effect is:

u tð Þ ¼ Ê Y tð Þ½ �

¼ 1
N

XN

i¼1

ðâ0 þ â1 � t þ â2 � t2 þ â3 � r̂ t;Xið Þ

þâ4 � r̂ t;Xið Þ2 þ â5 � r̂ t;Xið Þ � tÞ

ð5Þ

where u(t) is the average potential outcome at treatment
level t, r̂ðt;XiÞ is calculated based on Eq. (3) (substitut-
ing Ti with t), and N is the sample size of the data, and
the parameters â0, â0, â0, â0, and â0 are estimated from
the second step using Eq. (4).

Verification of generalized propensity score
The generalized propensity score is a balancing score
(Hirano and Imbens 2004; Imai and van Dyk 2004) when
the model specification is appropriate. In other words,
when observations are grouped into subsets with similar
propensity scores, covariates within a subset should be
similar among different treatment levels when the model
used to derive the scores is appropriate. We use this ex-
pectation to verify the adequacy of the model specifica-
tion. Hirano and Imbens (2004) proposed the use of a
standardized difference to measure the balance in two
steps. First, data were grouped into a number of categor-
ies (e.g., three) based on log TN (the treatment), each
with roughly the same sample size. To show the balance
in a confounding factor, we compare the means of the
confounding factor among the three categories. The
comparison can be made using a standardized differ-
ence, the difference of the means in the two categories
divided by the standard error of the difference. The
standard difference is similar to the t statistics in a
two-sample t test. This comparison is first carried out
directly to the data without GPS adjustment to illustrate
the imbalance in the data. After calculating the propen-
sity scores, we then divide the data into subsets of simi-
lar propensity scores and repeat the process of
comparing confounding factors among three log TN cat-
egories within each relatively homogeneous subset of
data. That is, in the second step, the data were divided
into a number of subsets based on the calculated pro-
pensity scores (confounding factors are balanced within
each subset), and within each subset, we further divide
the data based on the treatment (log TN) to calculate
the standardized mean differences of each confounding

factor. The weighted averages of these standardized
mean differences are known as the GPS-adjusted mean
differences (Hirano and Imbens 2004). Weights of each
subset are determined by the subset sample sizes. When
the standardized differences of a confounding factor are
between − 2 and 2, we consider that the confounding
factor is balanced. Through comparing the change in the
standardized differences calculated from the two steps,
we can show the improvement in terms of confounding
factor balance due to propensity score.

Comparison with regression without propensity score
adjustment
We compared the dose-response estimation from the
generalized propensity score to conventional regression
models (without using propensity score adjustment). For
the entire dataset, the Forested Mountains stratum and
the North American Deserts stratum, we fitted general-
ized additive models (GAM) to compare with the gener-
alized propensity score because of the nonlinear subsidy
relationship. The selection of a smoothness parameter
impacts the result of GAM. We used the default
smoothness parameter in R package mgcv, which is
determined based on a cross-validation simulation for
optimal predictive features. The relationship was ap-
proximately linear for the Great Plains stratum. We thus
fitted the simple linear and multiple linear regressions
for comparison, which were then compared with the
dose-response function estimated by generalized propen-
sity score. 95% confidence zone of estimation from the
generalized propensity scores was computed from a
1000 times bootstrap analysis. The statistical software
used for all analyses was R version 3.24.

Results
Balancing check
The imbalance of confounding factors is shown by the
standardized differences of the means of these variables
among data groups with different log TN levels (Tables 3,
4, 5, and 6). The level of imbalance also varies by eco-
region. For example, data for the Great Plains stratum and
North American Deserts are roughly balanced without
generalized propensity score adjustments (Tables 5 and 6).
Adjusting data by GPS score apparently increased the bal-
ance of confounding factors, especially for the dataset as a
whole (Table 3).

Dose-response relationship
A subsidy-stress relationship was observed between
log(TN) and IR in the Western United States (Fig. 3a).
The total N concentrations in streams of the 12 states
covered a wide range of concentrations (log(TN) from
1.04 to 4.19, or TN from 11 to 15,625 μg/L). Across this
wide geographical region, nutrients first affected invertebrate
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richness positively and then gradually switched to a negative
effect, with a breaking point log TN at ca. 1.80 (63.09 μg/L)
(Fig. 3b).
One stream site with a low total N concentration and

the lowest invertebrate richness (Fig. 3a) seemed to be a
leveraging data point at the low end of the nitrogen gra-
dient. When the data point is removed, the result did
not change significantly (Fig. 4). Additionally, this
subsidy-stress relationship was not a result of the poly-
nomial model (Eq. (4)). Using a first order polynomial
instead of the second order polynomial as in Eq. (4)

resulted in a similar dose-response relationship, shown
in Fig. 3a.
For streams in the Northwestern Forested Mountains,

a subsidy-stress relationship was observed with an opti-
mal log(TN) similar to the same tipping point from the
model for the entire study area (Fig. 5a) but with higher
IR at the same nutrient level. For streams in the Great
Plains, nutrient levels were high in all streams due to
heavy agriculture. As a result, a monotonously negative
relationship was observed between nitrogen and inverte-
brate richness (Fig. 5b). A subsidy-stress relationship

Table 3 Standardized mean differences between one group and the other two combined, using the entire dataset

Variable Grouped by log TN (unadjusted) Adjusted by GPS

[1.17, 1.78] [1.78, 2.69] [2.69, 4.08] [1.17, 1.78] [1.78, 2.69] [2.69, 4.08]

ELEV − 1.33 6.88 6.68 0.32 2.40 1.57

Longitude − 7.78 − 7.07 − 15.73 − 1.94 0.51 − 1.79

Log(PRECIP) 12.06 2.98 13.20 0.79 − 0.07 2.61

Log(AREA) − 4.73 − 7.02 − 12.46 − 1.85 − 0.74 − 0.76

Log(CL) − 9.14 − 5.40 − 14.43 − 1.88 1.47 − 2.41

Log(HCO3) − 9.28 − 4.77 − 13.59 − 0.94 − 1.52 − 3.24

Log(SO4) − 7.74 − 8.00 − 17.23 − 0.76 − 0.63 − 4.16

SED − 6.67 − 8.77 − 17.24 − 1.76 − 0.36 − 2.33

STRMTEMP − 6.67 − 5.15 − 11.72 −0.64 0.26 − 1.32

Percent.AGT − 3.71 − 12.21 − 18.96 − 1.15 − 4.67 − 7.54

Percent.URB − 2.86 − 2.91 − 5.58 0.89 0.61 − 0.55

Percent.Canopy − 5.72 − 5.40 − 11.19 − 1.72 0.56 − 1.14

Riparian.Disturb − 8.04 − 3.88 − 11.15 1.11 0.60 − 1.85

The “Grouped by log TN” columns compare confounding factors in the three subsets divided by three continuous intervals of log TN (in brackets), each with
about 1/3 of the total samples. The “Adjusted by GPS” columns compare the confounding factors based on GPS in two steps: (1) data were divided based on GPS
into six groups and (2) data within each GPS group were further divided into three groups based on the same log TN brackets, and mean differences were calculated.
The sample size-weighted averages of these mean differences are shown

Table 4 Standardized mean differences between one group and the other two combined for the Forested Mountains ecoregion stratum

Variable Grouped by log TN (unadjusted) Adjusted for the GPS

[1.17, 1.60] [1.60, 2.44] [2.44, 3.74] [1.17, 1.60] [1.60, 2.44] [2.44, 3.74]

ELEV − 2.73 0.74 − 1.53 − 0.49 0.57 1.29

Longitude − 3.43 0.36 − 2.65 − 0.51 0.43 1.15

Log(PRECIP) 5.12 − 0.16 4.41 0.63 − 0.93 − 0.28

Log(AREA) − 1.56 0.24 − 1.12 0.44 − 0.72 0.89

Log(CL) − 2.81 − 3.42 − 7.35 − 1.01 − 0.95 − 3.39

Log(HCO3) − 3.62 − 0.69 − 4.22 − 0.64 − 1.09 − 0.29

Log(SO4) − 3.26 − 0.13 − 3.13 − 1.61 − 0.44 − 0.36

SED 0.54 − 1.61 − 1.56 − 0.06 − 1.34 0.03

STRMTEMP − 2.30 0.22 − 1.80 − 0.21 − 0.50 0.57

Percent.AGT − 0.60 − 1.90 − 2.98 − 0.23 0.34 − 5.56

Percent.URB − 0.74 − 2.21 − 3.53 0.26 − 0.16 − 6.47

Percent.Canopy − 1.41 − 2.37 − 4.40 − 0.99 − 0.14 − 1.32

Riparian.Disturb − 3.43 − 2.41 − 6.50 − 1.64 − 1.21 − 1.52

See Table 3 for explanations
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was also observed in North American Deserts but with a
different optimal N concentration (Fig. 5c). The same
negative relationship was present among different ecore-
gions when nutrient levels were high, suggesting that ni-
trogen is a stressor to invertebrates when at high
concentrations. Among the three ecoregions, streams in
the Great Plains had the lowest invertebrate richness
when at the same nutrient level; the streams in the
Northwestern Forested Mountains had the highest inver-
tebrate richness.

Comparison with direct regressions
At medium to very high N concentrations, the estima-
tion from GAM for the full set of streams was different

from the dose-response estimation by the generalized
propensity score (Fig. 4). However, among the three
sub-ecoregions, the difference between the direct regres-
sion and the generalized propensity score (Fig. 5) is
smaller than the difference shown in Fig. 4. In the
Northwestern Forested Mountains stratum, GAM had
fit a subsidy-stress relationship that was only slightly
outside the 95% confidence zone of the generalized pro-
pensity score estimation when within the middle ranges
of N concentration (Fig. 5a). For the North American
Deserts stratum, the GAM fit completely within the 95%
confidence zone of the generalized propensity score
(Fig. 5c). For the Great Plains stratum, the fitted lines
from both the simple and multiple linear regressions

Table 5 Standardized mean differences between one group and the other two combined for the Great Plains ecoregion

Grouped by log TN (unadjusted) Adjusted for the GPS

Variable [2.05, 2.56] [2.56, 3.19] [3.19, 4.08] [2.05, 2.56] [2.56, 3.19] [3.19, 4.08]

ELEV 7.45 − 1.37 − 9.02 1.85 0.30 0.91

Longitude − 5.37 − 0.05 − 3.92 − 1.65 0.98 − 2.14

Log(PRECIP) 3.15 − 2.94 − 0.87 2.08 − 2.17 − 1.39

Log(AREA) − 3.46 2.02 − 0.29 − 1.63 1.89 1.22

Log(CL) 0.63 − 1.31 − 0.96 0.69 − 1.48 − 1.42

Log(HCO3) − 4.67 1.04 − 2.13 − 1.55 0.19 − 0.98

Log(SO4) − 2.22 0.11 − 1.53 0.45 − 0.37 − 0.46

SED 0.07 − 2.21 − 2.41 2.38 − 1.41 − 2.08

STRMTEMP − 3.59 0.99 − 1.49 − 1.50 0.26 − 0.81

Percent.AGT − 4.05 − 0.78 − 3.98 − 0.52 − 1.13 − 1.87

Percent.URB 1.05 − 1.62 − 0.99 0.21 − 1.80 − 1.74

Percent.Canopy 0.16 0.20 0.35 − 0.14 0.39 1.05

Riparian.Disturb − 2.36 2.19 0.65 − 1.52 1.83 0.98

See Table 3 for explanations

Table 6 Standardized mean differences between one group and the other two combined for the North American ecoregion

Variable Unadjusted Adjusted for the GPS

[1.77, 2.35] [2.35, 2.69] [2.69, 3.80] [1.77, 2.35] [2.35, 2.69] [2.69, 3.80]

ELEV 1.24 − 1.95 − 0.71 0.74 − 2.57 0.14

Longitude 0.35 − 0.64 − 0.30 0.77 − 0.57 − 0.95

Log(PRECIP) 2.82 0.27 3.10 0.79 0.52 2.28

Log(AREA) − 1.23 2.17 0.93 − 0.62 1.99 1.95

Log(CL) − 3.75 1.30 − 2.23 − 2.35 1.53 − 1.89

Log(HCO3) − 0.65 − 0.71 − 1.37 1.08 − 1.05 − 0.89

Log(SO4) − 1.66 0.87 − 0.75 0.59 1.31 − 1.17

SED − 1.21 − 0.67 − 1.90 − 1.49 − 0.23 − 1.66

STRMTEMP − 2.69 2.35 − 0.27 − 2.03 1.71 1.38

Percent.AGT − 0.89 − 1.35 − 2.29 − 0.43 − 1.59 − 3.11

Percent.URB − 0.94 1.11 0.19 − 0.61 2.55 − 0.73

Percent.Canopy − 1.11 − 0.31 − 1.43 − 0.72 − 0.66 − 1.05

Riparian.Disturb − 1.02 0.22 − 0.79 0.72 0.57 0.56

See Table 3 caption for explanation
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closely followed the mean estimation of the generalized
propensity score (Fig. 5b).

Discussion
On average, benthic invertebrate richness in streams
within the 12 western states of the USA exhibits a
subsidy-stress relationship with total nitrogen. This re-
sult is consistent with the conclusion that a high level of
nutrient concentrations negatively affects invertebrate
richness in streams, a conclusion also found in manipu-
lative experiments and observational studies (Tilman
1987; Dodson et al. 2000; Haddad et al. 2000; Wang et
al. 2007). Yuan (2010) studied the same data from the
EPA by stratifying the data into different groups based
on predicted log(TN) concentrations from its covariates
instead of the propensity score. The six groups essen-
tially represent different N concentration ranges. Yuan’s
(2010) observed increases in TN were associated with

small increases in IR in the first three groups (low nutri-
ent levels) and a significantly negative correlation
between log TN and IR in the last three groups (high
nutrient levels), suggesting that there is a subsidy-stress
relationship. The average subsidy-stress relationship
found over a large region also explains why conflicting
results (e.g., no correlation, positive and negative associ-
ation) have been found in small areas. When streams in
a small area have limited nutrients, increases in nutri-
ents can lead to increase in periphyton biomass, which
can support a greater diversity of invertebrates (Chetelat
et al. 1999); therefore, only positive correlations could be
observed. On the other hand, when nutrients are exces-
sive in a stream, the diminished water quality and the
depleted oxygen caused by decomposition of periphyton
biomass will likely reduce IR (Correll 1998), leading to a
negative association between nutrients and IR.
Although the same subsidy-stress relationship was

found in the three ecoregions we studied, the variation
among regions is also obvious. At a similar nutrient
level, streams in different ecoregions have different ex-
pected IR (Fig. 5), as nutrient enrichment is only one of
the many factors that may influence the diversity of the
stream macroinvertebrate community (Wang et al. 2007;
Yuan 2010). The generalized propensity score produces
an average dose-response function that is controlled by
the average condition represented in the data. The three
strata in our study have different covariate mean values
(Table 2), representing differences in natural conditions
and anthropogenic activities; the differences in these
conditions and activities contribute to the variability in
both the observed nutrient concentrations and the
TN-IR relationship. For example, both local- and
catchment-scale disturbances can reduce stream macro-
invertebrate taxon richness (Ligeiro et al. 2013). The
Great Plains ecoregion has the highest percentage of
agricultural and urban areas and riparian disturbance.
This stratum thus has the lowest IR, even for streams at
comparable TN levels with streams in other strata. The
characteristics of flow regimes affected by precipitation
events are widely recognized as important variables in
determining the diversity and community composition
in streams (Resh et al. 1988; Poff et al. 1997). Different
precipitation patterns in the three ecoregions can pro-
duce totally different flow regimes (David 2006) that
may change the nutrient-IR relationship (Palardy and
Witman 2010). Higher temperatures in the North
American Deserts can also increase stream temperature,
changing sediments, and dissolved oxygen (Darren et al.
2013) which may increase the excessive nutrient stress
to IR (USEPA 1996). Similar effects of other covariates
on IR and nutrients may also occur.
The detrimental effects of excess nutrients require

controls on nutrient loadings to streams based on

Fig. 3 a The regional causal effects of total nitrogen on invertebrate
richness in the Western United States. The black solid line and the
black dashed lines are the mean estimations by generalized propensity
score of the TN-IR dose-response function and the corresponding 95%
confidence boundaries, respectively. The gray solid line is the estimation
by GAM. b The change rate (slope) of invertebrate richness at different
nitrogen levels
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nutrient effects (Dodds and Welch 2000). Our study
provides practical guidance on how to find a scientific-
ally defensible threshold value of TN (e.g., the breaking
point log (TN) in Fig. 3b) that will result in no detect-
able harmful effect on IR. If confounding effects were
not approximately controlled, the resulting biased esti-
mate of the causal effect would lead to a biased thresh-
old value. It is therefore important to have reliable
estimates of causal effects. The same approach and
principle can be applied to other pollutants and eco-
logical indicators. However, as varying natural and
anthropogenic conditions exist in different regions, nu-
trient effects are stream- or region-specific (Fig. 5). As a
result, nutrient thresholds for setting environmental
standards need to be region/area-specific to increase
their value for application. For example, a nationwide
nutrient threshold might be higher for some states/prov-
inces but lower for other states/provinces, and the same
problem can be extended to different counties within a
state/province. However, in practice, the sample size
may be limited when the area of targeted regions
becomes small, which may increase the uncertainty as-
sociated with dose-response estimation. The value of
larger-scale studies like the current study can be real-
ized under a Bayesian framework, where an informative
prior distribution of the TN effect can be derived
(Gelman and Hill 2007). This use of the Bayesian
approach is consistent with the interpretation of a
Bayesian prior distribution representing the among-site
variability (Qian et al. 2015). Local agencies can estab-
lish a process whereby they gradually update the
dose-response function when new region-specific data
are available. This Bayesian updating approach will
gradually move from the larger scale average

dose-response relationship towards a locally region-specific
dose-response relationship.
An important assumption of the generalized propen-

sity score approach is the “weak unconfoundedness” as-
sumption, which states that all important confounding
factors are included in the treatment assignment model
(i.e., Eqs. (3) and (4)). This assumption suggests that we
should collect as many covariates as possible when de-
signing an observational study to guard against missing
any important confounding factors. We have identified
and included all important confounders available from
the wadeable stream assessment dataset, which was cre-
ated by the EPA (Table 1). However, we may have missed
some potentially important confounding factors that
were not observed, such as site history and variability of
flow velocity. Nevertheless, we have controlled some of
the potential covariates and strengthened the estimation
of the nutrient’s causal effect on invertebrate richness.
Many unobserved confounding factors are likely to be
correlated with these observed covariates and are thus
partially controlled for as well.
When we started this study, we expected that the

dose-response relationship estimated by GPS would be
different from that estimated by linear regression and
GAM. The difference is indeed obvious when comparing
the two estimated dose-relationships using the entire
dataset (Fig. 4, top panel). However, the differences were
not obvious when we repeated the same modeling ap-
proaches in the three ecoregion-based strata. When
using the entire dataset, confounding factors are highly
imbalanced. This imbalance is shown in the large
(absolute value) standardized mean differences of all
confounding factors (Table 3). Such imbalances are,
however, not as pronounced in the data within the three

Fig. 4 Comparison between the estimated effects of total nitrogen on invertebrate richness based on the generalized propensity score with/without
the “outlier” stream site (the black point). The black solid line and the black dashed lines are the mean estimations and the corresponding 95%
confidence boundaries including the outlier, respectively. The gray line is the mean estimation excluding the outlier
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ecoregion-based strata (Tables 4, 5, and 6). As a result,
ecoregion-based dose-response relationships are relatively
similar, with or without GPS adjustment. This result high-
lights the regional differences in the dose-response
relationship, which suggests the value of region-specific
nutrient criteria.

Conclusions
The regional average of nutrient causal effects on stream
invertebrate richness was estimated using observational
data, with confounding effects controlled for using the
generalized propensity score. The aggregated confound-
ing effects were removed by integration through the

single propensity score. We found a subsidy-stress rela-
tionship between nutrients and invertebrate taxon rich-
ness across streams both in the Western United States
and its sub-regions. This same general pattern varies
among ecoregions due to the varying natural conditions
and anthropogenic activities. The variation demon-
strated that invertebrates respond to the same nutrient
levels differently across different conditions.
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