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Abstract

As cloud services expand, the need to improve the performance of data center infrastructure becomes more impor-
tant. High-performance computing, advanced networking solutions, and resource optimization strategies can help
data centers maintain the speed and efficiency necessary to provide high-quality cloud services. Running container-
ized applications is one such optimization strategy, offering benefits such as improved portability, enhanced secu-
rity, better resource utilization, faster deployment and scaling, and improved integration and interoperability. These
benefits can help organizations improve their application deployment and management, enabling them to respond
more quickly and effectively to dynamic business needs. Kubernetes is a container orchestration system designed to
automate the deployment, scaling, and management of containerized applications. One of its key features is the abil-
ity to schedule the deployment and execution of containers across a cluster of nodes using a scheduling algorithm.
This algorithm determines the best placement of containers on the available nodes in the cluster. In this paper, we
provide a comprehensive review of various scheduling algorithms in the context of Kubernetes. We characterize and
group them into four sub-categories: generic scheduling, multi-objective optimization-based scheduling, Al-focused
scheduling, and autoscaling enabled scheduling, and identify gaps and issues that require further research.

Keywords Cloud services, Data center infrastructure, Resource optimization, Containerized applications, Kubernetes,

Container orchestration, Scheduling algorithm

Introduction

Kubernetes is an open-source platform for automating
the deployment, scaling, and management of container-
ized applications. It allows developers to focus on build-
ing and deploying their applications without worrying
about the underlying infrastructure. Kubernetes uses a
declarative approach to managing applications, where
users specify desired application states, and the system
maintains them. It also provides robust tools for moni-
toring and managing applications, including self-healing
mechanisms for automatic failure detection and recovery.
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Overall, Kubernetes offers a powerful and flexible solu-
tion for managing containerized applications in produc-
tion environments.

Kubernetes is well-suited for microservice-based web
applications, where each component can be run in its
own container. Containers are lightweight and can be
easily created and destroyed, providing faster and more
efficient resource utilization than virtual machines, as
shown in Fig. 1. Kubernetes automates the deployment,
scaling, and management of containers across a cluster of
machines, making resource utilization more efficient and
flexible. This simplifies the process of building and main-
taining complex applications.

Microservice-based architecture involves dividing
an application into small, independent modules called
microservices, Fig. 2. Each microservice is responsible for
a specific aspect of the application, and they communicate
through a message bus. This architecture offers several
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benefits, such as the ability to automate deployment, scal-
ing, and management. Because each microservice is inde-
pendent and can be managed and updated separately, it is
easier to make changes without affecting the entire sys-
tem. Additionally, microservices can be written in differ-
ent languages and can run on different servers, providing
greater flexibility in the development process.

Kubernetes can quickly adapt to various types of
demand intensities. For example, if a web application
has few visitors at a given time, it can be scaled down
to a few pods using minimal resources to reduce costs.
However, if the application becomes extremely popular
and receives a large number of visitors simultaneously,
it can be scaled up to be serviced by a large number of
pods, making it capable of handling almost any level of
demand.

Kubernetes have been employed by many organiza-
tions in a diverse area of underlying applications and have
gained the trust of being the best option for the manage-
ment and deployment of containerized applications. In
terms of recent applications, Kubernetes are proving to
be an invaluable resource for IT infrastructure as they
provide a sustainable path towards serverless computing
that will result in easing up challenges in IT administra-
tion [1]. Serverless computing will provide end-to-end
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Fig. 1 Comparison between different types of applications deployments
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security enhancements but will also result in new infra-
structure and security challenges as discussed in [1].

As the computing paradigm moves towards edge and
fog computing, Kubernetes is proving to be a versatile
solution that provides seamless network management
between cloud and edge nodes [2—4]. Kubernetes face
multiple challenges when deployed in an IoT environ-
ment. These challenges range from optimizing network
traffic distribution [2], optimizing flow routing policies
[3], and edge device’s computational resources distribu-
tion [4].

As can be seen from the diverse range of applications,
and challenges associated with Kubernetes, it is impera-
tive to study proposed algorithms in the related area to
identify the state-of-the-art and future research direc-
tions. Numerous studies have focused on the devel-
opment of new algorithms for Kubernetes. The main
motivation for this survey is to provide a comprehensive
overview of the state-of-the-art in the field of Kuber-
netes scheduling algorithms. By reviewing the existing
literature and identifying the key theories, methods, and
findings from previous studies, we aim to provide a criti-
cal evaluation of the strengths and limitations of exist-
ing approaches. We also hope to identify gaps and open
questions in the existing literature, and to offer sugges-
tions for future research directions. Overall, our goal is
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to contribute to the advancement of knowledge in the
field and to provide a useful resource for researchers
and practitioners working with Kubernetes scheduling
algorithms.

To the best of authors’ knowledge, there are no
related surveys found that specifically address the topic
at hand. The surveys found are mostly targeted at the
container orchestration in general (including Kuber-
netes), such as [5-8]. These surveys address Kubernetes
breadthwise without targeting scheduling and diving
deep into it and some even did not focus on Kuber-
netes. For example, some concentrated on scheduling
in the cloud [9] and its associated concerns [10]. Others
targeted big data applications in data center networks
[11], or fog computing environments [12]. The authors
have found two closely related and well-organized sur-
veys [13] and [14] that targeted Kubernetes scheduling
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o

in depth. However, our work is different than these two
surveys in terms of taxonomy, i.e., they targeted dif-
ferent aspects and objectives in scheduling whereas
we categorized the literature into different four sub-
categories: generic scheduling, multi-objective opti-
mization-based scheduling, AI focused scheduling,
and autoscaling enabled scheduling. Thereby focusing
specifically on wide range of schemes related to multi-
objective optimization and Al in addition to the main
scheduling with autoscaling. Our categorization, we
believe, is more fine-grained and novel as compared to
the existing surveys.

In this paper, the literature has been divided into four
sub-categories: generic scheduling, multi-objective
optimization-based scheduling, Al-focused schedul-
ing, and autoscaling enabled scheduling. The literature
pertaining to each sub-category is analyzed and sum-
marized based on six parameters outlined in Literature
review section.
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Our main contributions are as follows:

+ A comprehensive review of the literature on Kuber-
netes scheduling algorithms targeting four sub-cat-
egories: generic scheduling, multi-objective opti-
mization-based scheduling, Al focused scheduling,
and autoscaling enabled scheduling.

« A critical evaluation of the strengths and limita-
tions of existing approaches.

+ Identification of gaps and open questions in the
existing literature.

The remainder of this paper is organized as follows:
In Search methodology section, we describe the method-
ology used to conduct the survey. In Literature review sec-
tion, we present the literature review along with results of
our survey, including a critical evaluation of the strengths
and limitations of existing approaches. A taxonomy of the
identified research papers based on the literature review
is presented as well. In Discussion, challenges & future
suggestions section, we discuss the implications of our
findings and suggest future research directions. Finally,
in Conclusions section, we summarize the key contribu-
tions of the survey and provide our conclusions.

Search methodology
This section presents our search methodology for identi-
fying relevant studies that are included in this review.

To identify relevant studies for our review, we con-
ducted a comprehensive search of the literature using
the following databases: IEEE, ACM, Elsevier, Springer,
and Google Scholar. We used the following search terms:
"Kubernetes," "scheduling algorithms," and "scheduling
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optimizing." We limited our search to studies published
in the last 5 years and written in English.

We initially identified a total of 124 studies from the
database searches, see Fig. 3. We then reviewed the
abstracts of these studies to identify those that were rel-
evant to our review. We excluded studies that did not
focus on Kubernetes scheduling algorithms, as well as
those that were not original research or review articles.
After this initial screening, we were left with 67 studies,
see Fig. 4.

We then reviewed the texts of the remaining studies to
determine their eligibility for inclusion in our review. We
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excluded studies that did not meet our inclusion criteria,
which were: (1) focus on optimizing Kubernetes sched-
uling algorithms, (2) provide original research or a criti-
cal evaluation of existing approaches, and (3) be written
in English and published in the last 5 years. After this
final screening, we included 47 studies in our review,
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see Fig. 4. A yearly distribution of papers can be seen in
Fig. 5.

We also searched the reference lists of the included
studies to identify any additional relevant studies that
were not captured in our database searches. We did not
identify any additional studies through this process.
Therefore, our review includes 47 studies on Kubernetes
scheduling algorithms published in the last 5 years. These
studies represent a diverse range of research methods,
including surveys, experiments, and simulations.

Literature review

This section has been organized into four sub-categories,
i.e,, generic scheduling, multi-objective optimization-
based scheduling, AI focused scheduling, and autoscaling
enabled scheduling. A distribution of analyzed research
papers in each category can be seen in Fig. 6. The litera-
ture in each sub-category is analyzed and then summa-
rized based on six parameters given below:

+ Objectives

+ Methodology/Algorithms
+ Experiments

+ Findings

+ Applications

+ Limitations

Scheduling in Kubernetes
The field of Kubernetes scheduling algorithms has
attracted significant attention from researchers and

Literature Review Statistics (Category)

B Scheduling Kubernetes

u Al-Focused Scheduling
Fig. 6 Detailed statistics for each category in terms of analyzed studies

® Multi-Objective Optimization
u Auto-Scaling Enabled Scheduling
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practitioners in recent years. A growing body of litera-
ture has explored the potential benefits and challenges
of using different scheduling algorithms to optimize the
performance of a Kubernetes cluster. In this section, we
present a review of the key theories, methods, and find-
ings from previous studies in this area.

One key theme in the literature is the need for effi-
cient effective scheduling of workloads in a Kubernetes
environment. Many studies have emphasized the limi-
tations of traditional scheduling approaches, which
often struggle to handle the complex and dynamic
nature of workloads in a Kubernetes cluster. As a
result, there has been increasing interest in the use of
advanced scheduling algorithms to enable efficient,
effective allocation of computing resources within the
cluster.

Another key theme in the literature is the potential
benefits of advanced scheduling algorithms for Kuber-
netes. Many studies have highlighted the potential
for these algorithms to improve resource utilization,
reduce latency, and enhance the overall performance
of the cluster. Additionally, advanced scheduling algo-
rithms have the potential to support the development
of new applications and services within the Kubernetes
environment, such as real-time analytics and machine
learning and deep learning, see Al Focused Scheduling
section.

Despite these potential benefits, the literature also
identifies several challenges and limitations of Kuber-
netes scheduling algorithms. One key challenge is the
need to address the evolving nature of workloads and
applications within the cluster. Therefore, various authors
focused on improving the autoscaling feature in Kuber-
netes scheduling to allow for automatic adjustment of the
resources allocated to pods based on the current demand,
more detailed discussion can be found in Autoscaling-
enabled Scheduling section. Other challenges include
the need to manage and coordinate multiple scheduling
algorithms, and to ensure the stability and performance
of the overall system.

Overall, the literature suggests that advanced sched-
uling algorithms offer a promising solution to the chal-
lenges posed by the complex and dynamic nature of
workloads in a Kubernetes cluster. However, further
research is needed to address the limitations and chal-
lenges of these algorithms, and to explore their potential
applications and benefits.

In Santos et al. [15], for deployments in smart cit-
ies, the authors suggest a network-aware scheduling
method for container-based apps. Their strategy is
put into practice as an addition to Kubernetes’ built-
in default scheduling system, which is an open-source
orchestrator for the automatic management and
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deployment of micro-services. By utilizing container-
based smart city apps, the authors assess the suggested
scheduling approach’s performance and contrast it
with that of Kubernetes’ built-in default scheduling
mechanism. Compared to the default technique, they
discovered that the suggested solution reduces net-
work latency by almost 80%.

In Chung et al. [16], the authors propose a new cluster
scheduler called Stratus that is specialized for orchestrat-
ing batch job execution on virtual clusters in public Infra-
structure-as-a-Service (IaaS) platforms. Stratus focuses
on minimizing dollar costs by aggressively packing tasks
onto machines based on runtime estimates, i.e., to save
money, the allocated resources will be made either mostly
full or empty so that they may then be released. Using the
workload traces from TwoSigma and Google, the authors
evaluate Stratus and establish that the proposed Stratus
reduces cost by 17-44% compared to the benchmarks of
virtual cluster scheduling.

In Le et al. [17], the authors propose a new schedul-
ing algorithm called AlloX for optimizing job per-
formance in shared clusters that use interchangeable
resources such as CPUs, GPUs, and other accelerators.
AlloX transforms the scheduling problem into a min-
cost bipartite matching problem and provides dynamic
fair allocation over time. The authors demonstrate theo-
retically and empirically that AlloX performs better than
existing solutions in the presence of interchangeable
resources, and they show that it can reduce the average
job completion time significantly while providing fair-
ness and preventing starvation.

In Zhong et al. [18], the authors propose a heterogene-
ous task allocation strategy for cost-efficient container
orchestration in Kubernetes-based cloud computing
infrastructures with elastic compute resources. The pro-
posed strategy has three main features: support for het-
erogeneous job configurations, cluster size adjustment
through autoscaling algorithms, and a rescheduling
mechanism to shut down underutilized VM instances
and reallocate relevant jobs without losing task progress.
The authors evaluate their approach using the Austral-
ian National Cloud Infrastructure (Nectar) and show that
it can reduce overall cost by 23-32% compared to the
default Kubernetes framework.

In Thinakaran et al. [19], to create Kube-Knots, the
authors combine their proposed GPU-aware resource
orchestration layer, Knots, with the Kubernetes container
orchestrator. Through dynamic container orchestration,
Kube-Knots dynamically harvests unused computing
cycles, enabling the co-location of batch and latency-
critical applications and increasing overall resource uti-
lization. The authors demonstrate that the proposed
scheduling strategies increase average and 99th percentile
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cluster-wide GPU usage by up to 80% in the case of HPC
workloads when used to plan datacenter-scale workloads
using Kube-Knots on a ten-node GPU cluster. In addi-
tion, the suggested schedulers reduce energy consump-
tion throughout the cluster by an average of 33% for three
separate workloads and increase the average task com-
pletion times of deep learning workloads by up to 36%
when compared to modern schedulers.

In Townend et al. [20], the authors propose a holis-
tic scheduling system for Kubernetes that replaces the
default scheduler and considers both software and
hardware models to improve data center efficiency. The
authors claim that by introducing hardware modeling
into a software-based solution, an intelligent scheduler
can make significant improvements in data center effi-
ciency. In their initial deployment, the authors observed
power consumption reductions of 10—20%.

In the work by Menouer [21], the author describes the
KCSS, a brand-new Kubernetes container scheduling
strategy. The purpose of KCSS is to increase performance
in terms of makespan and power consumption by sched-
uling user-submitted containers as efficiently as possi-
ble. For each freshly submitted container, KCSS chooses
the best node based on a number of factors linked to the
cloud infrastructure and the user’s requirements using
a multi-criteria decision analysis technique. The author
uses the Go programming language to create KCSS and
shows how it works better than alternative container
scheduling methods in a variety of situations.

In Song et al. [22], authors present a topology-based
GPU scheduling framework for Kubernetes. The frame-
work is based on the traditional Kubernetes GPU sched-
uling algorithm, but introduces the concept of a GPU
cluster topology, which is restored in a GPU cluster
resource access cost tree. This allows for more efficient
scheduling of different GPU resource application scenar-
ios. The proposed framework has been used in the pro-
duction practice of Tencent and has reportedly improved
the resource utilization of GPU clusters by about 10%.

In Ogbuachi et al. [23], the authors propose an
improved design for Kubernetes scheduling that takes
into account physical, operational, and network param-
eters in addition to software states in order to enable
better orchestration and management of edge comput-
ing applications. They compare the proposed design to
the default Kubernetes scheduler and show that it offers
improved fault tolerance and dynamic orchestration
capabilities.

In the work by Beltre et al. [24], utilizing fairness meas-
ures including dominant resource fairness, resource
demand, and average waiting time, the authors outline a
scheduling policy for Kubernetes clusters. KubeSphere,
a policy-driven meta-scheduler created by the authors,
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enables tasks to be scheduled according to each user’s
overall resource requirements and current consumption.
The proposed policy increased fairness in a multi-tenant
cluster, according to experimental findings.

In Haja et al. [25], the authors propose a custom Kuber-
netes scheduler that takes into account delay constraints
and edge reliability when making scheduling decisions.
The authors argue that this type of scheduler is neces-
sary for edge infrastructure, where applications are often
delay-sensitive, and the infrastructure is prone to failures.
The authors demonstrate their Kubernetes extension and
release the solution as open source.

In Wojciechowski et al. [26], the authors propose a
unique method for scheduling Kubernetes pods that
makes advantage of dynamic network measurements
gathered by Istio Service Mesh. According to the
authors, this approach can fully automate saving up to
50% of inter-node bandwidth and up to 37% of applica-
tion response time, which is crucial for the adoption of
Kubernetes in 5G use cases.

In Cai et al. [27], the authors propose a feedback con-
trol method for elastic container provisioning in Kuber-
netes-based systems. The method uses a combination
of a varying-processing-rate queuing model and a linear
model to improve the accuracy of output errors. The
authors compare their approach with several existing
algorithms on a real Kubernetes cluster and find that it
obtains the lowest percentage of service level agreement
(SLA) violation and the second lowest cost.

In Ahmed et al. [28], the deployment of Docker con-
tainers in a heterogeneous cluster with CPU and GPU
resources can be managed via the authors’ dynamic
scheduling framework for Kubernetes. The Kubernetes
Pod timeline and previous data about the execution of
the containers are taken into account by the platform,
known as KubCG, to optimize the deployment of new
containers. The time it took to complete jobs might be
cut by up to 64% using KubCG, according to the studies
the authors conducted to validate their algorithm.

In Ungureanu et al. [29], the authors propose a hybrid
shared-state scheduling framework for Kubernetes
that combines the advantages of centralized and dis-
tributed scheduling. The framework uses distributed
scheduling agents to delegate most tasks, and a sched-
uling correction function to process unprioritized and
unscheduled tasks. Based on the entire cluster state
the scheduling decisions are made, which are then syn-
chronized and updated by the master-state agent. The
authors performed experiments to test the behavior of
their proposed scheduler and found that it performed
well in different scenarios, including failover and recov-
ery. They also found that other centralized scheduling
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frameworks may not perform well in situations like col-
location interference or priority preemption.

In Yang et al. [30], the authors present the design and
implementation of KubeHICE, a performance-aware
container orchestrator for heterogeneous-ISA archi-
tectures in cloud-edge platforms. KubeHICE extends
Kubernetes with two functional approaches, AIM
(Automatic Instruction Set Architecture Matching) and
PAS (Performance-Aware Scheduling), to handle heter-
ogeneous ISA and schedule containers according to the
computing capabilities of cluster nodes. The authors
performed experiments to evaluate KubeHICE and
found that it added no additional overhead to container
orchestration and was effective in performance estima-
tion and resource scheduling. They also demonstrated
the advantages of KubeHICE in several real-world sce-
narios, showing for example a 40% increase in CPU uti-
lization when eliminating heterogeneity.

In Li et al. [31], the authors propose two dynamic
scheduling  algorithms, Balanced-Disk-1O-Priority
(BDI) and Balanced-CPU-Disk-IO-Priority (BCDI), to
address the issue of Kubernetes’ scheduler not taking
the disk I/O load of nodes into account. BDI is designed
to improve the disk I/O balance between nodes, while
BCDI is designed to solve the issue of load imbalance
of CPU and disk I/O on a single node. The authors per-
form experiments to evaluate the algorithms and find
that they are more effective than the Kubernetes default
scheduling algorithms.

In Fan et al. [32], the authors propose an algorithm
for optimizing the scheduling of pods in the Serverless
framework on the Kubernetes platform. The authors
argue that the default Kubernetes scheduler, which oper-
ates on a pod-by-pod basis, is not well-suited for the
rapid deployment and running of pods in the Serverless
framework. To address this issue, the authors propose
an algorithm that uses simultaneous scheduling of pods
to improve the efficiency of resource scheduling in the
Serverless framework. Through preliminary testing, the
authors found that their algorithm was able to greatly
reduce the delay in pod startup while maintaining a bal-
anced use of node resources.

In Bestari et al. [33], the authors propose a sched-
uler for distributed deep learning training in Kubeflow
that combines features from existing works, including
autoscaling and gang scheduling. The proposed sched-
uler includes modifications to increase the efficiency of
the training process, and weights are used to determine
the priority of jobs. The authors evaluate the proposed
scheduler using a set of Tensorflow jobs and find that it
improves training speed by over 26% compared to the
default Kubernetes scheduler.
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In Dua et al. [34], the authors present an alternative
algorithm for load balancing in distributed computing
environments. The algorithm uses task migration to bal-
ance the workload among processors of different capa-
bilities and configurations. The authors define labels to
classify tasks into different categories and configure clus-
ters dedicated to specific types of tasks.

The above-mentioned schemes are summarized in
Table 1.

Scheduling using multi-objective optimization
Multi-objective optimization scheduling takes into
account multiple objectives or criteria when deciding
how to allocate resources and schedule containers on
nodes in the cluster. This approach is particularly useful
in complex distributed systems where there are multiple
competing objectives that need to be balanced to achieve
the best overall performance. In a multi-objective opti-
mization scheduling approach, the scheduler considers
multiple objectives simultaneously, such as minimizing
response time, maximizing resource utilization, and
reducing energy consumption. The scheduler uses opti-
mization algorithms to find the optimal solution that bal-
ances these objectives.

Multi-objective optimization scheduling can help
improve the overall performance and efficiency of Kuber-
netes clusters by taking into account multiple objectives
when allocating resources and scheduling containers.
This approach can result in better resource utilization,
improved application performance, reduced energy con-
sumption, and lower costs.

Some examples of multi-objective optimization sched-
uling algorithms used in Kubernetes include genetic
algorithms, Ant Colony Optimization, and particle
swarm optimization. These algorithms can help optimize
different objectives, such as response time, resource utili-
zation, energy consumption, and other factors, to achieve
the best overall performance and efficiency in the Kuber-
netes cluster.

In this section, multi-objective scheduling proposals
are discussed.

In Kaur et al. [35], the authors propose a new controller
for managing containers on edge-cloud nodes in Indus-
trial Internet of Things (IIoT) systems. The controller,
called Kubernetes-based energy and interference driven
scheduler (KEIDS), is based on Google Kubernetes and is
designed to minimize energy utilization and interference
in IIoT systems. KEIDS uses integer linear programming
to formulate the task scheduling problem as a multi-
objective optimization problem, taking into account
factors such as energy consumption, carbon emissions,
and interference from other applications. The authors
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evaluate KEIDS using real-time data from Google com-
pute clusters and find that it outperforms existing state-
of-the-art schemes.

In Lin et al. [36], the authors propose a multi-objective
optimization model for container-based microservice
scheduling in cloud architectures. They present an ant
colony algorithm for solving the scheduling problem,
which takes into account factors such as computing and
storage resource utilization, the number of microser-
vice requests, and the failure rate of physical nodes. The
authors evaluate the proposed algorithm using experi-
ments and compare its performance to other related algo-
rithms. They find that the proposed algorithm achieves
better results in terms of cluster service reliability, cluster
load balancing, and network transmission overhead.

In Wei-guo et al. [37], the authors propose an improved
scheduling algorithm for Kubernetes by combining ant
colony optimization and particle swarm optimization
to better balance task assignments and reduce resource
costs. The authors implemented the algorithm in Java
and tested it using the CloudSim tool, showing that it
outperformed the original scheduling algorithm.

In the work by Oleghe [38], the idea of container place-
ment and migration in edge servers, as well as the sched-
uling models created for this purpose, are discussed by
the author. The majority of scheduling models, according
to the author, are based mostly on heuristic algorithms
and use multi-objective optimization models or graph
network models. The study also points out the lack of
studies on container scheduling models that take dis-
persed edge computing activities into account and pre-
dicts that future studies in this field will concentrate on
scheduling containers for mobile edge nodes.

In Carvalho et al. [39], The authors offer an addition
to the Kubernetes scheduler that uses Quality of Expe-
rience (QoE) measurements to help cloud management
Service Level Objectives (SLOs) be more accurate. In the
context of video streaming services that are co-located
with other services, the authors assess the suggested
architecture using the QoE metric from the ITU P.1203
standard. According to the findings, resource reschedul-
ing increases average QoE by 135% while the proposed
scheduler increases it by 50% when compared to other
schedulers.

The above-mentioned schemes are summarized in
Table 2.

Al focused scheduling

Many large companies have recently started to pro-
vide AI based services. For this purpose, they have
installed machine/deep learning clusters composed of
tens to thousands of CPUs and GPUs for training their

Page 13 of 26

deep learning models in a distributed manner. Different
machine learning frameworks are used such as MXNet
[40], TensorFlow [41], and Petuum [42]. Training a deep
learning model is usually very resource hungry and time
consuming. In such a setting, efficient scheduling is cru-
cial in order to fully utilize the expensive deep learning
cluster and expedite the model training process. Different
strategies have been used to schedule tasks in this arena,
for examples, general purpose schedulers are customized
to tackle distributed deep learning tasks, example include
[43] and [44]; however, they statically allocate resources
and do not adjust resource under different load condi-
tions which lead to poor resource utilization. Others
proposed dynamic allocation of resources after carefully
analyzing the workloads, examples include [45] and [46].

In this section, deep learning focused schedulers are
surveyed.

In Peng et al. [46], the authors propose a customized
job scheduler for deep learning clusters called Optimus.
The goal of Optimus is to minimize the time required for
deep learning training jobs, which are resource-intensive
and time-consuming. Optimus employs performance
models to precisely estimate training speed as a func-
tion of resource allocation and online fitting to antici-
pate model convergence during training. These models
inform how Optimus dynamically organizes tasks and
distributes resources to reduce job completion time. The
authors put Optimus into practice on a deep learning
cluster and evaluate its efficiency in comparison to other
cluster schedulers. They discover that Optimus beats
conventional schedulers in terms of job completion time
and makespan by roughly 139% and 63%, respectively.

In Mao et al. [47], the authors propose using modern
machine learning techniques to develop highly efficient
policies for scheduling data processing jobs on distrib-
uted compute clusters. They present their system, called
Decima, which uses reinforcement learning (RL) and
neural networks to learn workload-specific scheduling
algorithms. Decima is designed to be scalable and able
to handle complex job dependency graphs. The authors
report that their prototype integration with Spark on a
25-node cluster improved average job completion time
by at least 21% over existing hand-tuned scheduling heu-
ristics, with up to 2Ximprovement during periods of
high cluster load.

In Chaudhary et al. [48], a distributed fair share sched-
uler for GPU clusters used for deep learning train-
ing termed as Gandivafair is presented by the authors.
This GPU cluster utilization system offers performance
isolation between users and is created to strike a balance
between the competing demands of justice and efficiency.
In spite of cluster heterogeneity, Gandivafair is the first
scheduler to fairly distribute GPU time among all active
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users. The authors demonstrate that Gandivafair deliv-
ers both fairness and efficiency under realistic multi-user
workloads by evaluating it using a prototype implemen-
tation on a heterogeneous 200-GPU cluster.

In Fu et al. [49], the authors propose a new container
placement scheme called ProCon for scheduling jobs in a
Kubernetes cluster. ProCon uses an estimation of future
resource usage to balance resource contentions across the
cluster and reduce the completion time and makespan of
jobs. The authors demonstrate through experiments that
ProCon decreases completion time by up to 53.3% for a
specific job and enhances general performance by 23.0%.
In addition, ProCon shows a makespan improvement of
up to 37.4% in comparison to Kubernetes’ built-in default
scheduler.

In Peng et al. [50], the authors propose DL2, a deep
learning-based scheduler for deep learning clusters that
aims to improve global training job expedition by dynam-
ically resizing resources allocated to jobs. The authors
implement DL2 on Kubernetes and evaluate its perfor-
mance against a fairness scheduler and an expert heuris-
tic scheduler. The results show that DL2 outperforms the
other schedulers in terms of average job completion time.

In Mao et al. [51], the authors propose a new con-
tainer scheduler called SpeCon optimized for short-
lived deep learning applications. SpeCon is designed to
improve resource utilization and job completion times
in a Kubernetes cluster by analyzing the progress of deep
learning training processes and speculatively migrat-
ing slow-growing models to release resources for faster-
growing ones. The authors conduct experiments that
demonstrate that SpeCon improves individual job com-
pletion times by up to 41.5%, improves system-wide per-
formance by 14.8%, and reduces makespan by 24.7%.

In Huang et al. [52], for scheduling independent batch
jobs across many federated cloud computing clusters, the
authors suggest a deep reinforcement learning-based job
scheduler dubbed RLSK. The authors put RLSK into use
on Kubernetes and tested its performance through simu-
lations, demonstrating that it can outperform conven-
tional scheduling methods.

The work by Wang et al. [53] describes MLES, a fea-
ture-based task scheduling system for machine learning
clusters that can conduct both data- and model-parallel
processes. To determine task priority for work queue
ordering, MLES uses a heuristic scheduling method. The
data from this method is then used to train a deep rein-
forcement learning model for job scheduling. In com-
parison to existing work schedules, the proposed system
is shown to reduce job completion time by up to 53%,
makespan by up to 52%, and increase accuracy by up to
64%. The system is tested using real experiments and
large-scale simulations based on real traces.

Page 15 of 26

In Han et al. [54], the authors present KaiS, an edge-
cloud Kubernetes scheduling framework based on learn-
ing. KaiS models system state data using graph neural
networks and a coordinated multi-agent actor-critic
method for decentralized request dispatch. Research
indicates that when compared to baselines, KaiS can
increase average system throughput rate by 14.3% and
decrease scheduling cost by 34.7%.

In Casquero et al. [55], the Kubernetes orchestrator’s
scheduling task is distributed among processing nodes
by the authors’ proposed custom scheduler, which makes
use of a Multi-Agent System (MAS). According to the
authors, this method is quicker than the centralized
scheduling strategy employed by the default Kubernetes
scheduler.

In Yang et al. [56], the authors propose a method for
optimizing Kubernetes’ container scheduling algorithm
by combining the grey system theory with the LSTM
(Long Short-Term Memory) neural network prediction
method. They perform experiments to evaluate their
approach and find that it can reduce the resource frag-
mentation problem of working nodes in the cluster and
increase the utilization of cluster resources.

In Zhang et al. [57], a highly scalable cluster scheduling
system for Kubernetes, termed as Zeus, is proposed by
the authors. The main feature of Zeus is that based on the
actual server utilization it schedules the best-effort jobs.
It has the ability to adaptively divide resources between
workloads of two different classes. Zeus is meant to
enable the safe colocation of best-effort processes and
latency-sensitive services. The authors test Zeus in a real-
world setting and discover that it can raise average CPU
utilization from 15 to 60% without violating Service Level
Objectives (SLOs).

In Liu et al. [58], the authors suggest a scheduling strat-
egy for deep learning tasks on Kubernetes that takes
into account the tasks’ resource usage characteristics.
To increase task execution efficiency and load balancing,
the suggested paradigm, dubbed FBSM, has modules for
a GPU sniffer and a balance-aware scheduler. The execu-
tion of deep learning tasks is sped up by the suggested
system, known as KubFBS, according to the authors’
evaluation, which also reveals improved load balancing
capabilities for the cluster.

In Rahali et al. [59], the authors propose a solution for
resource allocation in a Kubernetes infrastructure host-
ing network service. The proposed solution aims to avoid
resource shortages and protect the most critical func-
tions. The authors use a statistical approach to model and
solve the problem, given the random nature of the treated
information.

The above-mentioned schemes are summarized in
Table 3.
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Autoscaling-enabled scheduling

Autoscaling is an important feature in Kubernetes
scheduling because it allows for automatic adjustment
of the resources allocated to pods based on the current
demand. It allows efficient resource utilization, improved
performance, cost savings, and high availability of the
application. Auto rescaling and scheduling are related in
that auto rescaling can be used to ensure that there are
always enough resources available to handle the tasks
that are scheduled. For example, if the scheduler assigns
a new task to a worker node, but that node does not have
enough resources to execute the task, the auto scaler can
add more resources to that node or spin up a new node to
handle the task. In this way, auto rescaling and schedul-
ing work together to ensure that a distributed system is
able to handle changing workloads and optimize resource
utilization. Some of the schemes related to this category
are surveyed below.

In Taherizadeh et al. [60], the authors propose a new
dynamic multi-level (DM) autoscaling method for con-
tainer-based cloud applications. The DM method uses
both infrastructure- and application-level monitor-
ing data to determine when to scale up or down, and its
thresholds are dynamically adjusted based on workload
conditions. The authors compare the performance of
the DM method to seven existing autoscaling methods
using synthetic and real-world workloads. They find that
the DM method has better overall performance than the
other methods, particularly in terms of response time
and the number of instantiated containers. SWITCH
system was used to implement the DM method for time-
critical cloud applications.

In Rattihalli et al. [61], the authors propose a new
resource management system called RUBAS that can
dynamically adjust the allocation of containers running
in a Kubernetes cluster. RUBAS incorporates container
migration to improve upon the Kubernetes Vertical Pod
Autoscaler (VPA) system non-disruptively. The authors
evaluate RUBAS using multiple scientific benchmarks
and compare its performance to Kubernetes VPA. They
find that RUBAS improves CPU and memory utilization
by 10% and reduces runtime by 15% with an overhead for
each application ranging from 5-20%.

In Toka et al. [62], the authors present a Kubernetes
scaling engine that uses machine learning forecast meth-
ods to make better autoscaling decisions for cloud-based
applications. The engine’s short-term evaluation loop
allows it to adapt to changing request dynamics, and
the authors introduce a compact management param-
eter for cloud tenants to easily set their desired level of
resource over-provisioning vs. service level agreement
(SLA) violations. The proposed engine is evaluated in
simulations and with measurements on Web trace data,
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and the results show that it results in fewer lost requests
and slightly more provisioned resources compared to the
default Kubernetes baseline.

In Balla et al. [63], the authors propose an adaptive
autoscaler called Libra, which automatically detects the
optimal resource set for a single pod and manages the
horizontal scaling process. Libra is also able to adapt the
resource definition for the pod and adjust the horizontal
scaling process if the load or underlying virtualized envi-
ronment changes. The authors evaluate Libra in simula-
tions and show that it can reduce the average CPU and
memory utilization by up to 48% and 39%, respectively,
compared to the default Kubernetes autoscaler.

In another work by Toka et al. [64], the authors propose
a Kubernetes scaling engine that uses multiple Al-based
forecast methods to make autoscaling decisions that
are better suited to handle the variability of incoming
requests. The authors also introduce a compact manage-
ment parameter to help application providers easily set
their desired resource over-provisioning and SLA viola-
tion trade-off. The proposed engine is evaluated in simu-
lations and with measurements on web traces, showing
improved fitting of provisioned resources to service
demand.

In Wu et al., the authors propose a new active Kuber-
netes auto scaling device based on prediction of pod rep-
licas. They demonstrate that their proposed autoscaler
has a faster response speed compared to existing scaling
strategies in Kubernetes.

In Wang et al. [65] the authors propose an improved
automatic scaling scheme for Kubernetes that combines
the advantages of different types of nodes in the scaling
process. They found that their scheme improves the per-
formance of the system under rapid load pressure and
reduces instability within running clusters compared to
the default auto scaler.

In Kang et al. [66], the authors propose a method for
improving the reliability of virtual networks by using
optimization models and heuristic algorithms to allocate
virtual network functions (VNFs) to suitable locations.
The authors also develop function scheduler plugins for
the Kubernetes system, which allows for the automatic
deployment and management of containerized applica-
tions. The proposed method is demonstrated to be effec-
tive in allocating functions and running service functions
correctly. This work was published in the 2021 edition of
the IEEE Conference on Decision and Control.

In Vu et al. [67], propose a hybrid autoscaling method
for containerized applications that combines vertical and
horizontal scaling capabilities to optimize resource utili-
zation and ensure quality of service (QoS) requirements.
The proposed method uses a predictive approach based
on machine learning to forecast future demand and a
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burst identification module to make scaling decisions.
The authors evaluate the proposed method and find that
it improves response time and resource utilization com-
pared to existing methods that only use a single scaling
mode.

The above-mentioned schemes are summarized in
Table 4.

Discussion, challenges & future suggestions

In Literature review section, a comprehensive review has
been presented covering four sub-categories in the area
of Kubernetes scheduling. It is crucial to provide a brief
discussion on the categorized literature review that is
presented in this section.

In the area of multi-objective optimization-based
scheduling in Kubernetes, several research studies have
been conducted to optimize various objectives such
as minimizing the energy consumption and cost while
maximizing resource utilization and meeting applica-
tion performance requirements. These studies employ
different optimization techniques such as genetic algo-
rithms, particle swarm optimization, and ant colony
optimization. Some studies also incorporate machine
learning-based approaches to predict workload patterns
and make scheduling decisions. There are still several
challenges that need to be addressed. Firstly, the multi-
objective nature of the problem poses a significant chal-
lenge in finding optimal solutions that balance conflicting
objectives. Second, the dynamic nature of the cloud envi-
ronment requires real-time adaptation of scheduling
decisions to changing conditions. Overall, the research
in multi-objective optimization-based scheduling in
Kubernetes shows great potential in achieving efficient
and effective resource management. Still, further work is
needed to address the challenges and validate the effec-
tiveness of these approaches in real-world scenarios.

On the other hand, Al-based scheduling in Kubernetes
has been a popular area of research in recent years. Many
studies have proposed different approaches to optimize
scheduling decisions using machine learning and other
Al techniques. One of the key accomplishments in this
area is the development of scheduling algorithms that
can handle complex workloads in a dynamic environ-
ment. These algorithms can consider various factors,
such as resource availability, task dependencies, and
application requirements, to make optimal scheduling
decisions. Some studies have proposed reinforcement
learning-based scheduling algorithms, which can adapt
to changing workload patterns and learn from experi-
ence to improve scheduling decisions. Other studies
have proposed deep learning-based approaches, which
can capture complex patterns in the workload data and
make accurate predictions. Overall, these studies have
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demonstrated that Al-based scheduling can improve
the efficiency and performance of Kubernetes clusters.
However, there are still some challenges that need to be
addressed in this area. One of the main challenges is the
lack of real-world datasets for training and evaluation of
Al-based scheduling algorithms. Most studies use syn-
thetic or simulated datasets, which may not reflect the
complexities of real-world workloads. Another challenge
is the trade-off between accuracy and computational
complexity. Future research in this area could focus on
developing more efficient and scalable Al-based sched-
uling algorithms that can handle large-scale, real-world
workloads. This could involve exploring new machine
learning and optimization techniques that can improve
scheduling accuracy while reducing computational
complexity.

Lastly, autoscaling enabled scheduling is an emerg-
ing research area that aims to optimize resource uti-
lization and improve application performance by
combining autoscaling and scheduling techniques. Sev-
eral research studies have been published in this area in
recent years. The analysis of these studies reveals that
autoscaling enabled scheduling can lead to significant
improvements in resource utilization and application
performance. The studies have shown they can help
reduce resource wastage, minimize the risk of under-
provisioning, and improve application response times.
However, despite these promising results, there are still
some challenges that need to be addressed in this area.
One of the main challenges is the complexity of design-
ing effective autoscaling enabled scheduling algorithms.
Developing algorithms that can adapt to dynamic work-
load changes and optimize resource utilization while
maintaining application performance is a non-trivial
task. Furthermore, there is a need for more research
on the practical implementation of autoscaling enabled
scheduling in real-world scenarios. Most of the existing
studies have been conducted in controlled experimental
settings, and there is a need to evaluate the effectiveness
of auto scaling enabled scheduling in real-world appli-
cations. There are still several challenges that need to
be addressed, including algorithm design, standardiza-
tion, and practical implementation. Future research in
this area should focus on addressing these challenges
and developing more effective and practical auto scaling
enabled scheduling techniques.

The research papers use diverse algorithms to enhance
Kubernetes scheduling. These algorithms are tested on
various platforms and environments, such as Spark,
MXNet, Kubernetes, Google and TwoSigma’s GPU clus-
ter, workloads, Google compute, CPU-GPU, the National
Cloud Infrastructure, benchmarks, ProCon, DL2, DRE,
Optimus, CBP, PP, scaling, data centers, schedulers,
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CloudSim and Java, scenarios, cloud infrastructure, user
need, RLSK, real trace, GaiaGPU and Tencent, real work-
load traces, simulations and web traces, Kubernetes, a
new algorithm, Kubernetes failover and recovery, Kube-
HICE, real-world scenarios, BDI, BCDI, Kubernetes, a
proposed algorithm, autoscalers, default auto scalers,
video streaming, Tensorflow, Zeus, and latency-sensitive
services. Some papers did not specify the details of the
algorithms they used or the platforms and environments
they tested on.

As can be seen in the previous sections, the survey
extensively analyzes the current literature, and com-
poses a taxonomy to not only effectively analyze the cur-
rent state-of-the-art but also identify the challenges and
future directions. Based on the analysis, the following
areas have been identified as potential future research in
the field:

+ As Kubernetes becomes more popular, there will
be a growing need for advanced computation opti-
mization techniques. In the future, Kubernetes may
benefit from the development of more sophisticated
algorithms for workload scheduling and resource
allocation, potentially using AI or machine learning.
Additionally, integrating Kubernetes with emerging
technologies like serverless computing could lead
to even more efficient resource usage by enabling
dynamic scaling without pre-provisioned infrastruc-
ture. Ultimately, the future of computation optimiza-
tion in Kubernetes is likely to involve a combination
of cutting-edge algorithms, innovative technologies,
and ongoing advancements in cloud computing.

+ Testing and implementation to reveal limitations
or current learning algorithms for scheduling and
potential improvements on large scale clusters. One
important focus is on improving the tooling and
automation around testing and deployment, includ-
ing the development of new testing frameworks and
the integration of existing tools into the Kubernetes
ecosystem. Another key area is the ongoing refine-
ment of Kubernetes’ implementation and develop-
ment process, with a focus on streamlining work-
flows, improving documentation, and fostering
greater collaboration within the open-source com-
munity. Additionally, there is a growing emphasis on
developing more comprehensive testing and valida-
tion strategies for Kubernetes clusters, including the
use of advanced techniques like chaos engineering
to simulate real-world failure scenarios. Overall, the
future of testing and implementation in Kubernetes
is likely to involve ongoing innovation, collaboration,
and an ongoing commitment to driving the platform
forward.
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A number of methods are employing learning algo-
rithms for resource balancing inside and outside the
cluster. Even though the methods given encourag-
ing results, new learning algorithms can be found to
improve the scheduler, especially on large scale clusters.
Limitations and potential improvements in specific
contexts, e.g., Green Computing. Minimizing the
carbon footprint of a cluster is an ongoing challenge.
Advanced schedulers are needed to be proposed in
order to reduce the energy consumption and carbon
footprint of clusters in IIoT setups. There is a huge
opportunity for improving the existing methods and
proposing new methods in this area.

Future research in Kubernetes resource management.
Kubernetes resource management mostly relies on
optimization modelling framework and heuristic-
based algorithms. The potential for improving and
proposing new resource management algorithms is
a very promising area of research. Future research
in Kubernetes resource management may focus on
addressing the challenges of managing complex,
dynamic workloads across distributed, heterogene-
ous environments. This may involve developing more
sophisticated algorithms and techniques for workload
placement, resource allocation, and load balancing, as
well as exploring new approaches to containerization
and virtualization. Additionally, there may be oppor-
tunities to leverage emerging technologies like edge
computing and 5G networks to enable more efficient
and scalable resource management in Kubernetes.
Most of the work done in the area of Kubernetes
scheduling has been evaluated on small clusters.
However, this might not always be tempting. One
future research direction in Kubernetes scheduling
is to use larger cluster sizes for algorithm evalua-
tion. While Kubernetes has been shown to be effec-
tive in managing clusters of up to several thousand
nodes, there is a need to evaluate its performance
in even larger cluster sizes. This includes evaluating
the scalability of the Kubernetes scheduler, identify-
ing potential bottlenecks, and proposing solutions to
address them. Additionally, there is a need to evalu-
ate the impact of larger cluster sizes on application
performance and resource utilization. This research
could lead to the development of more efficient
scheduling algorithms and better management strat-
egies for large-scale Kubernetes deployments.
Scheduling should not only be considered from
the static infrastructure point of view, but rather
advanced context-aware scheduling algorithms may
be proposed that could focus on developing new
approaches to resource allocation and scheduling
that take into account a broader range of contextual



Senjab et al. Journal of Cloud Computing (2023) 12:87

factors, such as user preferences, application depend-
encies, and environmental conditions. This may
involve exploring new machine learning techniques
and optimization algorithms that can dynamically
adapt to changing conditions and prioritize resources
based on real-time feedback and analysis. Other
potential areas of research may include developing
new models and frameworks for managing resources
in Kubernetes clusters, improving container orches-
tration and load balancing, and enhancing monitor-
ing and analytics capabilities to enable more effective
use of context-aware scheduling algorithms.

As can be seen from the diversity of future directions,
the potential for new research in Kubernetes is ripe with
challenges of myriad levels of difficulty and effort. It pro-
vides future researchers with exciting opportunities to
pursue and problems to tackle. We hope that this survey
will facilitate future researchers in selecting a suitable
challenge and solve new problems to expand the state-of-
the-art in the area of Kubernetes.

Conclusions

In conclusion, the survey on Kubernetes scheduling pro-
vides a comprehensive overview of the current state of
the field. It covers the objectives, methodologies, algo-
rithms, experiments, and results of various research
efforts in this area. The survey highlights the importance
of scheduling in Kubernetes and the need for efficient
and effective scheduling algorithms. The results of the
experiments show that there is still room for improve-
ment in this area, and future work should focus on
developing new algorithms and improving existing ones.
Overall, the survey provides valuable insight into the cur-
rent state of Kubernetes scheduling and points to prom-
ising directions for future research.
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