Senjab et al. Journal of Cloud Computing
https://doi.org/10.1186/s13677-023-00471-1

(2023) 12:87 Journal of Cloud Computing:

Advances, Systems and Applications

REVIEW OpenAcess
®

Check for
updates

A survey of Kubernetes scheduling
algorithms

Khaldoun Senjab', Sohail Abbas'", Naveed Ahmed' and Atta ur Rehman Khan?

Abstract

As cloud services expand, the need to improve the performance of data center infrastructure becomes more impor-
tant. High-performance computing, advanced networking solutions, and resource optimization strategies can help
data centers maintain the speed and efficiency necessary to provide high-quality cloud services. Running container-
ized applications is one such optimization strategy, offering benefits such as improved portability, enhanced secu-
rity, better resource utilization, faster deployment and scaling, and improved integration and interoperability. These
benefits can help organizations improve their application deployment and management, enabling them to respond
more quickly and effectively to dynamic business needs. Kubernetes is a container orchestration system designed to
automate the deployment, scaling, and management of containerized applications. One of its key features is the abil-
ity to schedule the deployment and execution of containers across a cluster of nodes using a scheduling algorithm.
This algorithm determines the best placement of containers on the available nodes in the cluster. In this paper, we
provide a comprehensive review of various scheduling algorithms in the context of Kubernetes. We characterize and
group them into four sub-categories: generic scheduling, multi-objective optimization-based scheduling, Al-focused
scheduling, and autoscaling enabled scheduling, and identify gaps and issues that require further research.

Keywords Cloud services, Data center infrastructure, Resource optimization, Containerized applications, Kubernetes,

Container orchestration, Scheduling algorithm

Introduction

Kubernetes is an open-source platform for automating
the deployment, scaling, and management of container-
ized applications. It allows developers to focus on build-
ing and deploying their applications without worrying
about the underlying infrastructure. Kubernetes uses a
declarative approach to managing applications, where
users specify desired application states, and the system
maintains them. It also provides robust tools for moni-
toring and managing applications, including self-healing
mechanisms for automatic failure detection and recovery.

*Correspondence:

Sohail Abbas

sabbas@sharjah.ac.ae

! Department of Computer Science, College of Computing

and Informatics, University of Sharjah, Sharjah, UAE

2 College of Engineering and Information Technology, Ajman University,
Ajman, UAE

@ Springer Open

Overall, Kubernetes offers a powerful and flexible solu-
tion for managing containerized applications in produc-
tion environments.

Kubernetes is well-suited for microservice-based web
applications, where each component can be run in its
own container. Containers are lightweight and can be
easily created and destroyed, providing faster and more
efficient resource utilization than virtual machines, as
shown in Fig. 1. Kubernetes automates the deployment,
scaling, and management of containers across a cluster of
machines, making resource utilization more efficient and
flexible. This simplifies the process of building and main-
taining complex applications.

Microservice-based architecture involves dividing
an application into small, independent modules called
microservices, Fig. 2. Each microservice is responsible for
a specific aspect of the application, and they communicate
through a message bus. This architecture offers several

©The Author(s) 2023, corrected publication 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes

were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-023-00471-1&domain=pdf

Senjab et al. Journal of Cloud Computing (2023) 12:87

Page 2 of 26

App App App App App

Guest 05

N

! -
W™

Container \Container \Container

\Container
>

App App App App

Guest 05

W™

Host OS

Hardware

>
<]
°
>
<]
°

Bare Metal

benefits, such as the ability to automate deployment, scal-
ing, and management. Because each microservice is inde-
pendent and can be managed and updated separately, it is
easier to make changes without affecting the entire sys-
tem. Additionally, microservices can be written in differ-
ent languages and can run on different servers, providing
greater flexibility in the development process.

Kubernetes can quickly adapt to various types of
demand intensities. For example, if a web application
has few visitors at a given time, it can be scaled down
to a few pods using minimal resources to reduce costs.
However, if the application becomes extremely popular
and receives a large number of visitors simultaneously,
it can be scaled up to be serviced by a large number of
pods, making it capable of handling almost any level of
demand.

Kubernetes have been employed by many organiza-
tions in a diverse area of underlying applications and have
gained the trust of being the best option for the manage-
ment and deployment of containerized applications. In
terms of recent applications, Kubernetes are proving to
be an invaluable resource for IT infrastructure as they
provide a sustainable path towards serverless computing
that will result in easing up challenges in IT administra-
tion [1]. Serverless computing will provide end-to-end

Hypervisor

Host OS

Hardware

Virtual Machines
Fig. 1 Comparison between different types of applications deployments

Container \Container \Container \Container \Container

Container Engine

Host OS

Hardware

Containers

security enhancements but will also result in new infra-
structure and security challenges as discussed in [1].

As the computing paradigm moves towards edge and
fog computing, Kubernetes is proving to be a versatile
solution that provides seamless network management
between cloud and edge nodes [2—4]. Kubernetes face
multiple challenges when deployed in an IoT environ-
ment. These challenges range from optimizing network
traffic distribution [2], optimizing flow routing policies
[3], and edge device’s computational resources distribu-
tion [4].

As can be seen from the diverse range of applications,
and challenges associated with Kubernetes, it is impera-
tive to study proposed algorithms in the related area to
identify the state-of-the-art and future research direc-
tions. Numerous studies have focused on the devel-
opment of new algorithms for Kubernetes. The main
motivation for this survey is to provide a comprehensive
overview of the state-of-the-art in the field of Kuber-
netes scheduling algorithms. By reviewing the existing
literature and identifying the key theories, methods, and
findings from previous studies, we aim to provide a criti-
cal evaluation of the strengths and limitations of exist-
ing approaches. We also hope to identify gaps and open
questions in the existing literature, and to offer sugges-
tions for future research directions. Overall, our goal is

Senjab et al. Journal of Cloud Computing (2023) 12:87

Page 3 of 26

User
Interface

Microservices

TaY
User \J
Interface Iamul
Monolithic
App
\ 4
Database

Monolithic Architecture

Fig. 2 Comparison between different applications architectures

to contribute to the advancement of knowledge in the
field and to provide a useful resource for researchers
and practitioners working with Kubernetes scheduling
algorithms.

To the best of authors’ knowledge, there are no
related surveys found that specifically address the topic
at hand. The surveys found are mostly targeted at the
container orchestration in general (including Kuber-
netes), such as [5-8]. These surveys address Kubernetes
breadthwise without targeting scheduling and diving
deep into it and some even did not focus on Kuber-
netes. For example, some concentrated on scheduling
in the cloud [9] and its associated concerns [10]. Others
targeted big data applications in data center networks
[11], or fog computing environments [12]. The authors
have found two closely related and well-organized sur-
veys [13] and [14] that targeted Kubernetes scheduling

Microservices Architecture

A 4 Messages
Bus

Microservices

)

Databases

o

in depth. However, our work is different than these two
surveys in terms of taxonomy, i.e., they targeted dif-
ferent aspects and objectives in scheduling whereas
we categorized the literature into different four sub-
categories: generic scheduling, multi-objective opti-
mization-based scheduling, AI focused scheduling,
and autoscaling enabled scheduling. Thereby focusing
specifically on wide range of schemes related to multi-
objective optimization and Al in addition to the main
scheduling with autoscaling. Our categorization, we
believe, is more fine-grained and novel as compared to
the existing surveys.

In this paper, the literature has been divided into four
sub-categories: generic scheduling, multi-objective
optimization-based scheduling, Al-focused schedul-
ing, and autoscaling enabled scheduling. The literature
pertaining to each sub-category is analyzed and sum-
marized based on six parameters outlined in Literature
review section.

Senjab et al. Journal of Cloud Computing (2023) 12:87

Our main contributions are as follows:

+ A comprehensive review of the literature on Kuber-
netes scheduling algorithms targeting four sub-cat-
egories: generic scheduling, multi-objective opti-
mization-based scheduling, Al focused scheduling,
and autoscaling enabled scheduling.

« A critical evaluation of the strengths and limita-
tions of existing approaches.

+ Identification of gaps and open questions in the
existing literature.

The remainder of this paper is organized as follows:
In Search methodology section, we describe the method-
ology used to conduct the survey. In Literature review sec-
tion, we present the literature review along with results of
our survey, including a critical evaluation of the strengths
and limitations of existing approaches. A taxonomy of the
identified research papers based on the literature review
is presented as well. In Discussion, challenges & future
suggestions section, we discuss the implications of our
findings and suggest future research directions. Finally,
in Conclusions section, we summarize the key contribu-
tions of the survey and provide our conclusions.

Search methodology
This section presents our search methodology for identi-
fying relevant studies that are included in this review.

To identify relevant studies for our review, we con-
ducted a comprehensive search of the literature using
the following databases: IEEE, ACM, Elsevier, Springer,
and Google Scholar. We used the following search terms:
"Kubernetes," "scheduling algorithms," and "scheduling

Page 4 of 26

Exclusion criteria

£

Relevant Important

S

67 articles

l

Assessment

l

47 articles

Fig. 4 Exclusion criteria

optimizing." We limited our search to studies published
in the last 5 years and written in English.

We initially identified a total of 124 studies from the
database searches, see Fig. 3. We then reviewed the
abstracts of these studies to identify those that were rel-
evant to our review. We excluded studies that did not
focus on Kubernetes scheduling algorithms, as well as
those that were not original research or review articles.
After this initial screening, we were left with 67 studies,
see Fig. 4.

We then reviewed the texts of the remaining studies to
determine their eligibility for inclusion in our review. We

Inclusion criteria

//

Scholar |IEEE

\\

N

ELSIVER SPRINGER

//

After 2018 & In English

/

Kubernetes & scheduling algorithms

.

BN

Kubernetes & scheduling optimizing

7

124 articles

Fig. 3 Inclusion criteria

Senjab et al. Journal of Cloud Computing (2023) 12:87

Literature Review Statistics (Yearly)

b

m 2018 ®2019 ®=2020 w2021 m2022

Fig.5 Detailed statistics showing the yearly breakdown of analyzed
studies

excluded studies that did not meet our inclusion criteria,
which were: (1) focus on optimizing Kubernetes sched-
uling algorithms, (2) provide original research or a criti-
cal evaluation of existing approaches, and (3) be written
in English and published in the last 5 years. After this
final screening, we included 47 studies in our review,

Page 5 of 26

see Fig. 4. A yearly distribution of papers can be seen in
Fig. 5.

We also searched the reference lists of the included
studies to identify any additional relevant studies that
were not captured in our database searches. We did not
identify any additional studies through this process.
Therefore, our review includes 47 studies on Kubernetes
scheduling algorithms published in the last 5 years. These
studies represent a diverse range of research methods,
including surveys, experiments, and simulations.

Literature review

This section has been organized into four sub-categories,
i.e,, generic scheduling, multi-objective optimization-
based scheduling, AI focused scheduling, and autoscaling
enabled scheduling. A distribution of analyzed research
papers in each category can be seen in Fig. 6. The litera-
ture in each sub-category is analyzed and then summa-
rized based on six parameters given below:

+ Objectives

+ Methodology/Algorithms
+ Experiments

+ Findings

+ Applications

+ Limitations

Scheduling in Kubernetes
The field of Kubernetes scheduling algorithms has
attracted significant attention from researchers and

Literature Review Statistics (Category)

B Scheduling Kubernetes

u Al-Focused Scheduling
Fig. 6 Detailed statistics for each category in terms of analyzed studies

® Multi-Objective Optimization
u Auto-Scaling Enabled Scheduling

Senjab et al. Journal of Cloud Computing (2023) 12:87

practitioners in recent years. A growing body of litera-
ture has explored the potential benefits and challenges
of using different scheduling algorithms to optimize the
performance of a Kubernetes cluster. In this section, we
present a review of the key theories, methods, and find-
ings from previous studies in this area.

One key theme in the literature is the need for effi-
cient effective scheduling of workloads in a Kubernetes
environment. Many studies have emphasized the limi-
tations of traditional scheduling approaches, which
often struggle to handle the complex and dynamic
nature of workloads in a Kubernetes cluster. As a
result, there has been increasing interest in the use of
advanced scheduling algorithms to enable efficient,
effective allocation of computing resources within the
cluster.

Another key theme in the literature is the potential
benefits of advanced scheduling algorithms for Kuber-
netes. Many studies have highlighted the potential
for these algorithms to improve resource utilization,
reduce latency, and enhance the overall performance
of the cluster. Additionally, advanced scheduling algo-
rithms have the potential to support the development
of new applications and services within the Kubernetes
environment, such as real-time analytics and machine
learning and deep learning, see Al Focused Scheduling
section.

Despite these potential benefits, the literature also
identifies several challenges and limitations of Kuber-
netes scheduling algorithms. One key challenge is the
need to address the evolving nature of workloads and
applications within the cluster. Therefore, various authors
focused on improving the autoscaling feature in Kuber-
netes scheduling to allow for automatic adjustment of the
resources allocated to pods based on the current demand,
more detailed discussion can be found in Autoscaling-
enabled Scheduling section. Other challenges include
the need to manage and coordinate multiple scheduling
algorithms, and to ensure the stability and performance
of the overall system.

Overall, the literature suggests that advanced sched-
uling algorithms offer a promising solution to the chal-
lenges posed by the complex and dynamic nature of
workloads in a Kubernetes cluster. However, further
research is needed to address the limitations and chal-
lenges of these algorithms, and to explore their potential
applications and benefits.

In Santos et al. [15], for deployments in smart cit-
ies, the authors suggest a network-aware scheduling
method for container-based apps. Their strategy is
put into practice as an addition to Kubernetes’ built-
in default scheduling system, which is an open-source
orchestrator for the automatic management and

Page 6 of 26

deployment of micro-services. By utilizing container-
based smart city apps, the authors assess the suggested
scheduling approach’s performance and contrast it
with that of Kubernetes’ built-in default scheduling
mechanism. Compared to the default technique, they
discovered that the suggested solution reduces net-
work latency by almost 80%.

In Chung et al. [16], the authors propose a new cluster
scheduler called Stratus that is specialized for orchestrat-
ing batch job execution on virtual clusters in public Infra-
structure-as-a-Service (IaaS) platforms. Stratus focuses
on minimizing dollar costs by aggressively packing tasks
onto machines based on runtime estimates, i.e., to save
money, the allocated resources will be made either mostly
full or empty so that they may then be released. Using the
workload traces from TwoSigma and Google, the authors
evaluate Stratus and establish that the proposed Stratus
reduces cost by 17-44% compared to the benchmarks of
virtual cluster scheduling.

In Le et al. [17], the authors propose a new schedul-
ing algorithm called AlloX for optimizing job per-
formance in shared clusters that use interchangeable
resources such as CPUs, GPUs, and other accelerators.
AlloX transforms the scheduling problem into a min-
cost bipartite matching problem and provides dynamic
fair allocation over time. The authors demonstrate theo-
retically and empirically that AlloX performs better than
existing solutions in the presence of interchangeable
resources, and they show that it can reduce the average
job completion time significantly while providing fair-
ness and preventing starvation.

In Zhong et al. [18], the authors propose a heterogene-
ous task allocation strategy for cost-efficient container
orchestration in Kubernetes-based cloud computing
infrastructures with elastic compute resources. The pro-
posed strategy has three main features: support for het-
erogeneous job configurations, cluster size adjustment
through autoscaling algorithms, and a rescheduling
mechanism to shut down underutilized VM instances
and reallocate relevant jobs without losing task progress.
The authors evaluate their approach using the Austral-
ian National Cloud Infrastructure (Nectar) and show that
it can reduce overall cost by 23-32% compared to the
default Kubernetes framework.

In Thinakaran et al. [19], to create Kube-Knots, the
authors combine their proposed GPU-aware resource
orchestration layer, Knots, with the Kubernetes container
orchestrator. Through dynamic container orchestration,
Kube-Knots dynamically harvests unused computing
cycles, enabling the co-location of batch and latency-
critical applications and increasing overall resource uti-
lization. The authors demonstrate that the proposed
scheduling strategies increase average and 99th percentile

Senjab et al. Journal of Cloud Computing (2023) 12:87

cluster-wide GPU usage by up to 80% in the case of HPC
workloads when used to plan datacenter-scale workloads
using Kube-Knots on a ten-node GPU cluster. In addi-
tion, the suggested schedulers reduce energy consump-
tion throughout the cluster by an average of 33% for three
separate workloads and increase the average task com-
pletion times of deep learning workloads by up to 36%
when compared to modern schedulers.

In Townend et al. [20], the authors propose a holis-
tic scheduling system for Kubernetes that replaces the
default scheduler and considers both software and
hardware models to improve data center efficiency. The
authors claim that by introducing hardware modeling
into a software-based solution, an intelligent scheduler
can make significant improvements in data center effi-
ciency. In their initial deployment, the authors observed
power consumption reductions of 10—20%.

In the work by Menouer [21], the author describes the
KCSS, a brand-new Kubernetes container scheduling
strategy. The purpose of KCSS is to increase performance
in terms of makespan and power consumption by sched-
uling user-submitted containers as efficiently as possi-
ble. For each freshly submitted container, KCSS chooses
the best node based on a number of factors linked to the
cloud infrastructure and the user’s requirements using
a multi-criteria decision analysis technique. The author
uses the Go programming language to create KCSS and
shows how it works better than alternative container
scheduling methods in a variety of situations.

In Song et al. [22], authors present a topology-based
GPU scheduling framework for Kubernetes. The frame-
work is based on the traditional Kubernetes GPU sched-
uling algorithm, but introduces the concept of a GPU
cluster topology, which is restored in a GPU cluster
resource access cost tree. This allows for more efficient
scheduling of different GPU resource application scenar-
ios. The proposed framework has been used in the pro-
duction practice of Tencent and has reportedly improved
the resource utilization of GPU clusters by about 10%.

In Ogbuachi et al. [23], the authors propose an
improved design for Kubernetes scheduling that takes
into account physical, operational, and network param-
eters in addition to software states in order to enable
better orchestration and management of edge comput-
ing applications. They compare the proposed design to
the default Kubernetes scheduler and show that it offers
improved fault tolerance and dynamic orchestration
capabilities.

In the work by Beltre et al. [24], utilizing fairness meas-
ures including dominant resource fairness, resource
demand, and average waiting time, the authors outline a
scheduling policy for Kubernetes clusters. KubeSphere,
a policy-driven meta-scheduler created by the authors,

Page 7 of 26

enables tasks to be scheduled according to each user’s
overall resource requirements and current consumption.
The proposed policy increased fairness in a multi-tenant
cluster, according to experimental findings.

In Haja et al. [25], the authors propose a custom Kuber-
netes scheduler that takes into account delay constraints
and edge reliability when making scheduling decisions.
The authors argue that this type of scheduler is neces-
sary for edge infrastructure, where applications are often
delay-sensitive, and the infrastructure is prone to failures.
The authors demonstrate their Kubernetes extension and
release the solution as open source.

In Wojciechowski et al. [26], the authors propose a
unique method for scheduling Kubernetes pods that
makes advantage of dynamic network measurements
gathered by Istio Service Mesh. According to the
authors, this approach can fully automate saving up to
50% of inter-node bandwidth and up to 37% of applica-
tion response time, which is crucial for the adoption of
Kubernetes in 5G use cases.

In Cai et al. [27], the authors propose a feedback con-
trol method for elastic container provisioning in Kuber-
netes-based systems. The method uses a combination
of a varying-processing-rate queuing model and a linear
model to improve the accuracy of output errors. The
authors compare their approach with several existing
algorithms on a real Kubernetes cluster and find that it
obtains the lowest percentage of service level agreement
(SLA) violation and the second lowest cost.

In Ahmed et al. [28], the deployment of Docker con-
tainers in a heterogeneous cluster with CPU and GPU
resources can be managed via the authors’ dynamic
scheduling framework for Kubernetes. The Kubernetes
Pod timeline and previous data about the execution of
the containers are taken into account by the platform,
known as KubCG, to optimize the deployment of new
containers. The time it took to complete jobs might be
cut by up to 64% using KubCG, according to the studies
the authors conducted to validate their algorithm.

In Ungureanu et al. [29], the authors propose a hybrid
shared-state scheduling framework for Kubernetes
that combines the advantages of centralized and dis-
tributed scheduling. The framework uses distributed
scheduling agents to delegate most tasks, and a sched-
uling correction function to process unprioritized and
unscheduled tasks. Based on the entire cluster state
the scheduling decisions are made, which are then syn-
chronized and updated by the master-state agent. The
authors performed experiments to test the behavior of
their proposed scheduler and found that it performed
well in different scenarios, including failover and recov-
ery. They also found that other centralized scheduling

Senjab et al. Journal of Cloud Computing (2023) 12:87

frameworks may not perform well in situations like col-
location interference or priority preemption.

In Yang et al. [30], the authors present the design and
implementation of KubeHICE, a performance-aware
container orchestrator for heterogeneous-ISA archi-
tectures in cloud-edge platforms. KubeHICE extends
Kubernetes with two functional approaches, AIM
(Automatic Instruction Set Architecture Matching) and
PAS (Performance-Aware Scheduling), to handle heter-
ogeneous ISA and schedule containers according to the
computing capabilities of cluster nodes. The authors
performed experiments to evaluate KubeHICE and
found that it added no additional overhead to container
orchestration and was effective in performance estima-
tion and resource scheduling. They also demonstrated
the advantages of KubeHICE in several real-world sce-
narios, showing for example a 40% increase in CPU uti-
lization when eliminating heterogeneity.

In Li et al. [31], the authors propose two dynamic
scheduling algorithms, Balanced-Disk-1O-Priority
(BDI) and Balanced-CPU-Disk-IO-Priority (BCDI), to
address the issue of Kubernetes’ scheduler not taking
the disk I/O load of nodes into account. BDI is designed
to improve the disk I/O balance between nodes, while
BCDI is designed to solve the issue of load imbalance
of CPU and disk I/O on a single node. The authors per-
form experiments to evaluate the algorithms and find
that they are more effective than the Kubernetes default
scheduling algorithms.

In Fan et al. [32], the authors propose an algorithm
for optimizing the scheduling of pods in the Serverless
framework on the Kubernetes platform. The authors
argue that the default Kubernetes scheduler, which oper-
ates on a pod-by-pod basis, is not well-suited for the
rapid deployment and running of pods in the Serverless
framework. To address this issue, the authors propose
an algorithm that uses simultaneous scheduling of pods
to improve the efficiency of resource scheduling in the
Serverless framework. Through preliminary testing, the
authors found that their algorithm was able to greatly
reduce the delay in pod startup while maintaining a bal-
anced use of node resources.

In Bestari et al. [33], the authors propose a sched-
uler for distributed deep learning training in Kubeflow
that combines features from existing works, including
autoscaling and gang scheduling. The proposed sched-
uler includes modifications to increase the efficiency of
the training process, and weights are used to determine
the priority of jobs. The authors evaluate the proposed
scheduler using a set of Tensorflow jobs and find that it
improves training speed by over 26% compared to the
default Kubernetes scheduler.

Page 8 of 26

In Dua et al. [34], the authors present an alternative
algorithm for load balancing in distributed computing
environments. The algorithm uses task migration to bal-
ance the workload among processors of different capa-
bilities and configurations. The authors define labels to
classify tasks into different categories and configure clus-
ters dedicated to specific types of tasks.

The above-mentioned schemes are summarized in
Table 1.

Scheduling using multi-objective optimization
Multi-objective optimization scheduling takes into
account multiple objectives or criteria when deciding
how to allocate resources and schedule containers on
nodes in the cluster. This approach is particularly useful
in complex distributed systems where there are multiple
competing objectives that need to be balanced to achieve
the best overall performance. In a multi-objective opti-
mization scheduling approach, the scheduler considers
multiple objectives simultaneously, such as minimizing
response time, maximizing resource utilization, and
reducing energy consumption. The scheduler uses opti-
mization algorithms to find the optimal solution that bal-
ances these objectives.

Multi-objective optimization scheduling can help
improve the overall performance and efficiency of Kuber-
netes clusters by taking into account multiple objectives
when allocating resources and scheduling containers.
This approach can result in better resource utilization,
improved application performance, reduced energy con-
sumption, and lower costs.

Some examples of multi-objective optimization sched-
uling algorithms used in Kubernetes include genetic
algorithms, Ant Colony Optimization, and particle
swarm optimization. These algorithms can help optimize
different objectives, such as response time, resource utili-
zation, energy consumption, and other factors, to achieve
the best overall performance and efficiency in the Kuber-
netes cluster.

In this section, multi-objective scheduling proposals
are discussed.

In Kaur et al. [35], the authors propose a new controller
for managing containers on edge-cloud nodes in Indus-
trial Internet of Things (IIoT) systems. The controller,
called Kubernetes-based energy and interference driven
scheduler (KEIDS), is based on Google Kubernetes and is
designed to minimize energy utilization and interference
in IIoT systems. KEIDS uses integer linear programming
to formulate the task scheduling problem as a multi-
objective optimization problem, taking into account
factors such as energy consumption, carbon emissions,
and interference from other applications. The authors

Page 9 of 26

(2023) 12:87

Senjab et al. Journal of Cloud Computing

eaJe SIY)
Ul papaau S| y2ieasal Jayund

"UOI}RISPISUOD O
ua¥e1 3q 0s|e Aew sadA1 WA

‘swiajgold Auew asned Aew
OM] JO p|oYsai1yl 33 buipaadxa
$92IN0S3J 3|geabueydiaiu]

pnojd diignd aya
SI31SN|D [BNUIA UO UOIINDIXS COf
21BQ JO 1X31U0D 33 01 P} WIl]

‘sjuswanolduwl a1ning pue
SUOIIRYIWI| [B9AR) AeW UOe)
-uswia|dwi pue BusY ISy

SUOIIN|OS Paseq
-21eM1JOS Ybnoiy) sIa1usd
e1ep Jo Adusidyje snoudwi of

SE]
-Juade1ep Paseg-Ndo Ul $1S0D

|euonesado adnpal pue uoh
n 921n0sal aAcIdwl O]

‘sa19uIagNY A
palamod sainidnisesul bul
-INdWod PO UO 51503 MO

YUM UONRIISIYDIO JDUIRIUOD)

1915NP paleys
B Ul S92IN0Sal a|geabueyd
121Ul 19A0 sqof bulinpayds

pnop d1ignd ay1 Ul s1a1sN|>
[ENLIIA UO UOIIND3X3 qof yoieg

“S9IINIDS
SAISUSIUI-BIED PUR SANISUSS
-Ke[ap 10} SJUSWIUOIIAUS DUl

-indwo) bo4 ul pasn aq ued

19|NPayYds
1uabi|j21ul ue Ag pasealoul
Ajpuedyiublis aq ued 191uad
1EP 941 JO SSAUIAIIDYD Sy |
pajou

QUM 907 01 %0 | JO uondwins
-uod Jamod uj suodNPay

%ES 01

dn Ag sayoeaiq S0 bulMO|
AQ SOD puU3-01-pPU3 $2INSUD
dd 'seuanb [eonun-Aousie| 104
uondNpal

ABISUD 9PIM-I1SNP 96 €

pue 949¢ 01 dn Aq paseaiul
uona|dwod qof abelane speoj
-jiom Bulules| desq -abelane
uo 908 01 dn Aq J21sn|d> ay1
Ssoude abesn Ndo aseanul dd
pue 4go ‘suonedijdde HdH 104

%CE O} %EC

Aq suianed peopiom pnojd
SNOLIBA JOJ SISO ||RIDAO JOMO)
p|nNo> uonn|os pa1sabbns ayy
‘JHomaulely s1aUIagNY pie
-puels ay3 01 pasedwod Usym

'SSaulie) ainsus
pue ‘uolleAlelS S1eullll|e ‘Duil
uona|dwod siom abelaAe ayy

ua1I0ys Aj|ednselp ued o\

‘sayoeoidde

}Je-3y3-Jo-a1e3s 0} paseduwiod
%P v—/ 1 £q S1502 BulNpayds

121SN|2 [eNUIA S9ONP3J SIS

‘908 Aq pasnpal st Aouale)
YIOMISU ‘Wisiueydaw buln
-payds 1Neyap ayi 01 poyiaul
pa1s9b6ns ay1 buledwod

191U2d
e1ep |eal ul JuawAojdag

SI9|NPaYds 1e-aYi-jo
-218315 YuMm synsal pasedwod
121sN]> NdD apou

U1 B UO dd pue dgD paienjead

"(1B3D3N)
2IN3dNIISelU| PNOJD [eUOEN
ueljelisny ay3 buisn pajepijep

115N PUGAY NdD-NdD
9|BJS-||PWS B UO SUOIIeN|BAS
pue suopenwis 9|eds-able

‘PIIDNPUOD UM SIUDUI
-1I2dXa UoneINWIS "elBISOM|
pue 9]6005) WO} S9deI} PEO|
-{IoMm J215NJ2 JO SIseq Ayl uQ

‘wuojeld sa1au

-19gNy} 9y UO paiepl|eA pue
suoned|dde A31D) Lews paseq
-JauleIu0d Buizi|n pajenieAl

191U e1ep [ea) B Ul pakojdap
SeM WIISAS I9INPayds ay)

AQ 9pew aJe SUOIRISPISUOD
[9pOoW 24eMPleY PUB 2IPMIOS
4109 “lomaudely bulnpayds
Buissedwodua-|je pasodoid

B UM JS|NPaYS Nejep
sa1aulagny| ay1 pade|day

‘syouy-agny Buisn

9[DS I31USDE1EP 1B SPEO|IOM
3|NPaY2s 01 Pa1eald ale (dd
pue 4gD) spoyiaw bulinpayds
PseQ-NdD OM] $3J24AD uon
-e1ndwod a|ge|ieAe 1saAley
A||DIWeUAp O3 UOIRIIS3YDIO
J2UIBIUOD DIWRUAD S9SN SI0UY|
-agny| "a1emMe-Ndo SI 1eyl
J19Ae| UONBIISDYDIO SDINOS3I
pajesbalul-sa1auUIagNy B
‘SJoUy-agNy PIUISII

wsiueydaw buiinpayssay
suyilioble buiessoiny

suon

-eInBYuod gof snosuaboIaaH

Buiyorew aypediq 1s0d-ujw

'SNIRIIS SB PaLLIS) S| UYDIym
'SI91SN|2 [ENMIA UO UOIINDIXS
gof yoieq buiziuebio uo sndoy
2 UM J3[NPayDs 43S Y
'92110eud

o1u] Ind pue paysabbns si
poyiaw buinpayds ateme
Sjlomiau e ‘sazauiagny oul
1|Ing Wisiueydaw bujnpayds
1NeJaP Y3 0} UOIIPPE Ue Sy

BulNpayds Ul sassadoid ssau
-ISNQ PUB $3IN1DNJISeIUI [BD
-1SAYd pue |enuiA 13pIsuod o
sa1aulagny| Ul buinpayds
oS0y Ybnolya SI91UD elep
40 AduaidLys anocudwil of

sauanb budey-1asn 1oy (SOD)
921AIDG JO Aljen) anoidwi
0] "SI91UJLIEP Ul SISO
|euoiesado aonpal pue uon
-BZl|in 924n0s3J dr0idwl| O]
SI91UIDeIRP 10}

19AR| UOI1RIISIYDIO 92IN0OSII
aieme-Ndo e dojansp of

'ssai1boid ysey

Buiniasaid ajiym sbulaes 150>
10§ S9DURISUI |NA PZI1INISPUN
UMOP INYs 0} Wisiueydaw
Bulinpaydsal e buidojarsp
pue ‘swyiiobe Buljedsoine
ybnouys speopriom buibueyd
192U 0} Juswisn(pe az|s
1915N]3 Buljgeus ‘buryded
¥se1 elA paziwndo s usw
-9op|d |eIul SIaUIRIU0D)

"SIoMaUlely buluies)

daap Joj S921N0S3I 2lempiey
3|qeddems yum Jaisn|d paleys
e ul A1ljenba Jasn ainsua pue
Aujeuonouny aroidwi o)

150 10}
UONEIIPISUOD LM Bulnpayds
J2UleIUod PNOP dlIgNd

"9JeMB-}I0MIBU S| 1By}

siuawAo|dap A1 1ews Ul
sdde paseg-iauieluod 1oy A6a
-1e41s bulnpayds e dojaasp of.

l61]

suoneywI]

suonedijddy

sbuipuiy

syuswadxy

swiyyiob|y/ABojopoyia |y

saAIa(qo

(s919ulagny| bulNPayS) AleWWNG 21N1elai] L ajqeL

Page 10 of 26

(2023) 12:87

Senjab et al. Journal of Cloud Computing

UOIIBDIUNWIWIOD SUlydeW
-0}-aulyoew pue bunndwod
- 96ps DS Ul s1aUISGNY

- punndwod abp3

%/ € 01 dn Ag sawipl asuodsal
uoped|dde bupnpal ajym
YIpIMpueq apou-121ul JO 9%05
01 dn 2ABS UBD SHYVINISN

21n1dNAS
-elyul 96pa oy pa1Ins 1a11aq
S| s232UIgNY P3YIPOW 3y |

S191SN|D salaulagny 1ueusl
-1|NW Ul ssaulle} sanoidwil

- SI2ISN|D S3I2UIRQNY J2INPaYds-e1aW pasodoid ay |

- punndwod abps og

— Juodusg| 1e COEUDUO_Q ul pasn

HOM 3ININy Ul Jayuiny
9ouewlopad ayy snoiduwll pue
eLIS11ID 9Y) puedxe 0} [elnus10d
SJUSWILIRAXD dY3 Ul pasn
BLIR11LID A3 XIS SU1 01 a1l

SUI9ISAS UO[IRIISAYDIO
-J2UJRIUOD 10} SPJY DIWapede
pue [eLISNPU Ul Pasn 3q ueD

‘Juswabeuew
pUE UOI1811S9YDI0 padurApe

-19|01 1|N&} PISEUDUI SISO
J3|NPaYds pa1sabbns ay

adue|eq PEO)|
Uo 2duewlopad paroidul

%01 Inoge Aq
uonez||iin 92Inosal U®>O_QE_

"9durWIOHd

S9DURYUD SSDY ‘SyiLioble
BulNpayds Jaureuod
19410 01 pasedwiod Usyp

S1NoAe|
Buissadoid pue speojyiom
1ualayIp buisn paiepi|ep

19|NPaYDs sa13UIagNY
1|nejep Y3 Yim uospedwo)d

‘uononpoid [en1de U Ndoeles
pakojdwa sey 1uadU3|

pa3U Jasn pue ain1dniis
-eJJU] PNOJD W) B1eP PISN
SOLIBUDDS JUSISHIP

Uo SIURWILIAAX Pa1dNPUOD)

"YSa\ DIAISS ONS|
YUM PaIay1eb $D119W 3IoM
-19U DIWeUAP Jo abeiuepe

sayew eyl spod sa1auiagny

Bulnpayds 10} poyaw
96pa-6umNd e S SYYYIAIRN

ISTTITITEY]
9bpa pue sulesIsuod Aejop
Ssuonedidde sispisuod 1eyy

J3|NPaYDS $918UIAGNY WOISND)

swih

Buliem sbelsae pue puewsp
92IN0S3I ¥SB) U0 Paseq
SOLIBW SS2UIR) [RUORIPPY

Aoj0d (44Q)
SSaUJIe4 9DIN0S3Y JUeUIWO]

‘wyiioble uoisinap
13|Npayds ay3 01Ul uoneibaiul
e1ep 9DIA3p 36pa Swili-|eay
'SOLIBUDS

uonedldde 92in0sal NdD
snolea ydepe pue ajnpayds
01 PasN S| 9313 150D 559208
92IN0S3I 3 "PI0ISI S| 1}
-sn|> NdD ay3 jo Abojodol ayy
‘9311 350D $S3DJB 3DIN0OS3I B U]
‘wsiueyoaw buinpayss Ndo
$919UJagNY PaYsI|grIS By} S
W1SAS 943 JO UoIIepUNOy Y|

‘Poyaw (SISdOL)

uoN|OS [eap]| 01 ALLIB[IWIS AQ
UOIIZI11101d JO J3PI0 DY 10}
anbiuyda] aya asn uel s|buls
e 01| BLIS1IID ||B SUIGUIOD O]
JaUIRIUOD panIWgNs Ajmau
42B3 10} 2POU 1537 31 500D
's1010e} JO A191ieA B BUISN

suoped|dde abpa og

4O 1X21U0D ay1 Ul ApiejndnJed
'SMO|YIOM PIZIISUIEIUOD SANL
-ISUas-adURWLIOHNd J0) Buln
-payds se1aulagny ar0idwil of

sa1jigeded buijeay

-J|9S pue ADUR1e| 3IOMISU UO
SND0J B YIIM ‘2IN1DN.ISelul
9bps 10 Pa1INS J9119] 37

01 sa12uIagny| Apow o]

sJasn ajdinw 4oy uoiedoje
92IN0S3J Iy PUP 1USIDYYD
$39|qeUD 1BY) SI21SN|D S31RU
-13gNY} 10§ IS|NPAYIS-BISW
uanup-Ad1jod e dojeasp o)
pupndwod

9bps DG Ul adueWIOopd pue
A)|Ige|IeAR 9DIAISS SACId W
0} Joplo u| sis1oweled
3I0M13U pue ‘leuonelado
‘lea1sAyd 3unodoe 01Ul saxey
1ey] J3[NPaYDS $319uIaqgNy
2JeME-1X21U0D P dOjaA3p O]

191SNJD NdD dY3 Ul UoNGUISIP
peo| pue ADUa1dLyd 92IN0S3l
aseasnu| Abojodol uo paseq
wisiueydaw Buinpayds Ndo
$312UlagNY B PIUSSAI

‘Bulnpayas siauleIUOd PaIIW
-gns-auljuo Auew Jo AdUaIdLyD
31 1500g "PaoNPOAUI U]
sey (SSDY) Abarens buinpayos
J2U[PIUOD $212UIGNY MAU Y

suoneywi suonedijddy

sbuipury

syuswadxy

swiyyiob|y/ABojopoyia |y

saA1123(q0

(panunuod) L ajqey

Page 11 of 26

(2023) 12:87

Senjab et al. Journal of Cloud Computing

"SOLIBUSDS JUDJIayIP
Ul 9oueWLIOyIad JIDY) S1enjeAd
pue swiyLoble |gog pue

|ag 2y1 9ziwndo 01 papasu
99 AeW Yd1easal Jayng

J3|Npayds pasod

-01d 3Y1 JO SS9USAIIDRYS Sy}
31en|eAa A||ny 0} papa3u uolie}
-uswisdu pue BunRsal ISy

'SOLIBURDS JO A1a1MeA e Ul
WYiob|e ay) JO SSaUSANDIYD
343 2UIWISIDP 0} POPI3U 3le
uoliepljeA pue buissl Jlayin

suoned|dde

pazliauleiuod buibeuew ul
s912Ulagny Jo durWIOMd
93 aA0iduUll 0} pasn ag ued)

swiopeld

2bpa-pno|> snoausbolslsy
ul suonedidde paziiauieIuod
104 [e1dyausq st 3DIHIGNH

UoI1eZ]|1IN 32IN0S34 3ZIWndo
01 J215N|D S212UIAGNY U PAsN

‘Buissadoud

09pIA pue buluies| doap
1] S3SPY J0) SNJD 24INba)
1eY] SIDIAIDS Paseq-pnojd
Jo 1uswiAo|dap ay1 4oy pasn

SWIISAS paseq-sa1auiagnyf Ul
Bujuoisiroid JaujeIUOD d1se|]

‘SOPOU U29M13q
9dUeleq /] fSIP 9yl 9dUrYUD
os[e ya1ym ‘stuyiuoble |ddg
pue |dg aY1 Aq paA|osal S|
9pou 3|buIs e U0 O/| ¥SIp pue
NdD JO 9dureqUIl PEO| 94|

%0 01 dn Aq uoneziiin Ndd
anoidull ued 3ojHagny ‘Al
-auaboiaiay bujpuey usym
“UOI1RJIS3YDIO J2UlPIUOD

0} PE3AYIDAO JaY1INj ou Buippe
3|lym Bulnpayds 92inosai
pUE UOI1eWI1SS ddUPWIOMUSd
ULIUSIPLYS SIIDIHGN
J3INPaYds Yy ul

papn|dul aJe Sylomaulel) bul
-|NPay2s paINgIsIp pue paz
-|elIUSD Y10q JO $2IN1ed) 3y |
"9DU313}431Ul UOI1eD0||0D

Jo uondwaaid Aoud ay|
S9DURISLUNDIID Ul sa1elado
J13|Npayds pa1sabbns ay |

‘2uli} [eulbuo

31 JO %19 01 00| WOy sawn
uona|dwod ¥se} 1D 01 3|qe
Sem DOHANY ‘siusadxa U

1502 1S9MO|
-PU0I3S 31 PUE UONE|OIA
V1S Jo obeiuadiad 159mO| ay1
sanalyde yoeoidde paisab
-bns aya ‘swyalioble abpa
-bunind 01 pasedwod usyp

"s912UlagNy Ul
Swyloble buinpayds ynejep
2y 01 Jouadns ale swyioble
IdDg pue |ag ay) ‘sbuipuy
[PrURWILIRdXS 01 BuIpIoddyY

‘SOLIRUSDS PlIOM-|P3l [RJD
-ASS U 1531 SeM JDIHGNY

J1215NP2 sa19U
-1agny| pako|dap e Ul A19A0d31
/12n0|1e) Buipn|pul ‘soLIBUSDS
JUSJ3YIP Japun Joineyaq
19|Npayds pasodoid paisa)

wyilobje mau ay1 a1epljea
01 51591 JUSJRYIP PR12NPUOD

J121SN|D s218U
-12gNY| (B34 B UO pajen|ea]

"9pou 3|buls e uo peo| O/
Jsip pue NdD padugjequn Jo
wajgoid sy ss2Ippe 01 Wyl
-0b|e BulNpayds diueukp
(1a29) Awoud-oIsia-nNdd
-padueleg ay3 pajuasald os|y
‘pasodoud sem (|gg) A1iold
-OI»slg-padueleg psjjes
yoeoidde Buinpayds diueuAp
e 'S9POU U9aM13 adue|eq
O/1isIp au3 aroiduwir o]

‘S9pou JaisnP
Jo Adeded [euoneindwiod
34} UO paseq sJauleiuod
S9INPaYDS Syd ‘suoddns uon
-ed||dde paziisuieiuod ayy
1By SYS| a1 Joj a1elidoidde
S 1Y} SPOU e 531800 A||ed
-11BUWIOINE | "S219uiagny|
92In0s uado spuedxs IDIH
-3gNY ‘Syd pue Iy buisn Ag

‘PaUIULIRISP ik
suojsIDap Bulinpayds ‘21es |je
-I9AO S, 433SN|D DY JO SIseq Y3
uQ "BulNpayds 21e3s-paieys
PLGAY 10} [SpOW Ylomauield

'SpOd so12ulagny|
10§ 9|geIBWI1 A1 SE ||9M Se
UOIINJOX3 J2UIRIUOD UO Blep
1sed JUNODDE OUl SA¥PY 1BY)
19|NPaYDs M3U B PadNPOoIU|
‘wiopiejd bulnpayos diuweuAp
DDANY 3Y) padojansd

'$10419 IndINO JO AdeINDOR DY)
9583J0U] UeD [9pow buinanb
91e1-buissadoid-buikiea e yum
|9poW Jesul| e bujuiquiod)

'PeO| O/1s1p 3u Bunel
-odiodul Ag 1usDLD 210W I9IN
-pPayDs $219UISGNY Y1 RN

'SI91SNP YS|-snoauabolaiay
Buijpuey ut IolHagNY Jo
Souewioyiad pue Aouaidyje
2U1 55955y “sullojield sbpa
PNOJ2 U0 $24N3231IYdJe /S| SNO
-ausbola1ay Joy Jo1eIsaydIo
J2Uu[eIuod B ‘JDIHIGNY

9sn ol Ind pue dojeasg

J91SN|D sa19Ulag Ny
e Ul speopiom buibuenie
10} POY13W MaU e aqudsa

‘uona|dwod

3se3 dn paads 01 UoINdIX
J2ulelu0d uo elep 1sed azijiin
‘K|9AI1D49 210U SIBUIPIUOD
194p0Q Aojdap Ja1sn|d snosu
-9bo1919y e djay 01 JI9|npayds
$919UJagNY| JIUIBUAD B 91eai)

‘SUIISAS

Qg9 40 buuoisiaoid Jsureiuod
135813, SWINSAS paseq
-S91auIaqgny| 10} yoeoidde
|0J1UOD }DeqpPa3) B A1e3l)

suoneywr

suonedijddy

sbuipury

syuswadxy

swiyyiob|y/ABojopoyia |y

saA1123(q0

(panunuod) L ajqey

Page 12 of 26

(2023) 12:87

Senjab et al. Journal of Cloud Computing

‘So1RW

30D J2Y10 Yum 21n1da1ydle
pasodold ay1 JO SSSUDAIIDRYS
3U1 31eNn|eAS 0} papaau aq Aewl
24eas31 Jay1in4 ‘pasn du1sw
300 dy1>ads ay1 01 paywI]

‘SyJomaulely
SS91IaAIRS 01 3|gedljdde Ajuo
S| Wyiobie aya ‘os|y “siusw

-uadxa Aseutwiaid el payLan
AJUO SI SSOUSAINDRYS 9y |

SI21SN|D S313UIAgNY
JO UOI1EZ]|1IN 92IN0S4 31
anoldwi 01 pasn aq ued snaz7

SIUSWUOIIAUD
pnoj> 104 30D buiroidul

‘subipeted pnojp

SS94aAIS Ul bulnpayds pod
Jo Aouapyys snoidwi 03 pasn
S| wyiobje pasodoid ay |

'$92JN0S3I JIDY3 3N SIA1SN|D
sa12ulagNY AUSIDLYS MOy
3seanul Auedyiubis ued snaz
‘0115 BueaIq INoYIM
abeIaAR UO 9509 01 G| WO}
abesn ndD asealdul ued snaz

'2IN123)ydJe paisabbns

aU1 Aq panouwlal Aj219|dwod
sem Bujuolsinold-1snQ
‘Bulnpayasal 921n0sal
Joynsal e se 94G¢ | Aq pasiel
sem 30D abeiane ay] 9405 Aq
pasealdul s| 300 abesane ay|

"9pou
4oea UOo 3due|eq 324n0sal bul
-Uleulew aiym awil dneis
pod uo umop 1nd Apuedyiubis
ued yoeosdde paysabbns ay |

'sqof 110y9-159q
pUE SSDIAISS SAISUSS-ADUle|
Buisn passasse si snaz ‘bunias

uondnpold ajeds-abie| e uj

SODIAISS JBLI0 YIIM Pa1ed0]
-02 $3DIAJ3S BUIWEaIIS O3PIA
BuIsn 21n1031yDIe 31enjeAd

‘wyiobje

pasodoid 9y JO SSOUDAIDDYD
9411591 01 paulioyiad S|
uonedYLISA AleUlwifRd

“UOI1e|OS|

Jaule1uod sanoldwi snaz
‘SJUBUIB|S UONR|OS| 81eM1JOS
pue 2iempJey JO UOIIBUIPIOOD
23Ul ybnouy| 9sn IsAISS [enide
UO paseq snaz Ag panpayds
ale sqof 1oya-159g ‘padojanap
SPA SN3Z ‘SWISIUBYIDU UOIS
-U31X3 $319UJagNy| U0 paseg

SIDIAIDS Y10 UM pa31edo)
-0D S2DIAJSS Bululeans 0apIA
Buisn ain1da11ydIe 31enjeay
plepuels €0¢ld NLl =y Ul
pasodoid disw 300 Y3 9sN
‘pasodoud st pod auwles ayy

Jo Bulnpayds usuNdU0d bul
-besans| yoeosdde Buiinpayds
e ‘subipesed pnojd ssaj1aAIRS
ul bulinpayds pod Jo ssausAn
-D3}49 Y3 SZIWIXew Jayunj of

*SI3UIRIUOD 10§ SANI|I
-eded UOI1e|OSI 21eMYOS pUe
alempley aroidw sauobared
peopjom snoleA buowe
$32IN0S31 APIAIP A|qIX3|4
“UOIIEZI|1IN 92IN0S3 3SedUl
01 $1215N|> Sa13UIGNY Ul
SIDIAIDS SAINISUIS-ADUDIL)

pue sassa201d 10ya-153q JO
UO[1BD0|0D 2INJ3S Y1 3|geuUT

'SOTS 03Ul SDLIBW
30D S2UIGUIOD 1B} UOISUS1IXD
J9INpayds sa1aulagnyl pue bul
-INP3YDS21 22IN0S3I B U5

‘suoljedljdde Jua4induod 3|eds
-9bJe| ul Apuaya alow spod
3INPaYDS UBD SUIISAS S919U
-13gNY} UO 3{ING S}Jomauely
SS9IAAIRS MOY 21eDNSIAU|

suoneywr

suonedijddy

sbuipury

sjuswiadxy

swiyyiob|y/ABojopoyis |y

saAa(qo

(PanunUOd) | 3jqey

Senjab et al. Journal of Cloud Computing (2023) 12:87

evaluate KEIDS using real-time data from Google com-
pute clusters and find that it outperforms existing state-
of-the-art schemes.

In Lin et al. [36], the authors propose a multi-objective
optimization model for container-based microservice
scheduling in cloud architectures. They present an ant
colony algorithm for solving the scheduling problem,
which takes into account factors such as computing and
storage resource utilization, the number of microser-
vice requests, and the failure rate of physical nodes. The
authors evaluate the proposed algorithm using experi-
ments and compare its performance to other related algo-
rithms. They find that the proposed algorithm achieves
better results in terms of cluster service reliability, cluster
load balancing, and network transmission overhead.

In Wei-guo et al. [37], the authors propose an improved
scheduling algorithm for Kubernetes by combining ant
colony optimization and particle swarm optimization
to better balance task assignments and reduce resource
costs. The authors implemented the algorithm in Java
and tested it using the CloudSim tool, showing that it
outperformed the original scheduling algorithm.

In the work by Oleghe [38], the idea of container place-
ment and migration in edge servers, as well as the sched-
uling models created for this purpose, are discussed by
the author. The majority of scheduling models, according
to the author, are based mostly on heuristic algorithms
and use multi-objective optimization models or graph
network models. The study also points out the lack of
studies on container scheduling models that take dis-
persed edge computing activities into account and pre-
dicts that future studies in this field will concentrate on
scheduling containers for mobile edge nodes.

In Carvalho et al. [39], The authors offer an addition
to the Kubernetes scheduler that uses Quality of Expe-
rience (QoE) measurements to help cloud management
Service Level Objectives (SLOs) be more accurate. In the
context of video streaming services that are co-located
with other services, the authors assess the suggested
architecture using the QoE metric from the ITU P.1203
standard. According to the findings, resource reschedul-
ing increases average QoE by 135% while the proposed
scheduler increases it by 50% when compared to other
schedulers.

The above-mentioned schemes are summarized in
Table 2.

Al focused scheduling

Many large companies have recently started to pro-
vide AI based services. For this purpose, they have
installed machine/deep learning clusters composed of
tens to thousands of CPUs and GPUs for training their

Page 13 of 26

deep learning models in a distributed manner. Different
machine learning frameworks are used such as MXNet
[40], TensorFlow [41], and Petuum [42]. Training a deep
learning model is usually very resource hungry and time
consuming. In such a setting, efficient scheduling is cru-
cial in order to fully utilize the expensive deep learning
cluster and expedite the model training process. Different
strategies have been used to schedule tasks in this arena,
for examples, general purpose schedulers are customized
to tackle distributed deep learning tasks, example include
[43] and [44]; however, they statically allocate resources
and do not adjust resource under different load condi-
tions which lead to poor resource utilization. Others
proposed dynamic allocation of resources after carefully
analyzing the workloads, examples include [45] and [46].

In this section, deep learning focused schedulers are
surveyed.

In Peng et al. [46], the authors propose a customized
job scheduler for deep learning clusters called Optimus.
The goal of Optimus is to minimize the time required for
deep learning training jobs, which are resource-intensive
and time-consuming. Optimus employs performance
models to precisely estimate training speed as a func-
tion of resource allocation and online fitting to antici-
pate model convergence during training. These models
inform how Optimus dynamically organizes tasks and
distributes resources to reduce job completion time. The
authors put Optimus into practice on a deep learning
cluster and evaluate its efficiency in comparison to other
cluster schedulers. They discover that Optimus beats
conventional schedulers in terms of job completion time
and makespan by roughly 139% and 63%, respectively.

In Mao et al. [47], the authors propose using modern
machine learning techniques to develop highly efficient
policies for scheduling data processing jobs on distrib-
uted compute clusters. They present their system, called
Decima, which uses reinforcement learning (RL) and
neural networks to learn workload-specific scheduling
algorithms. Decima is designed to be scalable and able
to handle complex job dependency graphs. The authors
report that their prototype integration with Spark on a
25-node cluster improved average job completion time
by at least 21% over existing hand-tuned scheduling heu-
ristics, with up to 2Ximprovement during periods of
high cluster load.

In Chaudhary et al. [48], a distributed fair share sched-
uler for GPU clusters used for deep learning train-
ing termed as Gandivafair is presented by the authors.
This GPU cluster utilization system offers performance
isolation between users and is created to strike a balance
between the competing demands of justice and efficiency.
In spite of cluster heterogeneity, Gandivafair is the first
scheduler to fairly distribute GPU time among all active

Page 14 of 26

(2023) 12:87

Senjab et al. Journal of Cloud Computing

Ajjed

-[1RWOINE SUOIDUNY 9180 |e
pue s312Ul3gny| Y1m sjppow
uoneziwndo ajdinul 199UU0d

swia|goud Juswade|d 4NA

"PaseaIDU] 24 UL 20U3)|IS)
SY1omIau [enuIA ‘sade|d a1e

sa19Ulagny ued jeyl suibnid uanpayds SA|0S O} sSwyoble onsunay -udoidde 03 (S4NA) Suonouny
Ul S9POU 03 SYNA BUned0j)y uonduny Jo uoneluawa|du| - pue sjepow uoineziwndQ jlomiau [enuia bulubisse Ag [6€]
SWIRISAS "anssi bulinpayds
Buinpayas paziesyusdep uo 3y} SS2UPPe 01 $211S1N3Y UO -asodind sy 1oy paie
4DJeasal payil| Yim ‘sysey paseq sWyYILob)y ‘s|opow uon -312 S|9pow bulNpayds ayy
‘sapou abpa 3|Iqow Bunndwod abpa dnels Ajuo -ez/undo 9ANDS(QO-NINW IO SUIWEXS O} Se [|am se ‘bunnd
pUe SW31SAS pazi|eliuadap 19PISUOD pue Paseg-d1IsNay Sjopow }lomiau ydesb buisn - -wod 9bpa ul uoirelbiw pue
uo SN0 P|NoYs Bulnpayds Hunnd e sjppoul buiinpayos pa31oelisge 9 ued wiajgold Jusawade|d JauleIuod Jo eapl
J3U[PIUOD Ul UYDIB3SaI 2ININ4 -WOD 9DPa paseq-Iauleiuod) J3UlRIUOD BUNSIXD ISON - JUSWade|d JaUIPIUOD BY] Y3 |1BIDP SIOW Ul 3qLISIP O] [8€]
‘suyaobje uoneziwndo
‘Juswubisse ullems spinied pue Auojod Jue
qof paInquiasIp AJUsAS 310w a1 bujuiquiod Ag pasueyus
pue ‘Peo| 3POU WNWIXew uay3 sl [opow bujnpayas
"3WaYds bulinpayds a2inosal 1aybiy e 150 92IN0Sal ||eISAO S8 9y]epoul ay1 buisn
19119¢ 9Y1 BuIsn syusw Jamoj e Ul buynsal ‘snbruysal JusWIIadxa uoeNWis e 1IN0
-UOIIAUS PNOJD PLUGAY pue Bulnpayds jeulbuo syl 001 WISPNO[D Yl pue A1ied pue 218310 PUe ‘|spoul
21|gnd ‘a1eAld Ul 9jedS spiMm e Suiogadino yoeosdde paiseb obenbue| bulwweiboid eAel S1110eIIXS ‘9|Npow bulinpayds
uo suoned|jdde paziisuieluod -bns sy 1eY1 S1RIISUOWSP 2y buisn sgy| 10} s921N0s3l ,$919U4aqNY JO SPOD 2INOS SWIBYIS BuIINPayDs 92In0sal
- Kojdap ued sa12ulagny S)nsal [eyuswadxa ay | 3|Npayds sioyine ay| 3y} dUIUIEXS Sioyine ay | sa1ouIagny dnosdwi o] - [/€]
"PESYISAO UOISSIWISURIY
}I0MI3U pue ‘Bujduejeq peoj
1915N 2 ‘Alljigepusdsp 921A19S 'SaNSS|
115N Jo uoneziwndo ayi ul Buinpays a|puey 03 poyiaw
way1 pawliopadino poyiaw Auoj0d Jue ue 159b6ns 01 pue
‘pasn saIN1d2UYDIe uoneziwndo pa1sabbns SISAISS 0IDIW /| YUM UOReD SIDIAIDSOIDIW PISEQ-IaUIRIUOD
3Q P|NOYS J2Ule1uod pnojd [eal pnojd Ul bulinpayds ad1AIS 2yl ‘swyiobejueasas -ijdde ue buiney g10zA 92el] 10§ |9pow buiinpayds
sn|d Auxajdwod awin ybiH -SOIDIW P3seg-I1auleluod) snoiaa.d 03 uospedwod U J31sN|D egeq|y WOl elep [eay wyiobje Auojod uy aAn3[go-nw e pjing [9€]
'S1I9SN pud
10} 9dueWIOMd Saroidwl
(SQIF) J2|NPaYDS USALP DU
-134121ul pue AB1aua paseq
-s91ouIagny| pasodoid ayy %N
'392U3.34431Ul JO JUNOWE 153 ABJaud pue adualaIa1Ul 10§
3y} yum Ajjewndo suoped BuiuNodIEe 3|IyM SIXSIUO0D | O]
1X2) UaAID ay3 Ul pay -l|dde Bulnpayas pue sapou 215N ‘uoneziwndo [elIsnpul Ul sapou pnoja-abpa
-pads Jou aie g3y Jo [enualod c[of [euisnpul Joj Buiinpayds pnopr-abpa jo uondunsuod 21ndwod 316005 3y} Woyy 3A1123(gO-1}NW Uo paseq Uo siauirIuod Huibeuew 1oy
2ININJ pUB SUONBIWI| 3y PUB JUsWabeuUrW JaUIRIUOD) ABiaua ayy bupnpai Ag aWl} [e2J Ul pauleIqo eleq Bujwweibolid seaul| 1aba1u| J13]|03u0d 3|geded e1uasald [S€]
suoneywiI suonedjjddy sbuipuiy syuswadxy swiyyiob|y/ABojopoyia |y saAalqo #

(uoneziwndo aARDS(qO-IN) Alewwns 21n1elsl] Z djqeL

Senjab et al. Journal of Cloud Computing (2023) 12:87

users. The authors demonstrate that Gandivafair deliv-
ers both fairness and efficiency under realistic multi-user
workloads by evaluating it using a prototype implemen-
tation on a heterogeneous 200-GPU cluster.

In Fu et al. [49], the authors propose a new container
placement scheme called ProCon for scheduling jobs in a
Kubernetes cluster. ProCon uses an estimation of future
resource usage to balance resource contentions across the
cluster and reduce the completion time and makespan of
jobs. The authors demonstrate through experiments that
ProCon decreases completion time by up to 53.3% for a
specific job and enhances general performance by 23.0%.
In addition, ProCon shows a makespan improvement of
up to 37.4% in comparison to Kubernetes’ built-in default
scheduler.

In Peng et al. [50], the authors propose DL2, a deep
learning-based scheduler for deep learning clusters that
aims to improve global training job expedition by dynam-
ically resizing resources allocated to jobs. The authors
implement DL2 on Kubernetes and evaluate its perfor-
mance against a fairness scheduler and an expert heuris-
tic scheduler. The results show that DL2 outperforms the
other schedulers in terms of average job completion time.

In Mao et al. [51], the authors propose a new con-
tainer scheduler called SpeCon optimized for short-
lived deep learning applications. SpeCon is designed to
improve resource utilization and job completion times
in a Kubernetes cluster by analyzing the progress of deep
learning training processes and speculatively migrat-
ing slow-growing models to release resources for faster-
growing ones. The authors conduct experiments that
demonstrate that SpeCon improves individual job com-
pletion times by up to 41.5%, improves system-wide per-
formance by 14.8%, and reduces makespan by 24.7%.

In Huang et al. [52], for scheduling independent batch
jobs across many federated cloud computing clusters, the
authors suggest a deep reinforcement learning-based job
scheduler dubbed RLSK. The authors put RLSK into use
on Kubernetes and tested its performance through simu-
lations, demonstrating that it can outperform conven-
tional scheduling methods.

The work by Wang et al. [53] describes MLES, a fea-
ture-based task scheduling system for machine learning
clusters that can conduct both data- and model-parallel
processes. To determine task priority for work queue
ordering, MLES uses a heuristic scheduling method. The
data from this method is then used to train a deep rein-
forcement learning model for job scheduling. In com-
parison to existing work schedules, the proposed system
is shown to reduce job completion time by up to 53%,
makespan by up to 52%, and increase accuracy by up to
64%. The system is tested using real experiments and
large-scale simulations based on real traces.

Page 15 of 26

In Han et al. [54], the authors present KaiS, an edge-
cloud Kubernetes scheduling framework based on learn-
ing. KaiS models system state data using graph neural
networks and a coordinated multi-agent actor-critic
method for decentralized request dispatch. Research
indicates that when compared to baselines, KaiS can
increase average system throughput rate by 14.3% and
decrease scheduling cost by 34.7%.

In Casquero et al. [55], the Kubernetes orchestrator’s
scheduling task is distributed among processing nodes
by the authors’ proposed custom scheduler, which makes
use of a Multi-Agent System (MAS). According to the
authors, this method is quicker than the centralized
scheduling strategy employed by the default Kubernetes
scheduler.

In Yang et al. [56], the authors propose a method for
optimizing Kubernetes’ container scheduling algorithm
by combining the grey system theory with the LSTM
(Long Short-Term Memory) neural network prediction
method. They perform experiments to evaluate their
approach and find that it can reduce the resource frag-
mentation problem of working nodes in the cluster and
increase the utilization of cluster resources.

In Zhang et al. [57], a highly scalable cluster scheduling
system for Kubernetes, termed as Zeus, is proposed by
the authors. The main feature of Zeus is that based on the
actual server utilization it schedules the best-effort jobs.
It has the ability to adaptively divide resources between
workloads of two different classes. Zeus is meant to
enable the safe colocation of best-effort processes and
latency-sensitive services. The authors test Zeus in a real-
world setting and discover that it can raise average CPU
utilization from 15 to 60% without violating Service Level
Objectives (SLOs).

In Liu et al. [58], the authors suggest a scheduling strat-
egy for deep learning tasks on Kubernetes that takes
into account the tasks’ resource usage characteristics.
To increase task execution efficiency and load balancing,
the suggested paradigm, dubbed FBSM, has modules for
a GPU sniffer and a balance-aware scheduler. The execu-
tion of deep learning tasks is sped up by the suggested
system, known as KubFBS, according to the authors’
evaluation, which also reveals improved load balancing
capabilities for the cluster.

In Rahali et al. [59], the authors propose a solution for
resource allocation in a Kubernetes infrastructure host-
ing network service. The proposed solution aims to avoid
resource shortages and protect the most critical func-
tions. The authors use a statistical approach to model and
solve the problem, given the random nature of the treated
information.

The above-mentioned schemes are summarized in
Table 3.

Page 16 of 26

(2023) 12:87

Senjab et al. Journal of Cloud Computing

‘SJuswiaAoId Wl 21n1ny pue
SUONPIIWI| [eaARI AW UONE)
-uswiajdwl pue Busay Jayun4

Bunndwod abpa

ur uoneziwndo uoneindwod
pue Juswabeurw 32IN0S3I
Uo SaIPN3S ydJeasas uadQ

‘sjuswaAoidwl a1n1ny pue
SUOIIRYIWI| [29A3) ABUI UONE)
-uswia|dwi pue Bunsal JlayuN4

$I91SNPD S212UlgNY
4O 2duewiopad aroidw o)

“Buiuten buiules| dssp oy
SI9ISN|D NdD Ul pasn ag ued

SEINTS)
91ndwod painqLisip uo sqol
Buissedoid erep buiinpayds

‘SpeopIom
Buiuiea| daap yim sia1snd
uonanpoid ul pasn aq ued

‘JInejap Aq J9|NPayds sa1au
-19gNY} 9Y J9A0 %t /€ 01 dn
JO JuswWaAoIdwl uedsaxew e
SMOYS 1] %€ €S 01 dn Ag sqof
Ule1Ia Joj sawn uona|dwod
1N UBD pUR 940'€7 Aq 9oUBW
-104J2d |[RI9AO S1S00Q UODOI]

"AdUBIDLYe puUe ssaule)
410q S2A3IYDE JjRjeAIpUERD)

%l

1583 18 Ag panoidwl S| awli

uonajdwod gof sbeisne sy

'SoIsHNaY Bulinpayss pauny
-puey 01 ewag bupedwod

‘KloAlDadsal

‘uedsa3eul pue awiy uon
-9|dwiod gof JO SR Ul S19
-|npayds 4a1snpd s|gesedwod
UBY} Jo1aq 9%E9 PUB %6¢€ L
1noge swopad snundo

uo)H0Id 1591 01 pa1dnp
-U0D S1USWILIRAXS dAISUIIXT

121SN]> NdD-007 SNoausb
01219 B U] WIISAS 33 $59558
pue JuaWa|dul 03 Pasn Jam
SPROIOM J13SN-I3NW D13SI|edY

J21SN|D 3pOU GZ B Uo
adA10101d uoneibayul yieds

‘sauIydeW Ndo 9 pue

SI9AIDS dD £ Uo sqof buiuiesy
19NXIW 6 SUNJ 1eyy Jaisnp
Buluies| dasp e uo pakojdsg

's1915N |2 Buowe suon
-U31U0d 324N0sal buldueleq
3Ilym uedsaxew pue suiy
u0112|dWOoD $3583139pP UODOI]
"PUBLUSP 924N0S3J 24NINJ JO
uonaf01d ay3 pue S2I0PLIOM
941 JO 96eSN 92IN0SI 1SN
941 Y10g 1UNOIE 01| S%e}
u0D0Id "(U0D0Id) Ssaiboud
uo paseq ABajesls Jusw
-92e|d J2UIRIUOD B PAIUSSId

‘sa93uelenb

Ssaulie) Bulldaye INOYUM
ASUSIDLYS J21SN|D SSZIWIXew
1ey1 wsiueydaw buipesy
92IN0S3l [9AOU B YIM SNdD
19P|O 3SN 0} SIISN SIZIAJUIDUI
1lBJRAIPUPD) 'SI9SN DA1DR
Buowe Ajie) sw NdoO apim
-J21SN|2 $91B0||B pUE SI9SN
U99M13Q UOI1R|0S| 9dURW
-lopiad sapiroid rejeAipuen

‘swyioble buin

-paYy2s dyDads-peoprom Ules)
01 Bujulea| JusWadI0julRl

PUP SYI0MIaU [PINSU 32|11

ySe1 yoes

919|dwo> 01 papasau awlll Jo
1UNOWIR 9Y1 92NPaJ 01 ISPIO
Ul pa1ed0||e AJ[eDIWRUAD 218
$924N0Sal pue ‘padeld aue
sysel buluies) deaqg ‘gol yoea
01 Pa110|[e S92UN0S3I 9Y1 JO
uonouny e se paads buluiely
91e|N2[eD 0} S|9POoU DUl
-lopiad sa1e2.10 pue Bumy
auljuo elA bujulesy bulnp
92U3BJ2AUOD [9POW $1D1P3id

‘|e1auab ur aduewlolad 4y
-SN|> $312UIAGNY dURYUS pue
sawl buissadoid dn paads 01
Se ||om se ‘e1ep Biq Jo somod
aya ssauley pue 3ojdxa Aj|n4

‘Ssaulley
pue A2UadLya JO SpUeWSP
Bunadwod syl ussmiaq adue
-[Bq B SIS 18U SI21SN|D NdD
uo bBujuten bujules| dssp 1oy
19|NPayds aleys Jiey e dojpnasg

's121snP
Hunndwod painguisip uo bui
-Inpayds qof buissedoid ereg

19|Npayds
92IN0S31 121N |2 Bulules)
doap andays ue dojeasp o)

suoneyw]

suoned|ddy

sbuipuyy

sjuswiadxy

swiyyob|y/ABojopoylapy

saAnd3(qO

(BuliNPaYDS pasnd04-y) Alewuwins ain1eial] € ajqel

Page 17 of 26

(2023) 12:87

Senjab et al. Journal of Cloud Computing

$J215N|> bujuies| sulydew
a|eds-able| 1o} bulnpayds qor

's1915N|> bunndwod
pNo palelapay Ul sqof ydieq
1uapuadapul buiinpayas

sa1aulagny|
uo speopyiom buiules| desp
10} BulNpayds aziwndo of

s1215NnD buulea) daap ui bul
-INPay2s 924nosal anoidwi of

%9

01 dn Aqg Aoeindoe sanoidul
pue ‘97 01 dn Aqg uedsasew
'9%¢G 01dn Aq | Dr sasea1nap
SHIW ‘sioinpayds gol N
1USND 0} paJedwod USYA\

swiyiiobje bulinpayds
[PUOIIPERI} SWIOSAINO HSTY

‘%8| AQ oUW

-lojiad wiasAs pue 9/ 47

AQ uedsayew sasealou| os|e
11 %S L 01 dn Aq pa1s|dwod
30 01 qof Yoea 10§ sa%ey 1l
3w} 3y} s9dnpas uodHads

%S/ AQ snwpdo pue %1 v

AQ 44@ uey J1o113q sullopad
213 dwin uons|dwod
I0M 2DBISAR JO SULISY U]

sjuswiRdxa
|BN1DE puE B1ep |EN1DR UO
paseq suonenulis a|eds-abie

ASTd 4O

2duewloyiad 3y} a1en|ead 0y

P31ONPUOD 3Je SUOKeNWIS

19|npayds pasodoid
9Y3 91en[eAs 01 pawoped
2U9M SJUBWILIRAXD SAISUSIXT

(snwindo)

(44Q) 42INPaYDS SSaULle) BYL
pue J3[NPaYdSs dNsHNBY 1adxa
34} Yyum z1@ aJedwiod 0y
auop sem sisAjeue ybnoloyy

V¥ IBNXW U0 sgof 1 ut Aujige
-|edS 924N0S3 DIUWRUAD 10}
pamojle yd1ym ‘z1q dojanap
0) PSN Sem $312UlagNy|

‘Aiolid ysey uo buj

-puadap sI9AISS PapeopIspuUN
01 SI9AISS PIPEOISAO WO}
S34Se1 SYIYS pue Adeindde ul
uleb ou 01 a1 2dnpoud 1eyy
S$3SE) SOAOUIR) POYIaW [011UO0D
PeOo| WAISAS SIY3 'papeo)
-13N0 S| W1SAS 9Y1 USYA
“JUNODE O1U| SOSIIDRIRYD
|ejodwia) pue |eneds sgof

N Ue sayel 1eyl yoeoudde
Bulnpayas onsunay v

$919UJSgNY| UO pajUsW
-a1dwi s pue bujules| Jusw
-32J0jUlSJ UO PISeq S HSTY

‘S|I9POW BUIMOIB-MO|S SAOW
AjoAieIndads pue ssaiboud bul
-Ules] Jo 3oei1 dasy swiyiliobe

‘Slppow buipuedxa Apoinb
10§ $921n0sal dn 9.4 01 ISpIO
U] J9%20(pue S213UIag Ny
91| SISUIPIUOD PaZI[eNIA S|
19|NPayds JO UonepUNO) Y|
‘pasodoid sem ‘suonedidde
Buluies| dasp bunasy 1oy
palI0|IeY Sl 1BY) JSINPaYds

JaulrIUOD anbjun e ‘uoHads

“SYAoMISU
|einau buisn z1g Aq spew ale
$qol 10} SUOISIDEP UOIeIO|[e
92IN0S3J AUIUQ '}l dUNI-dUY O}
pasn si BuluIes| JUSWSDIOMIRI
pUE ¥IOMI2U [eInau oyl dn
wiem 01 pasn si bulules| pasia
-1adns aulyo ‘bulutesy sqof

1@ 4o 9s51nod ay1 buung 'z1a
Ul pauIqUIOd ale sayoeoidde
BuuIeS| JUSWISDIOMUIRI pUP
Buluies| pasialadns ay |
‘Butuies) dssp Aq UaALP SI
1ey1 s123sn | bujuies) daap oy
J9|NPaYds e ‘71Q pR1usaid

‘uoisidald

pue AJualdLa S1l asealdul pue
Wa1sAs Bulnpayds 1aisnp
Buluies| aulydeW e 21831

'$1235N(2 bupndwod

pNoJ> palelapa) AUePW SSOIDP

$3559501d yo1eq Juapusdapul
21nqLsip Alpandepe ued 1eyy
13|NPayds qol paseq-bujuies)
JUSWIADIOJUIRI d33p B SIHSTY

SPROPIOM
Buluies| dasp 10} Juswabe
-UeWI 92In0Sal 9ziundo o)

$I91SN|D s312UlgNYy
Ul suonedijdde bujules| dasp
104 Bulnpayds anoidwl o]

's1215nP2 bul

-uses| dasp aAIsuadxe JO 1IN0
150W 9y 196 01 pue Ua|npayds
115N} Buluies| dasp aAI1D3YD
‘3sodind-jesauab e a1eai)

suonejwn

suonediddy

sbuipuly

sjuswiadxy

swiyiiob|y/ABojopoyrapy

saA1a(qo

(panunuod) € ajqey

Page 18 of 26

(2023) 12:87

Senjab et al. Journal of Cloud Computing

'SOLRUDIS Xa|dWOod aJowl

U131 bunssl pue wyioble ayy
40 9duewiopad ayy buiroidwi
Uo SN20J APU YIOM 21nIN4
“1X3) 3Y1 Ul paUoUaW Jou 3l
POYyIBW 21 JO SUOHeUWI| Y|

uon
-eJjoge||0d Weal-i3nw 1oddns
01 swJojpe|d buiuies| dasp

Ul pasn aq ued wyiobje
Bulnpayds pasodoid ay |

mopagny| ul buiuresy buiules)
daap painquasip 10j pasn

J21SN|> B Ul SI2Uleluod
Buibeuews ul sa1ulagny| JO

aouewllopad sy arosdull
01 Pasn 9q Ued poy1aw ay |

suon
-edjjdde (714) dooj-ay3-uj-bo4

SWID1SAS
pno|>-abpa pajualio-saiau
-13gny| Jo ddurWIOd Y}

aA0ldW| 03 pasn aq ued Sley|

$13SN JO SPI3U AU 199U
pue 9due[eqg PRO| SUNSUD
wyobje pasodoid ay |

13Npayds
sa12uIagny nejap o3 paled

-WO0D 907 190 Aq paads
Bujuiesy sasealdu] Js|npayds

‘uolez||in
9DIN0S3I 121SN|D 958U
puUE J31SN|> 3Y1 Ul Uone)
-Uswbel) 92IN0S34 9INPaI
01 9|qe sem wyloble ay |

'$912UIagNY| JO J3INPaYDS
1|NBJIP SY3 UBY) J9ISEY S|
yoeoidde Buinpayds mau ay |

9%/ 7€ AQ 1502 bulinpayds
pa5e3103p PUB 91| AQ 18l
ndybnoiyy waisAs paseanul
11 ‘saul|aseq 03 uosedwod uj
'sapijod bulinpayds Jadoid
2y buuies| Ul NJssaddNs sem
SIeY| ‘S91BDS WSISAS U0 suloned
|eALLIE 359ND3I JO SSa|piebay

435N Jo swieay a|dinwi
pue wiope|d bujules| dasp
e Bulsn pa3sal sl wyiioble
Bulnpayds pasodoid ay |

sgol mopiosus|
40135 e Buisn uonen|eny

'S)NSal 9dUSdAXD
Buisn p=1sal sem poyiaw 3y

'S9081) PROjyIom [eal Buisn
P12NPUOD SJIM SIUDWISAXT

‘wyobie buin

-payds s219UIaGNY PaAoIdul
ue yum wiopeld buiuies)
dasp paseq-19x20(e 95N
'$121SN|2 21 UO PeO| Y3 }23YD
A|SUIINOJ PUB SISISN|D [BNLIA
Se weal a1 JO $1asn [9POo

'sqof syl 1oy bulinpayas bueb
pue Bujjedsoine paiybrom
suoddns jeyy J1s|npayds e

918315 01 SISYO PUE NOSVHA
JO SPOYIaW 3yl SUIqUIOD

‘wyiuobie buin

-payas JauleIuod ayy aziwndo
01 uondIpaid yJomiau [einau
INLST pue Aloayl waisAs

K216 3Y) s35n poyiaw ay|

101RJ1S2YDIO S219UIGNY
wiope|d Syw

‘syIomiau Ad1jod adinw
YM S1NS3J 343 SUIQUIOD
pUP UOIIRULIOJU] 91B1S UIDISAS
pPagWa 03 SYIoMIaU [eINdU
ydeib skojdws Ajjeuoiippe u
‘Bulinpayds asimdais Aq Alje
-UOISUSWIP UO[1RIISaYDI0 3y}
95NPal 01 J3PIO U| POy
D131I2-103108 Jusbe-ninuw
pa31eulplood e skojdwa Sley
1915N|D 96pa Y3 uIyum
sadeds yoiedsip diueUAp
pue yoiedsip 1sanbai pazi
-|elyuad3p apiroid 03 Japlio U|

‘wyaobje buinpayas
sa1ouIagny| paroidwil 3yl
yum wiopeld buluies| desp
paseg-iax20Q e a1eibaiul uon
-849d00D Wiea} 21epoWW0dIe
ued Jey) swioje|d buiuies)
daap Joy poyraw buiinpayds
DAI1D943 2I0W B $15966Ng

‘bujuren

Bujuies| desp painqguisip
10} 232Ul Ny} Ul JID|NPaYDS
92IN0S3l JIWRUAP € 91ea1D)

"K109Y3 WR15AS 21D

93U yum poyiaul uondipaid
3I0MIBU [BINSU N1ST 9Yd
spua|q 1eyy ueld bujnpayds
sa1aulagny| e dojeasg
‘sopou buissadold ayy buowe
yjse1 bulinpayds ayi apIaip

01 wuose|d (Sy) WaisAs
1aby-nNpy asodind-inw
'P3Seq-|2POW B S3sSN 1yl 0}
-BJISAYDIO $312UIagNY S} 10§
J3NPaYDS WOISND e 31eal)

‘wIa1 Buoy

931 J2A0 S1s9nbai buissadoud
Jo 21e1Indybnoiyy sy sasiel
1ey} (SIeY)) sa12ulagny) uo
PasNJ04 SWAISAS Pnoj-abpa
10} yiomaulesy Buiinpayds
paseq-bululed) e pajuasaid

suonejwn

suonediddy

sbuipuly

sjuswiadxy

swiyiiob|y/ABojopoyray

saA1alqo

(panunuod) € ajqey

Page 19 of 26

(2023) 12:87

Senjab et al. Journal of Cloud Computing

“W1sAs
pasodoud sy Jo Ajige|eds ayy
Buircidwl UO SN0} OS|e PjNod

YIOM 31NN "SOLIBUSDS JUSIYIP
Ul waisAs pasodoid ays Jo
SSBUBAIIDAYS BY) 31eiISUOWSp
01 PaPasaU ale sUol1en|eAd

115N Sa19UIagNy
e ul yse1 bujules| dasp ajn

pue syusWRdXa JSYLN4 -payds 01 Pasn aq Ued §g4gnyy

‘Buidueleq peo| 1o Al

-deded §,J915N)2 9y sadUBYUD
pue saiAde 7 Jo uona|d
-Ww0d 2y} sa1padxa Sg4gny

125N sa18UIgNY

9pPOU-9| B S| J21SN|2 8yl pue
Syse1 7 pllom-|eal buisn paje
-N[eAS S| WR1SAS pasodoud ay)

‘S9INPOW J3|NPayds
2IeME-3DUR[EQ PUP JJJIUS
NdO pazijedads buisn sg4gny|
paweU Wa1sAs bulinpayds

e p|iNg 01 Pa15abbNs s1 3
'Sonsue1eIRYd

uondwNsuUOd 32IN0S3l S YSe}
7@ 3Y3 JUNODJE 01Ul S3%eY 1eY]
[opow buinpayds pauleb
-3Uuy ‘padueleq e 2183l

‘speoppiom buiuies| doap
10j WSiueydsw bulinpayds
paulelb-aul ‘padueleq e 1aJ0

[6S]

suoneyw

suoned|ddy

sbuipuyy

sjuswiadxy

swiyyob|y/ABojopoylay

saAId3(qO

#

(panunuod) € 9qel

Senjab et al. Journal of Cloud Computing (2023) 12:87

Autoscaling-enabled scheduling

Autoscaling is an important feature in Kubernetes
scheduling because it allows for automatic adjustment
of the resources allocated to pods based on the current
demand. It allows efficient resource utilization, improved
performance, cost savings, and high availability of the
application. Auto rescaling and scheduling are related in
that auto rescaling can be used to ensure that there are
always enough resources available to handle the tasks
that are scheduled. For example, if the scheduler assigns
a new task to a worker node, but that node does not have
enough resources to execute the task, the auto scaler can
add more resources to that node or spin up a new node to
handle the task. In this way, auto rescaling and schedul-
ing work together to ensure that a distributed system is
able to handle changing workloads and optimize resource
utilization. Some of the schemes related to this category
are surveyed below.

In Taherizadeh et al. [60], the authors propose a new
dynamic multi-level (DM) autoscaling method for con-
tainer-based cloud applications. The DM method uses
both infrastructure- and application-level monitor-
ing data to determine when to scale up or down, and its
thresholds are dynamically adjusted based on workload
conditions. The authors compare the performance of
the DM method to seven existing autoscaling methods
using synthetic and real-world workloads. They find that
the DM method has better overall performance than the
other methods, particularly in terms of response time
and the number of instantiated containers. SWITCH
system was used to implement the DM method for time-
critical cloud applications.

In Rattihalli et al. [61], the authors propose a new
resource management system called RUBAS that can
dynamically adjust the allocation of containers running
in a Kubernetes cluster. RUBAS incorporates container
migration to improve upon the Kubernetes Vertical Pod
Autoscaler (VPA) system non-disruptively. The authors
evaluate RUBAS using multiple scientific benchmarks
and compare its performance to Kubernetes VPA. They
find that RUBAS improves CPU and memory utilization
by 10% and reduces runtime by 15% with an overhead for
each application ranging from 5-20%.

In Toka et al. [62], the authors present a Kubernetes
scaling engine that uses machine learning forecast meth-
ods to make better autoscaling decisions for cloud-based
applications. The engine’s short-term evaluation loop
allows it to adapt to changing request dynamics, and
the authors introduce a compact management param-
eter for cloud tenants to easily set their desired level of
resource over-provisioning vs. service level agreement
(SLA) violations. The proposed engine is evaluated in
simulations and with measurements on Web trace data,

Page 20 of 26

and the results show that it results in fewer lost requests
and slightly more provisioned resources compared to the
default Kubernetes baseline.

In Balla et al. [63], the authors propose an adaptive
autoscaler called Libra, which automatically detects the
optimal resource set for a single pod and manages the
horizontal scaling process. Libra is also able to adapt the
resource definition for the pod and adjust the horizontal
scaling process if the load or underlying virtualized envi-
ronment changes. The authors evaluate Libra in simula-
tions and show that it can reduce the average CPU and
memory utilization by up to 48% and 39%, respectively,
compared to the default Kubernetes autoscaler.

In another work by Toka et al. [64], the authors propose
a Kubernetes scaling engine that uses multiple Al-based
forecast methods to make autoscaling decisions that
are better suited to handle the variability of incoming
requests. The authors also introduce a compact manage-
ment parameter to help application providers easily set
their desired resource over-provisioning and SLA viola-
tion trade-off. The proposed engine is evaluated in simu-
lations and with measurements on web traces, showing
improved fitting of provisioned resources to service
demand.

In Wu et al., the authors propose a new active Kuber-
netes auto scaling device based on prediction of pod rep-
licas. They demonstrate that their proposed autoscaler
has a faster response speed compared to existing scaling
strategies in Kubernetes.

In Wang et al. [65] the authors propose an improved
automatic scaling scheme for Kubernetes that combines
the advantages of different types of nodes in the scaling
process. They found that their scheme improves the per-
formance of the system under rapid load pressure and
reduces instability within running clusters compared to
the default auto scaler.

In Kang et al. [66], the authors propose a method for
improving the reliability of virtual networks by using
optimization models and heuristic algorithms to allocate
virtual network functions (VNFs) to suitable locations.
The authors also develop function scheduler plugins for
the Kubernetes system, which allows for the automatic
deployment and management of containerized applica-
tions. The proposed method is demonstrated to be effec-
tive in allocating functions and running service functions
correctly. This work was published in the 2021 edition of
the IEEE Conference on Decision and Control.

In Vu et al. [67], propose a hybrid autoscaling method
for containerized applications that combines vertical and
horizontal scaling capabilities to optimize resource utili-
zation and ensure quality of service (QoS) requirements.
The proposed method uses a predictive approach based
on machine learning to forecast future demand and a

Page 21 of 26

:87

(2023) 12

Senjab et al. Journal of Cloud Computing

pauleIgo S Nsal
oy1nads pue dnias [plusuIadxe

e|lene aA0idw] 03 SDIAIDS
yjomiau Bupisoy a1nidnisesul

'S3pOU 121N Ul
uoleyWI| 921nosas buiuaaid
31ym suonesado [epnId $1931

SIINIDS
SIOMIBU JUBIRYIP Bunsoy

‘wa|goud uonedojje

92IN0SaJ JO UOIIN|0SaI pue buljd
-powl Joy yoeoidde |eonsiels
'suonouny

20Ual|Isal pue Ayjige|ieAe
SUONDUN }10MI3U an0idu|
'SS3UDAIIDDYD 150D pue
AWJIQIXS) WNWIXEW YIIM 258D

UO papiAoid UoIeWIOUI PYIWIT sa1auwiagny 01 padde agq ue) -oid snbiuydsy pa1sebbns syl SIN1dNIISELUI S318UISgNY PIS YIOMIaU J0J UBISSP JRINPO 95N ©G JO AUSISAIP SU3 SS2IppY [£9]
‘ainssaid peoj
‘dwiayds pasodoid ayy Jo suon ainssaid peo| ybiy Japun 2ouewlogad wWaisAs 'ssa01d ‘sabewl] papeo|-aid
-eyjw| pue suonedijdde jo sbues Japun wa1sAs a3 Jo Aljigels S9DUBYUD puUe SIDISN|D dAIDE 19|eds oine Buijess ayy ui sadAy opou yim sadAy apou Jo Aiaien e uo
|INJ @Y1 SUIWISIBP O} Papaau S| pue aduewopad ayi paroidwl 3y3 UIyam AjIGeISUl $95ea103p 1Neyap Yl Yum paledwod pue SNOLEA JO S1yauaq ayi saieiod paseq sa12ulagny 4o} uejd Bul
uofen|eAs pue busal Jayiin4 awayds pasodoid ay | yoeosdde paysabbns ay| paisal s awayds pasodoid ay | -10dU| POY1aW Pa1sabbns ay] -|edS D1eWOINe 1911aq B JUasald [99]
‘Js|edsoine pasodoid ‘uon
941 91eN[eAS AN 01 S| UONEY S313UISGNY Ul Buleds 93IN0sal pasds Jsjedsoine pasodold syl AjLan -dIpaid sedidai pod uo paseq ‘Buljeds 221n0osal sa19u
-UaWIIadxXa pue Y21easal Jayun an01dwil 01 pasn aq Ue) asuodsal I21sey pey Js[edsoIny 01 S)USWILRAX3 Pa1dNPUOD) J3[edsolNe salaulagny pasodold -1agnyf Jo Aduadys ayl aroidw [G9]
asn 0} siapirold uoned)jdde oy
'$92IN0SI J31583 S| pue suolsap buljeds
pajjddns aiow Apybijs pue doo| uonen|eAs wisi-1oys 191187 S8YPW 1Py S31aulagny|
s1sonbas paddoip Jamay A|qe S9DRI} OM Pa1ID||0D spoyiaw 10} W1sAs Buljedsoine paseq
- sa1aulagny| -92110U sp[alA yoeoidde ay | suonenwis 1582210) PISEQ-|Y SNOLIBA -y aAndepe ue dojpasp o] [#9]
JUSWIUOIIAUR
JIWeUAP ay3 Ul 2inpadold ssa201d buljeds [pyuozioy abe
Buieds [exuozuoy ayy pue pod -uew pue spod J0j 135 324N0S3)
241 Joj uonduossp 92in0sas - [ewlndo 19319p Ajjedlewoine o)
sa1epdn pue pod a|buls e Joy spod
spod sa1su UONBUIGUIOD 92IN0S1 1590 SY1 $319U4agNy J0) Wyiiobie buijed
- -13gny Jo Alljigeeds anoidwil o] - - S9UIWLISISP A|jpdewWOlNe RIGIT -S0INe aAndepe ue dojeasp o) [£9]
‘SUOIEIOIA VTS
pue BUIUOISINOIC-ISA0 92IN0S3)
U99M13q JJO-9pell [eapl 3yl puy sysanbai
'$92IN0S3U 01 35N ued siaplrold uopedidde Bulwodul Jo AljigelieA jenyoe
papiroid Jaybiy yeymaulos ‘19}oweled 1ey1 Jo3awesed Juswabeuew o) bundepe Ag suoisiap buljed
yum sisanbai paddoip Jomay JusWabeurw pue suIbud 10edWOD) JOYIOUR SUO YIM -SOINE Sa1aulagny| aAoidwil o
suopedydde yonw sednpoud aubua Buljeds Buljeds ay1 ssasse 0} pasn 212dwod sanbjuyda) bunsedaloy DAI1D249 2I0W
paseg-pNo|d Ul suolsdap buljed 1582310J-|NW 31 ‘DU1|35eq 2I9M $30RI1 OO Palayleb uo Bulules| sulyoew snolieA ‘doo) pue Jaises Jussbeuew suon
- -SOINe S3a1aWagNy| an0idwil 0] 1|NeJop Y1 01 UOSedWOD U] SIUSWIINSE3W PUB SUOIIRINWIS 1USWISSISSe Wiidl-1oys e u] -edljdde paseq-pnojd axew o] [¢9]
“Jauuew
SAIIANISIP-UOU B Ul UIBISAS YA
‘uonedljdde yoea Joj peay $912UJgNY dY3 03Ul UOIeIBIW
-19A0 9507-%S B YUM ‘%G| A 12UIRIUOD SPN|DUI O] J2ISN|D
J21SND SWIIUNJ S3SBAIDBP PUR 94501 Aq sa1aulagny e ul bunesado aie
sa1auiagny e Ul buluuni sis uondwinsuod AJowsw pue Nd)D (Svgny) wa1sAs buiessoiny SI2UlRIU0D AueWw Moy abueyd
- -UIPJUOD JO UOIIEDO|[e DIWeUAQ] S,J21SN|D 3Y1 $3SRAIDUI SYINY SyJewdyduURq dynuaids a|dniny paseg uolezi|iin 221N0say A|gIXa|) Ued eyl WlsAs ea1eal) [19]
'suonedijdde
“WI1SAS pUE 2IN1DNJISeIUl DY) WO}
HOLIMS 941 Ul parusua|duwl suoly "WR1SAS HOLIMS 943 Ul suoly 95N Ul Apeal|e uonewlojul butioyuow bul 'sdde pszisuleluod
-ed||dde pnoj> paseg-iauleluod -ed||dde pnojd aAnIsUSs-awn sanbiuyda) buljedsoine 1ayio 'sbumas peoppiom -Aojdwia anbiuydal Hujedsoine 104 anbjuyoa buijedsoine
JO 1X31U0D 31 0} PaWIT 1O} uoieIusws|dwil poyisw NG SULI0yadINo poyisw W@ Sy L [EN12E PpUE Pa1RINWIS Y104 (INQ) [9AS|-3INW D1weUAp e JIWRUAD [9AS|-NINW B 31eas) [09]
suoneywi suonediddy sbuipui4 syuswpadxy swiyioby/ABojopoyiay saAnd3(qO #

(BulNpayds pajgeus buleds-oiny) Aleuwwns ainielal| v ajqeL

Senjab et al. Journal of Cloud Computing (2023) 12:87

burst identification module to make scaling decisions.
The authors evaluate the proposed method and find that
it improves response time and resource utilization com-
pared to existing methods that only use a single scaling
mode.

The above-mentioned schemes are summarized in
Table 4.

Discussion, challenges & future suggestions

In Literature review section, a comprehensive review has
been presented covering four sub-categories in the area
of Kubernetes scheduling. It is crucial to provide a brief
discussion on the categorized literature review that is
presented in this section.

In the area of multi-objective optimization-based
scheduling in Kubernetes, several research studies have
been conducted to optimize various objectives such
as minimizing the energy consumption and cost while
maximizing resource utilization and meeting applica-
tion performance requirements. These studies employ
different optimization techniques such as genetic algo-
rithms, particle swarm optimization, and ant colony
optimization. Some studies also incorporate machine
learning-based approaches to predict workload patterns
and make scheduling decisions. There are still several
challenges that need to be addressed. Firstly, the multi-
objective nature of the problem poses a significant chal-
lenge in finding optimal solutions that balance conflicting
objectives. Second, the dynamic nature of the cloud envi-
ronment requires real-time adaptation of scheduling
decisions to changing conditions. Overall, the research
in multi-objective optimization-based scheduling in
Kubernetes shows great potential in achieving efficient
and effective resource management. Still, further work is
needed to address the challenges and validate the effec-
tiveness of these approaches in real-world scenarios.

On the other hand, Al-based scheduling in Kubernetes
has been a popular area of research in recent years. Many
studies have proposed different approaches to optimize
scheduling decisions using machine learning and other
Al techniques. One of the key accomplishments in this
area is the development of scheduling algorithms that
can handle complex workloads in a dynamic environ-
ment. These algorithms can consider various factors,
such as resource availability, task dependencies, and
application requirements, to make optimal scheduling
decisions. Some studies have proposed reinforcement
learning-based scheduling algorithms, which can adapt
to changing workload patterns and learn from experi-
ence to improve scheduling decisions. Other studies
have proposed deep learning-based approaches, which
can capture complex patterns in the workload data and
make accurate predictions. Overall, these studies have

Page 22 of 26

demonstrated that Al-based scheduling can improve
the efficiency and performance of Kubernetes clusters.
However, there are still some challenges that need to be
addressed in this area. One of the main challenges is the
lack of real-world datasets for training and evaluation of
Al-based scheduling algorithms. Most studies use syn-
thetic or simulated datasets, which may not reflect the
complexities of real-world workloads. Another challenge
is the trade-off between accuracy and computational
complexity. Future research in this area could focus on
developing more efficient and scalable Al-based sched-
uling algorithms that can handle large-scale, real-world
workloads. This could involve exploring new machine
learning and optimization techniques that can improve
scheduling accuracy while reducing computational
complexity.

Lastly, autoscaling enabled scheduling is an emerg-
ing research area that aims to optimize resource uti-
lization and improve application performance by
combining autoscaling and scheduling techniques. Sev-
eral research studies have been published in this area in
recent years. The analysis of these studies reveals that
autoscaling enabled scheduling can lead to significant
improvements in resource utilization and application
performance. The studies have shown they can help
reduce resource wastage, minimize the risk of under-
provisioning, and improve application response times.
However, despite these promising results, there are still
some challenges that need to be addressed in this area.
One of the main challenges is the complexity of design-
ing effective autoscaling enabled scheduling algorithms.
Developing algorithms that can adapt to dynamic work-
load changes and optimize resource utilization while
maintaining application performance is a non-trivial
task. Furthermore, there is a need for more research
on the practical implementation of autoscaling enabled
scheduling in real-world scenarios. Most of the existing
studies have been conducted in controlled experimental
settings, and there is a need to evaluate the effectiveness
of auto scaling enabled scheduling in real-world appli-
cations. There are still several challenges that need to
be addressed, including algorithm design, standardiza-
tion, and practical implementation. Future research in
this area should focus on addressing these challenges
and developing more effective and practical auto scaling
enabled scheduling techniques.

The research papers use diverse algorithms to enhance
Kubernetes scheduling. These algorithms are tested on
various platforms and environments, such as Spark,
MXNet, Kubernetes, Google and TwoSigma’s GPU clus-
ter, workloads, Google compute, CPU-GPU, the National
Cloud Infrastructure, benchmarks, ProCon, DL2, DRE,
Optimus, CBP, PP, scaling, data centers, schedulers,

Senjab et al. Journal of Cloud Computing (2023) 12:87

CloudSim and Java, scenarios, cloud infrastructure, user
need, RLSK, real trace, GaiaGPU and Tencent, real work-
load traces, simulations and web traces, Kubernetes, a
new algorithm, Kubernetes failover and recovery, Kube-
HICE, real-world scenarios, BDI, BCDI, Kubernetes, a
proposed algorithm, autoscalers, default auto scalers,
video streaming, Tensorflow, Zeus, and latency-sensitive
services. Some papers did not specify the details of the
algorithms they used or the platforms and environments
they tested on.

As can be seen in the previous sections, the survey
extensively analyzes the current literature, and com-
poses a taxonomy to not only effectively analyze the cur-
rent state-of-the-art but also identify the challenges and
future directions. Based on the analysis, the following
areas have been identified as potential future research in
the field:

+ As Kubernetes becomes more popular, there will
be a growing need for advanced computation opti-
mization techniques. In the future, Kubernetes may
benefit from the development of more sophisticated
algorithms for workload scheduling and resource
allocation, potentially using AI or machine learning.
Additionally, integrating Kubernetes with emerging
technologies like serverless computing could lead
to even more efficient resource usage by enabling
dynamic scaling without pre-provisioned infrastruc-
ture. Ultimately, the future of computation optimiza-
tion in Kubernetes is likely to involve a combination
of cutting-edge algorithms, innovative technologies,
and ongoing advancements in cloud computing.

+ Testing and implementation to reveal limitations
or current learning algorithms for scheduling and
potential improvements on large scale clusters. One
important focus is on improving the tooling and
automation around testing and deployment, includ-
ing the development of new testing frameworks and
the integration of existing tools into the Kubernetes
ecosystem. Another key area is the ongoing refine-
ment of Kubernetes’ implementation and develop-
ment process, with a focus on streamlining work-
flows, improving documentation, and fostering
greater collaboration within the open-source com-
munity. Additionally, there is a growing emphasis on
developing more comprehensive testing and valida-
tion strategies for Kubernetes clusters, including the
use of advanced techniques like chaos engineering
to simulate real-world failure scenarios. Overall, the
future of testing and implementation in Kubernetes
is likely to involve ongoing innovation, collaboration,
and an ongoing commitment to driving the platform
forward.

Page 23 of 26

A number of methods are employing learning algo-
rithms for resource balancing inside and outside the
cluster. Even though the methods given encourag-
ing results, new learning algorithms can be found to
improve the scheduler, especially on large scale clusters.
Limitations and potential improvements in specific
contexts, e.g., Green Computing. Minimizing the
carbon footprint of a cluster is an ongoing challenge.
Advanced schedulers are needed to be proposed in
order to reduce the energy consumption and carbon
footprint of clusters in IIoT setups. There is a huge
opportunity for improving the existing methods and
proposing new methods in this area.

Future research in Kubernetes resource management.
Kubernetes resource management mostly relies on
optimization modelling framework and heuristic-
based algorithms. The potential for improving and
proposing new resource management algorithms is
a very promising area of research. Future research
in Kubernetes resource management may focus on
addressing the challenges of managing complex,
dynamic workloads across distributed, heterogene-
ous environments. This may involve developing more
sophisticated algorithms and techniques for workload
placement, resource allocation, and load balancing, as
well as exploring new approaches to containerization
and virtualization. Additionally, there may be oppor-
tunities to leverage emerging technologies like edge
computing and 5G networks to enable more efficient
and scalable resource management in Kubernetes.
Most of the work done in the area of Kubernetes
scheduling has been evaluated on small clusters.
However, this might not always be tempting. One
future research direction in Kubernetes scheduling
is to use larger cluster sizes for algorithm evalua-
tion. While Kubernetes has been shown to be effec-
tive in managing clusters of up to several thousand
nodes, there is a need to evaluate its performance
in even larger cluster sizes. This includes evaluating
the scalability of the Kubernetes scheduler, identify-
ing potential bottlenecks, and proposing solutions to
address them. Additionally, there is a need to evalu-
ate the impact of larger cluster sizes on application
performance and resource utilization. This research
could lead to the development of more efficient
scheduling algorithms and better management strat-
egies for large-scale Kubernetes deployments.
Scheduling should not only be considered from
the static infrastructure point of view, but rather
advanced context-aware scheduling algorithms may
be proposed that could focus on developing new
approaches to resource allocation and scheduling
that take into account a broader range of contextual

Senjab et al. Journal of Cloud Computing (2023) 12:87

factors, such as user preferences, application depend-
encies, and environmental conditions. This may
involve exploring new machine learning techniques
and optimization algorithms that can dynamically
adapt to changing conditions and prioritize resources
based on real-time feedback and analysis. Other
potential areas of research may include developing
new models and frameworks for managing resources
in Kubernetes clusters, improving container orches-
tration and load balancing, and enhancing monitor-
ing and analytics capabilities to enable more effective
use of context-aware scheduling algorithms.

As can be seen from the diversity of future directions,
the potential for new research in Kubernetes is ripe with
challenges of myriad levels of difficulty and effort. It pro-
vides future researchers with exciting opportunities to
pursue and problems to tackle. We hope that this survey
will facilitate future researchers in selecting a suitable
challenge and solve new problems to expand the state-of-
the-art in the area of Kubernetes.

Conclusions

In conclusion, the survey on Kubernetes scheduling pro-
vides a comprehensive overview of the current state of
the field. It covers the objectives, methodologies, algo-
rithms, experiments, and results of various research
efforts in this area. The survey highlights the importance
of scheduling in Kubernetes and the need for efficient
and effective scheduling algorithms. The results of the
experiments show that there is still room for improve-
ment in this area, and future work should focus on
developing new algorithms and improving existing ones.
Overall, the survey provides valuable insight into the cur-
rent state of Kubernetes scheduling and points to prom-
ising directions for future research.

Acknowledgements
None.

Authors’ contributions

Research was supervised by Sohail Abbas and Naveed Ahmed. Data collec-
tion, material preparation, and analysis were performed by Khaldoun. All
authors read and approved the final manuscript. Conceptualization and revi-
sions done by Sohail Abbas, Naveed Ahmed and Atta ur Rehman.

Funding
The author(s) received no financial support for the research and publication
of this article.

Availability of data and materials
The corresponding author may provide the supporting data on request.

Declarations

Ethics approval and consent to participate
Not applicable.

Page 24 of 26

Consent for publication
Authors provide consent for publication.

Competing interests
The authors declare no competing interests.

Received: 27 January 2023 Accepted: 1 June 2023
Published online: 13 June 2023

References

1. Mondal SK, Pan R, Kabir HMD, Tian T, Dai HN (2022) Kubernetes in IT
administration and serverless computing: an empirical study and
research challenges. J Supercomput 78(2):2937-2987

2. Phuc LH, Phan LA, Kim T (2022) Traffic-Aware horizontal pod autoscaler
in kubernetes-based edge computing infrastructure. IEEE Access
10:18966-18977

3. Zhang M, Cao J,Yang L, Zhang L, Sahni Y, Jiang S (2022) ENTS: An Edge-
native Task Scheduling System for Collaborative Edge Computing. IEEE/
ACM 7th Symposium on Edge Computing, SEC. pp 149-161

4. Kim SH, Kim T (2023) Local scheduling in kubeedge-based edge comput-
ing environment. Sensors 23(3):1522

5. E.Casalicchio (2019) “Container orchestration: A survey,” Syst Model,
221-235.

6. Pahl C, Brogi A, Soldani J, Jamshidi P (2017) Cloud container technologies:
a state-of-the-art review. [EEE Transact Cloud Comput 7(3):677-692

7. Rodriguez MA, Buyya R (2019) Container-based cluster orchestration
systems: A taxonomy and future directions. Software Pract Experience
49(5):698-719

8. Truyen E, Van Landuyt D, Preuveneers D, Lagaisse B, Joosen W (2019)
A comprehensive feature comparison study of open-source container
orchestration frameworks. Appl Sciences (Switzerland) 9(5):931

9. Arunarani AR, Manjula D, Sugumaran V (2019) Task scheduling techniques
in cloud computing: a literature survey. Futur Gener Comput Syst
91:407-415

10. Vijindra and S. Shenai, (2012) Survey on scheduling issues in cloud com-
puting. Procedia Eng 38:2881-2888

11. Wang K, Zhou Q, Guo S, Luo J (2018) Cluster frameworks for efficient
scheduling and resource allocation in data center networks: a survey. IEEE
Commun Surveys Tutor 20(4):3560-3580

12. Hosseinioun P, Kheirabadi M, Kamel Tabbakh SR, Ghaemi R (2022) A task
scheduling approaches in fog computing: a survey”. Transact Emerg
TelecommunTechnol 33(3):e3792

13. Rejiba Z, Chamanara J (2022) Custom scheduling in Kubernetes: a survey
on common problems and solution approaches. ACM Comput Surv
55(7):1-37

14. Carrion C (2022) Kubernetes scheduling: taxonomy, ongoing issues and
challenges. ACM Comput Surv 55(7):1-37

15. Santos J, Wauters T, Volckaert B, De Turck F (2019) Towards network-Aware
resource provisioning in kubernetes for fog computing applications. Pro-
ceedings of the IEEE Conference on Network Softwarization: Unleashing
the Power of Network Softwarization. pp 351-359

16. Chung A, Park JW, Ganger GR (2018) Stratus: Cost-aware container sched-
uling in the public cloud. Proceedings of the ACM Symposium on Cloud
Computing. pp 121-134

17. LeTN, Sun X, Chowdhury M, Liu Z (2020) AlloX: Compute allocation in
hybrid clusters. Proceedings of the 15th European Conference on Com-
puter Systems, EuroSys

18. Zhong Z, Buyya R (2020) A Cost-Efficient Container Orchestration
Strategy in Kubernetes-Based Cloud Computing Infrastructures with
Heterogeneous Resources. ACM Trans Internet Technol 20(2):1-24

19. Thinakaran P, Gunasekaran JR, Sharma B, Kandemir MT, Das CR (2019)
Kube-Knots: Resource Harvesting through Dynamic Container Orchestra-
tion in GPU-based Datacenters. Proceedings - IEEE International Confer-
ence on Cluster Computing, ICCC

20. Townend P et al (2019) Invited paper: Improving data center efficiency
through holistic scheduling in kubernetes. Proceedings - 13th IEEE
International Conference on Service-Oriented System Engineering, 10th

Senjab et al. Journal of Cloud Computing

21

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33

34

35.

36.

37.
38.
39.

40.

41.

(2023) 12:87

International Workshop on Joint Cloud Computing, and IEEE Interna-
tional Workshop on Cloud Computing in Robotic Systems, CCRS. pp
156-166

Menouer T (2021) KCSS: Kubernetes container scheduling strategy. J
Supercomput 77(5):4267-4293

Song S, Deng L, Gong J, Luo H (2019) Gaia scheduler: A kubernetes-
based scheduler framework. 16th IEEE International Symposium on
Parallel and Distributed Processing with Applications, 17th IEEE Interna-
tional Conference on Ubiquitous Computing and Communications, 8th
IEEE International Conference on Big Data and Cloud Computing. pp
252-259

Ogbuachi MC, Gore C, Reale A, Suskovics P, Kovacs B (2019) Context-
aware K8S scheduler for real time distributed 5G edge computing appli-
cations. 27th International Conference on Software, Telecommunications
and Computer Networks, SoftCOM

Beltre A, Saha P, Govindaraju M (2019) KubeSphere: An approach to
multi-tenant fair scheduling for kubernetes clusters. 3rd IEEE International
Conference on Cloud and Fog Computing Technologies and Applica-
tions, Cloud Summit. pp 14-20

Haja D, Szalay M, Sonkoly B, Pongracz G, Toka L (2019) Sharpening Kuber-
netes for the Edge. ACM SIGCOMM Conference Posters and Demos, Part
of SIGCOMM. pp 136-137

Wojciechowski L et al (2021) NetMARKS: Network metrics-AwaRe kuber-
netes scheduler powered by service mesh. Proceedings - IEEE INFOCOM
Cai Z, Buyya R (2022) Inverse Queuing Model-Based Feedback Control for
Elastic Container Provisioning of Web Systems in Kubernetes. IEEE Trans
Comput 71(2):337-348

El Haj Ahmed G, Gil-Castifeira F, Costa-Montenegro E (2021) KubCG: A
dynamic Kubernetes scheduler for heterogeneous clusters. Software
Pract Experience 51(2):213-234

Ungureanu OM, Vlddeanu C, Kooij R (2019) Kubernetes cluster optimiza-
tion using hybrid shared-state scheduling framework. ACM International
Conference Proceeding Series

Yang S, Ren Y, Zhang J, Guan J, Li B (2021) KubeHICE: Performance-aware
Container Orchestration on Heterogeneous-ISA Architectures in Cloud-
Edge Platforms. 19th IEEE International Symposium on Parallel and Dis-
tributed Processing with Applications, 11th IEEE International Conference
on Big Data and Cloud Computing, 14th IEEE International Conference
on Social Computing and Networking and 11th IEEE Internation. pp
81-91

Li D, Wei Y, Zeng B (2020) A Dynamic I/O Sensing Scheduling
Scheme in Kubernetes. ACM International Conference Proceeding
Series. pp 14-19

Fan D, He D (2020) A Scheduler for Serverless Framework base on Kuber-
netes. ACM International Conference Proceeding Series. pp 229-232
Bestari MF, Kistijantoro Al, Sasmita AB (2020) Dynamic Resource
Scheduler for Distributed Deep Learning Training in Kubernetes. 7th
International Conference on Advanced Informatics: Concepts, Theory and
Applications, ICAICTA

Dua A, Randive S, Agarwal A, Kumar N (2020) Efficient Load balancing to
serve Heterogeneous Requests in Clustered Systems using Kubernetes.
IEEE 17th Annual Consumer Communications and Networking Confer-
ence, CCNC

Kaur K, Garg S, Kaddoum G, Ahmed SH, Atiquzzaman M (2020) KEIDS:
Kubernetes-Based Energy and Interference Driven Scheduler for Indus-
trial IoT in Edge-Cloud Ecosystem. IEEE Internet Things J 7(5):4228-4237
Lin M, Xi J, Bai W, Wu J (2019) Ant colony algorithm for multi-objective
optimization of container-based microservice scheduling in cloud. IEEE
Access 7:83088-83100

Wei-guo Z, Xi-lin M, Jin-zhong Z (2018) Research on kubernetes' resource
scheduling scheme. ACM International Conference Proceeding Series

Oleghe O (2021) Container placement and migration in edge computing:

concept and scheduling models. I[EEE Access 9:68028-68043

Carvalho M, MacEdo DF (2021) QoE-Aware Container Scheduler for Co-
located Cloud Environments,’ Faculdades Catolicas

ChenT, LiM, LiY, Lin M, Wang N, Wang M, Xiao T, Xu B, Zhang C, Zhang Z
(2015) Mxnet: A flexible and efficient machine learning library for hetero-
geneous distributed systems. arXiv preprint arXiv:1512.01274

Abadi M et al (2016) Tensorflow: a system for large-scale machine learn-
ing. Osdi 2016(16):265-283

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

Page 25 of 26

Xing EP et al (2015) Petuum: A new platform for distributed machine
learning on big data. Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. pp 1335-1344
Verma A, Pedrosa L, Korupolu M, Oppenheimer D, Tune E, Wilkes J (2015)
Large-scale cluster management at Google with Borg. 10th European
Conference on Computer Systems, EuroSys. pp 1-15

Vavilapalli VK et al (2013) Apache hadoop YARN: Yet another
resource negotiator. 4th Annual Symposium on Cloud Computing,
SoCC.pp 1-16

Bao Y, Peng Y, Wu C, Li Z (2018) Online Job Scheduling in Distributed
Machine Learning Clusters. Proceedings - IEEE INFOCOM. pp 495-503
Peng, Bao Y, ChenY, Wu C, Guo C (2018) Optimus: An Efficient Dynamic
Resource Scheduler for Deep Learning Clusters. Proceedings of the 13th
EuroSys Conference, EuroSys

Mao H, Schwarzkopf M, Venkatakrishnan SB, Meng Z, Alizadeh M (2019)
Learning scheduling algorithms for data processing clusters. SIGCOMM
Conference of the ACM Special Interest Group on Data Communication.
pp 270-288

Chaudhary S, Ramjee R, Sivathanu M, Kwatra N, Viswanatha S (2020)
Balancing efficiency and fairness in heterogeneous GPU clusters for deep
learning. Proceedings of the 15th European Conference on Computer
Systems, EuroSys

FuY et al (2019) Progress-based Container Scheduling for Short-lived
Applications in a Kubernetes Cluster. IEEE International Conference on
Big Data, Big Data. pp 278-287

Peng Y, BaoY, ChenY,Wu C,Meng C, Lin W (2021) DL2: A Deep Learning-
Driven Scheduler for Deep Learning Clusters. IEEE Trans Parallel Distrib
Syst 32(8):1947-1960

Mao Y, FuY, Zheng W, Cheng L, Liu Q, Tao D (2022) Speculative Container
Scheduling for Deep Learning Applications in a Kubernetes Cluster. IEEE
Syst J 16(3):3770-3781

Huang J, Xiao C, Wu W (2020) RLSK: A Job Scheduler for Federated
Kubernetes Clusters based on Reinforcement Learning. IEEE International
Conference on Cloud Engineering, IC2E. pp 116-123

Wang H, Liu Z, Shen H (2020) Job scheduling for large-scale
machine learning clusters. Proceedings of the 16th International
Conference on Emerging Networking EXperiments and Technolo-
gies. pp 108-120

Han'Y, Shen S, Wang X, Wang S, Leung VCM (2021) Tailored learning-
based scheduling for kubernetes-oriented edge-cloud system. Proceed-
ings - IEEE INFOCOM

Casquero O, Armentia A, Sarachaga |, Pérez F, Orive D, Marcos M (2019)
Distributed scheduling in Kubernetes based on MAS for Fog-in-the-loop
applications. IEEE International Conference on Emerging Technologies
and Factory Automation, ETFA. pp 1213-1217

Yang Y, Chen L (2019) Design of Kubernetes Scheduling Strategy Based
on LSTM and Grey Model. Proceedings of IEEE 14th International
Conference on Intelligent Systems and Knowledge Engineering, ISKE. pp
701-707

Zhang X, Li L, Wang Y, Chen E, Shou L (2021) Zeus: Improving Resource
Efficiency via Workload Colocation for Massive Kubernetes Clusters. IEEE
Access 9:105192-105204

Liu Z, Chen C, Li J, Cheng Y, Kou Y, Zhang D (2022) KubFBS: A fine-grained
and balance-aware scheduling system for deep learning tasks based on
kubernetes. Concurrency Computat Pract Exper 34(11):e6836. https://doi.
0rg/10.1002/cpe.6836

Rahali M, Phan CT, Rubino G (2021) KRS: Kubernetes Resource Scheduler
for resilient NFV networks. IEEE Global Communications Conference
Taherizadeh S, Stankovski V (2019) Dynamic multi-level auto-scaling rules
for containerized applications. Computer J 62(2):174-197

Rattihalli G, Govindaraju M, Lu H, Tiwari D (2019) Exploring potential for
non-disruptive vertical auto scaling and resource estimation in kuber-
netes. [EEE International Conference on Cloud Computing, CLOUD. pp
33-40

Toka L, Dobreff G, Fodor B, Sonkoly B (2021) Machine Learning-Based
Scaling Management for Kubernetes Edge Clusters. IEEE Trans Netw Serv
Manage 18(1):958-972

Balla D, Simon C, Maliosz M (2020) Adaptive scaling of Kubernetes pods.
IEEE/IFIP Network Operations and Management Symposium 2020: Man-
agement in the Age of Softwarization and Artificial Intelligence, NOMS

https://doi.org/10.1002/cpe.6836
https://doi.org/10.1002/cpe.6836

Senjab et al. Journal of Cloud Computing

64.

65.

66.

67.

(2023) 12:87

Toka L, Dobreff G, Fodor B, Sonkoly B (2020) Adaptive Al-based auto-
scaling for Kubernetes. IEEE/ACM International Symposium on Cluster,
Cloud and Internet Computing, CCGRID. pp 599-608

Wang M, Zhang D, Wu B (2020) A Cluster Autoscaler Based on Multiple
Node Types in Kubernetes. IEEE 4th Information Technology, Networking,
Electronic and Automation Control Conference, ITNEC. pp 575-579

Kang R, Zhu M, He F, Sato T, Oki E (2021) Design of Scheduler Plugins for
Reliable Function Allocation in Kubernetes. 17th International Conference
on the Design of Reliable Communication Networks, DRCN

Vu DD, Tran MN, Kim Y (2022) Predictive hybrid autoscaling for container-
ized applications. I[EEE Access 10:109768-109778

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Page 26 of 26

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

	A survey of Kubernetes scheduling algorithms
	Abstract
	Introduction
	Search methodology
	Literature review
	Scheduling in Kubernetes
	Scheduling using multi-objective optimization
	AI focused scheduling
	Autoscaling-enabled scheduling

	Discussion, challenges & future suggestions
	Conclusions
	Acknowledgements
	References

