
R E S E A R C H Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Mohamed et al. Journal of Cloud Computing (2023) 12:41
https://doi.org/10.1186/s13677-023-00420-y

Journal of Cloud Computing

*Correspondence:
Osama Ismael
osama@fci-cu.edu.eg
1Department of Information Systems, Faculty of Computers and Artificial
Intelligence, Cairo University, Giza, Egypt

Abstract
Nowadays, with the proliferation of internet of things-connected devices, the scope of cyber-attacks on the
internet of things has grown exponentially. So, it makes it a necessity to develop an efficient and accurate intrusion
detection system that should be fast, dynamic, and scalable in an internet of things environment. On the other
hand, Fog computing is a decentralized platform that extends Cloud computing to deal with the inherent issues of
the Cloud computing. As well, maintaining a high level of security is critical in order to ensure secure and reliable
communication between Fog nodes and internet of things devices. To address this issue, we present an intrusion
detection method based on artificial neural networks and genetic algorithms to efficiently detect various types
of network intrusions on local Fog nodes. Through this approach, we applied genetic algorithms to optimize the
interconnecting weights of the network and the biases associated with each neuron. Therefore, it can quickly
and effectively establish a back-propagation neural network model. Moreover, the distributed architecture of fog
computing enables the distribution of the intrusion detection system over local Fog nodes with a centralized
Cloud, which achieves faster attack detection than the Cloud intrusion detection mechanism. A set of experiments
were conducted on the Raspberry Pi4 as a Fog node, based on the UNSW-NB15 and ToN_IoT data sets for binary-
class classification, which showed that the optimized weights and biases achieved better performance than those
who used the neural network without optimization. The optimized model showed interoperability, flexibility, and
scalability. Furthermore, achieving a higher intrusion detection rate through decreasing the neural network error
rate and increasing the true positive rate is also possible. According to the experiments, the suggested approach
produces better outcomes in terms of detection accuracy and processing time. In this case, the proposed approach
achieved an 16.35% and 37.07% reduction in execution time for both data sets, respectively, compared to other
state-of-the-art methods, which enhanced the acceleration of the convergence process and saved processing
power.

Keywords  Fog computing, Internet of things, Genetic algorithm, Intrusion detection, Neural network, Standard
deviation

Enhancement of an IoT hybrid intrusion
detection system based on fog-to-cloud
computing
Doaa Mohamed1 and Osama Ismael1*

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-023-00420-y&domain=pdf&date_stamp=2023-3-21

Page 2 of 13Mohamed et al. Journal of Cloud Computing (2023) 12:41

Introduction
Nowadays, many companies and start-ups use Cloud
computing because it’s a cost-effective way of establish-
ing and operating their own system resources. In addi-
tion to location awareness, there are some issues facing
Cloud computing, such as low latency, geo-location and
mobility support. In contrast, Fog computing technology
is a simplified version of the Cloud computing paradigm
that enables a wide range of applications and services
with low latency, improved location service awareness,
mobility, and flexibility [28]. Fog computing is a platform
similar to Cloud computing that provides end users with
processing, storage, and application services, as well as
network services between Fog nodes and Cloud servers
[29]. Due to its deployment in different locations where
security is limited, Fog computing faces many security
and safety issues. Fog devices, for example, are vulnerable
to a variety of cyber-attacks, such as man-in-the-middle
and port scan attacks, which violate the privacy of their
data [14].

In addition, Fog computing is a distributed platform
that can operate and process data at a regional level and
may be deployed on a wide range of devices, making it
ideal for Internet of Things (IoT) applications. The IoT
has emerged as an industrial revolution in the last decade
because of the popularity and usage of low-cost, energy-
efficient devices like sensors, actuators, etc., combined
with a variety of communication mediums. IoT can be
considered as one of the most recent and widely used
computing paradigms that have emerged to enhance
data collection and introduce new types of data services
[21]. It’s worth mentioning that the internet of things
exists in many aspects of our lives, with high challenges
in security.

On the other hand, to assure service quality, intrusion
detection systems (IDS) can be considered as an essen-
tial component of any security mechanism for Fog and
IoT networks. As a result, IDS have become an indis-
pensable part of Fog computing and the IoT to ensure
the quality of service. IDS fall into two major categories:
misuse detection and anomaly detection. Misuse detec-
tion, also known as signature-based, detects only known
attacks but fails to detect newly created attacks because
it mostly depends on the rules that the network admin-
istrator has set. The second category, anomaly detection,
can solve the problem of the first because it can detect
new and unknown attacks because it depends on a sta-
tistical approach. However, most of the IDS available use
only misuse detection because most developed anomaly
detectors face many challenges, such as generating a
high rate of false positive alarms and expensive computa-
tion. So in order to build an intrusion detection system,
we must first understand how an attack occurs, collect

information, configure remote to local access, and launch
an attack [3].

Intrusion detection systems use a variety of methods,
but none of them are completely without flaws. There are
two types of intrusion detection system software: net-
work-based intrusion detection systems and host-based
intrusion detection systems. By monitoring network
traffic, network-based IDS attempt to detect malicious
activities such as denial-of-service attacks and port scans.
While the host-based IDS looks at actions and files on
the host devices.

As mentioned earlier, the Internet of Things is vulner-
able to a variety of attacks, including both internal and
external intrusions [4]. Therefore, an effective intrusion
detection system is highly desirable to deal with inappro-
priate use of computers and IoT devices that violate secu-
rity and administrative policies. As a result, in this study,
we propose a new methodology for improving the intru-
sion detection system for combating IoT attacks deployed
over the Fog network. This was achieved through using
a hybrid approach that consists of two algorithms, Back
Propagation Neural Networks (BPNN) and Genetic
Algorithms (GA) [31], to efficiently detect various types
of network intrusions. Through this approach, we pro-
pose the optimization of the weights and biases in neural
networks using Genetic algorithms to enhance the neu-
ral network performance. Therefore, it can quickly and
effectively establish a back-propagation neural network
model. Moreover, we will focus on the network-based
IDS because it observes all data passing through the net-
work before passing it to hosts inside the network.

The key contributions of this research can be summa-
rized in the following points:

 	• Present a novel approach that uses the Genetic
algorithms to optimize the Artificial Neural Network
parameters before deploying it on the Fog network.
This can aid in establishing a rapid and effective
BPNN model that can be uploaded to the Fog
network for anomaly classification purposes.

 	• The optimized model has a greater intrusion
detection rate since the neural network error rate is
lower and the true positive rate is higher.

 	• Achieving up to a 37.07% decrease in execution time
when compared to other cutting-edge approaches,
which speeds up the convergence process and saves
computing power.

Related work
In recent years, many IDS have been proposed in the lit-
erature, which are used to monitor IoT-based networks
against various attacks. However, IDS frequently expe-
rience poor detection accuracy because of composed
attacks like DDoS and a lack of methodology through
which the attack data can be exchanged between the

Page 3 of 13Mohamed et al. Journal of Cloud Computing (2023) 12:41

network nodes. Much research has been conducted to
improve IDS performance in a variety of ways, including
using neural networks and multi-layer perception [22,
28], combining multiple machine learning algorithms [1,
2, 12, 25], detecting Distributed Denial of Service (DDoS)
and Denial of Service (DoS) attacks [5, 11], and other
enhancements [8–10, 19, 24, 26].

Sudqi et al., [28] introduced a multilayer perceptron
(MLP) model for intrusion detection. They used two dif-
ferent datasets to evaluate their system; the Australian
Defense Force Academy Linux Dataset and the Austra-
lian Defense Force Academy Windows Dataset. They
reduced the number of features by applying mutual infor-
mation feature selection and a modified vector space rep-
resentation via n-gram transformation. Also, they used
the Raspberry Pi as a Fog device, in which the electrical
current demand and the voltage were used to determine
the Raspberry Pi’s power consumption in the experi-
ment’s design.

Pacheco et al., [22] proposed an artificial neural net-
work-based Anomalous Behavior Analysis (ABA-IDS)
approach to create an adaptive intrusion detection sys-
tem capable of recognizing when a Fog node has been
hacked and then taking the appropriate precautions to
ensure communication availability. Their approach com-
prises creating a node’s profile based on the node’s attri-
butes, which is then passed into artificial neural networks
that are built to characterize the node’s regular functions.

Alghayadh and Debnath [2] proposed a hybrid intru-
sion detection system using multiple machine learning
algorithms, including random forest, Xgboost, decision
tree, K-nearest neighbors, and misuse detection tech-
niques designed for smart homes based on user behavior
profile patterns. They used the CSE-CIC-IDS2018 and
NSL-KDD datasets to verify their model. Also, Kalaivani
and Chinnadurai [12] proposed a multi-class attack clas-
sification model based on deep learning methods, called
ICNN-FCID. They integrated the convolutional neural
network (CNN) and the Long Short-Term Memory net-
works (LSTM) algorithms in order to predict the network
attacks in the Fog computing layer. In addition, they used
the NSL-KDD as a benchmark dataset.

Abbas et al., [1] proposed an ensemble-based intrusion
detection model. The architecture of the proposed model
consists of three machine learning algorithms instead of
using artificial neural networks and deep learning tech-
niques, which are logistic regression, naive Bayes, and
decision trees. The proposed model has been evaluated
and analyzed using the CICIDS 2017 dataset in both
binary and multi-class contexts. Also, Ravi et al., [25]
proposed using deep learning-based recurrent mod-
els to build a system for cyber–physical network attack
detection and classification. The proposed model uses a
kernel-based principal component analysis technique to

select features and extract the hidden layer features of
recurrent models. The model employs random forest and
support vector machine on the extracted features, fol-
lowed by logistic regression for network attack detection
and classification. They used more than one benchmark
network intrusion dataset to evaluate the performance
of the proposed method, including the SDN-IoT, KDD-
Cup-1999, UNSW-NB15, WSN-DS, and CICIDS-2017
datasets.

An et al., [5] introduced a hypergraph clustering model
based on the Apriori algorithm to analyze the association
between Fog nodes that are suffering from the threat of
DDoS. Also, Jan et al., [11] introduced an attack detec-
tion strategy based on the Support Vector Machine
(SVM) algorithm, with input given in the form of two
or three features, to mitigate the most common DDoS
attack in the IoT environment. They used only one attri-
bute to classify the signal, which is the packet arrival rate
at the node. Furthermore, they conducted a comparison
of SVM-based classifiers with other machine learning-
based classifiers, including Neural Network, k-Nearest
Neighbors, and Decision Tree, to prove their view of the
advantage of utilizing SVM over other techniques.

Illy et al., [9] described their proposed solution as com-
bining multiple learners using different algorithms (i.e.,
KNN, Random Forest, Bagging and Boosting of deci-
sion trees) and building different classifiers for anomaly
detection and attack classification. Also, they proposed
a deployment architecture where anomaly detection
takes place on the Fog node side while attack classifica-
tion takes place on the Cloud side to guide the intru-
sion prevention tasks. They test their experiments on
KDDTest + and KDDTest-21. Also, Narendra and Rakesh
[19] proposed an intrusion detection system on Fog
nodes for IoT applications. They applied a Persistent
Regularization algorithm using Cholesky Factorization-
based Online Sequential Extreme Learning Machines
(CF-OSELM-PRFF). In which IoT-generated attacks are
detected in local Fog nodes and reported to the cloud
server.

Sadaf and Sultana [26] proposed the Auto-IF intrusion
detection system approach for real-time intrusion detec-
tion in Fog computing environments based on isolation
forest and auto-encoder. On the Fog devices, this tech-
nique conducts binary classification of incoming packets
where the judgement distinguishes intrusions from regu-
lar packets. They used the NSL-KDD dataset to validate
their method. Also, Rani et al., [24] proposed a network
intrusion detection system based on the Random For-
est classifier algorithm. They used two different datasets:
NSL-KDD and KDD-CUP99, with minimal feature sets.
Features are selected manually after analyzing different
attacks and their characteristics. They implemented their

Page 4 of 13Mohamed et al. Journal of Cloud Computing (2023) 12:41

method on a synthesized generated network traffic data-
set, so it may not be suitable for real network traffic.

Imrana et al., [10] proposed a bidirectional Long-
Short-Term-Memory (BiDLSTM)-based intrusion detec-
tion system to detect different network intrusion types,
especially User-to-Root (U2R) and Remote-to-Local
(R2L) attacks. The model’s performance has been evalu-
ated and tested using the NSL-KDD benchmark dataset.
Also, Houda et al. [8] proposed a framework consists of
two phases: the first phase is a Deep Learning-based IoT-
related Intrusion Detection System model, and the sec-
ond phase is an Explainable Artificial Intelligence-based
model, whose role is to give explanations about the mod-
el’s decisions. The proposed framework uses three main
Explainable Artificial Intelligence techniques (i.e., Rul-
eFit, Local Interpretable Model-Agnostic Explanations,
and SHapley Additive exPlanations), on top of the Deep
Learning Neural Network-based Intrusion Detection
System model. The proposed framework has been vali-
dated based on two different datasets, the NSL-KDD and
UNSW-NB15 datasets.

Table 1 shows a summary of the main characteristics
of the proposed methodology (EHIDS) compared to
some of the state-of-the-art methodologies. As a conclu-
sion, despite the fact that several Artificial Neural Net-
work (ANN)-based intrusion detection methods have
been proposed in recent years, and despite the fact that
they claim to achieve a high performance rate, the above
methodologies still have some shortcomings that must be
addressed:

 	• Several of the previous works included DDoS in Fog
computing and ignored other attacks, whereas our
proposed model can deal with all types of attacks.

 	• Most of the methods in the literature work on
the Host-based Intrusion Detection System. In
contrast, we use Network-based IDS because they
have a quicker response time than Host-based
IDS. Furthermore, the Network-based IDS do not
necessitate any changes to the existing infrastructure
and monitor everything on a network segment,
regardless of the target host’s operating system.

 	• Most of the introduced methods use traditional
feature selection methods (e.g., wrapper methods).
Traditional feature selection methods fail to detect
several sensitive features, resulting in a classifier
that isn’t as sensitive as it should be, which leads to
incorrect detection. On the contrary, we use filter
methods that are much faster, require less space, and
have lower complexity.

Hybrid intrusion detection system
Motivated by the above-mentioned problems, we pro-
pose a novel hybrid approach called “Enhanced Hybrid
Intrusion Detection System (EHIDS)” to be deployed on
the Fog network to detect known and newly anomalous
intrusions attempting to attack the Fog nodes. To build
and utilize the model, three phases are undergone: the
pre-processing phase, the optimization phase, and the
classification phase. In the first phase, the data is pre-
pared to be fit for the classification process. This phase
consists of three steps: feature selection, categorical data

Table 1  Summary of the Main Characteristics of the Proposed Methodology versus other State-of-the-Art Methodologies
The methodology Algorithms used Dataset used Feature selection

methodology
Fog de-
vices used

Detec-
tion
technique

Proposed methodology
(EHIDS)

GA and BPNN UNSW-NB15 and
ToN_IoT

Filter methods (Standard
Deviation)

Raspberry
Pi4

Anomaly

CF-OSELM-PRFF [19] Cholesky Factorization based Online Sequen-
tial Extreme Learning Machines with Persistent
Regularization

NSL-KDD N/A Azure
Cloud
Service

Anomaly

ABA-IDS [22] ANN Legitimate
Commands

Pearson Product-
Moment Correlation
Coefficient

Raspberry
Pi3 model B

Anomaly

ICNN-FCID [12] CNN and
LSTM Networks

NSL-KDD N/A N/A Anomaly

Ensemble-Based IDS [1] logistic regression, naive Bayes, and decision
trees

CICIDS 2017 LinearSVM feature
selection

N/A Anomaly

cyber–physical systems
network intrusion detec-
tion model [25]

Random Forest, SVM and Logistic Regression SDN-IoT, KDD-
Cup-1999, UNSW-
NB15, WSN-DS, and
CICIDS-2017

kernel-based principal
component analysis
technique

N/A Anomaly

BiDLSTM-based intrusion
detection system [10]

bidirectional LSTM NSL-KDD N/A N/A Anomaly

XAI-based IDS [8] RuleFit, Local Interpretable Model-Agnostic
Explanations, and SHapley Additive
exPlanations

NSL-KDD and
UNSW-NB15

N/A N/A --

Page 5 of 13Mohamed et al. Journal of Cloud Computing (2023) 12:41

conversion to numerical data, and normalisation. In the
second phase, we optimize the neural network param-
eters, namely, weights and biases, through using the
Genetic algorithm instead of selecting them randomly.
Finally, in the third phase, we build the classification
model using BPNN, which is uploaded to the Fog net-
work. Attacks generated by IoT devices are detected by
local Fog nodes and reported to the intrusion history
repository. In contrast, if the log is classified as normal,
it will be passed to the cloud server to be processed. This
had a positive impact on the predictability of the IDS.
The next three subsections give a detailed description of
these three phases.

Pre-processing phase
Both the training and testing datasets require this phase.
It is divided into three major steps: feature selection, con-
verting categorical to numerical data, and data normal-
ization. These steps are very important to enhance the
quality of the results. The network generates a huge vol-
ume of traffic, which slows down the intrusion detection
process. For detection purposes, the data often includes
some irrelevant and redundant information, so it is
important to choose only the relevant information. As a
result, feature selection is an essential part of any network
intrusion detection system that can effectively identify a
subset of the most relevant features in the dataset accord-
ing to certain criteria in order to improve system perfor-
mance and reduce computation time. Thus, removing
those irrelevant features does not have a negative effect
on the system’s performance. Moreover, using all of the
features increases the system’s complexity while decreas-
ing its accuracy. Thus, we aim to select the most suitable
subset of features that are relevant to the required task.

As a result, the primary goal of feature selection is to
make data mining algorithms more efficient. We can
achieve several benefits by reducing the number of fea-
tures and deleting unnecessary or redundant features,
such as speeding up the classification model generation
and enhancing system accuracy. There are two methods
for feature selection: filter methods and wrapper meth-
ods. In the filter methods, features are ranked based
on statistical methods, whereas the wrapper meth-
ods attempt to use only a subset of features to train the
model. Despite the fact that the filter methods may occa-
sionally be unable to identify the best subset of features,
the wrapper methods can always identify the best subset
of features [23]. But wrapper methods are not the most
efficient feature selection tools to be considered in the
case of large datasets because they are computationally
very costly. Moreover, compared to utilizing the subset
of features from the filter methods, using the subset of
features from the wrapper techniques makes the model
more vulnerable to overfitting. Overall, the particular

strengths and weaknesses of each method mean that
there is no one best method that is fit for all use cases; it
depends on the dataset being used and the specific goals
that the methodology aims to accomplish. Therefore, in
our case, we recommend using filter methods over wrap-
per methods because they are much faster and do not
require model training [7, 16].

In this research, we suggested using the standard
deviation [32] to select the best features that achieved a
higher standard deviation. According to the experiments
we conducted, as illustrated in the following section,
increasing the standard deviation can improve accuracy.
Therefore, we set the minimum threshold of the standard
deviation at 50. In actuality, a large standard deviation
implies that the feature is extended over a wide range
of values, whereas a low standard deviation implies that
the feature values are extremely near the mean. As a
result, choosing features with a higher standard deviation
results in a more accurate prediction.

On the other hand, machine learning classifiers require
each instance in the input data to be represented as a vec-
tor of real numbers. As a result, in the second step, all
the categorical values are transformed into numerical
form. Also, the class label is transformed into zero or one,
for the normal and attack classes, respectively. Last but
not least, when we have a huge dataset with thousands
of rows in the training and testing files, data set normal-
ization is required. In our proposed model, we normalize
data using the min-max normalization method [20]. As a
result, every item of data in the training data set has the
same scale (e.g., between 0 and 1), significantly reducing
the training time.

Optimization phase
During the learning and training of BPNN, there are two
main factors that affect the model’s performance. The
first is the initial neural interconnecting weights and the
initial biases associated with each neuron, and the sec-
ond is their modified values. The initial interconnecting
weights and biases of BPNN are often randomly gener-
ated, which may cause the classifier model to run into
partial optimization and therefore decrease the likeli-
hood of obtaining the best performance and results. Fur-
thermore, since the equations used to adjust the BPNN’s
interconnecting weights and biases produce very small
values, the network’s convergence velocity is always slow,
and sometimes it does not even converge. These BPNN
shortages are required to be addressed, optimized, and
improved.

The Genetic algorithm is being used to generate alter-
native solutions for a given problem and refine them over
several generations. Each solution holds all the param-
eters (i.e., weights and biases) that may assist with the
upgrading outcomes. For BPNN, weights in all layers

Page 6 of 13Mohamed et al. Journal of Cloud Computing (2023) 12:41

help achieve high accuracy, and bias is another parameter
in the Neural Network that is used to adjust the output
along with the weighted sum of the neuron’s inputs. In
this way, bias is a constant that aids the model in achiev-
ing the best fit regarding the given data. In a neural net-
work, each neuron has a bias, the bias is learnable, and
the bias also increases the flexibility of the model.

In the search space of the issue being optimised, a
chromosome represents a single solution. With refer-
ence to our problem, a chromosome is nothing more
than a collection of weight and bias values. Thus, the
model generates a random population of alternative solu-
tions and then evaluates each one for success, choosing
the best chromosome to pass on their “genes” to the next
generation, including minor mutations to add diversity.
Each chromosome in a population is assessed and ranked
based on its relative strength within the population; the
goal of the evaluation of the chromosome is to calcu-
late its fitness. The procedure is repeated until the pro-
gramme produces a workable solution. As a result, the
chromosome with the highest fitness level will be chosen
and fed to the BPNN. In comparison to our proposed
methodology, which uses GA to improve the BPNN by
predicting the best weights and biases, there have been
other research efforts that attempted to optimise and
improve the artificial neural network by using GA over
fog computing, but their efforts were limited to predict-
ing the neural network weights only, e.g. [13] and [27].

Classification phase
For this phase, we aim to find a classification model
that describes and distinguishes normal and intrusion
classes so that we can use it to forecast the class whose
label is unknown. Building the classification model is
based on analyzing a collection of datasets. This dataset
contains both normal and anomalous network traffic,
which allows the classifier to determine patterns with a

sufficient number of samples. For training and testing the
classifier, the dataset is divided into two parts: training
and testing, respectively.

In addition, the back-propagation neural network is
one of the most common classification methods, and it
has been proven to be successful in identifying various
forms of intrusions. The BPNN is a network of linked
input/output units with a weight assigned to each con-
nection; it also conducts the learning process on a mul-
tilayer feed-forward neural network. The topology of the
proposed multilayer feed-forward neural network con-
sists of four layers, as follows: an input layer with a num-
ber of nodes equal to the number of chosen features; two
hidden layers, the first with twenty nodes and the second
with ten nodes; and an output layer with only one node.
Each node has connections to every neuron in the previ-
ous layer. Each connection has a weight that represents
how strongly any two nodes are connected, as shown in
Fig. 1.

The features chosen for each training tuple correspond
to the network’s inputs. These inputs are transferred to
a second layer (the “hidden layer”) after passing through
the input layer and being weighted. The outputs of the
first hidden layer units represent the inputs to the sec-
ond hidden layer. Each output unit receives as input a
weighted sum of the outputs from the previous hidden
layer’s units. The hidden and output nodes are math-
ematical devices that compute the weighted sum of their
inputs, in addition to the bias term, and then produce an
output. As experiments showed, the initial optimized val-
ues of the weights and biases are generated by the genetic
algorithm, which has a great effect on the resulting accu-
racy. The weights and biases are adjusted for each train-
ing tuple in order to reduce the mean squared error
between the network’s prediction and the actual target
value. These adjustments are made in a “backwards” way,

Fig. 1  The multilayer feed-forward neural network topology

Page 7 of 13Mohamed et al. Journal of Cloud Computing (2023) 12:41

starting with the output layer and working down through
each hidden layer to the first hidden layer [6].

Each input linked to the unit is multiplied by its associ-
ated weight to calculate the net input to the unit, which
is then aggregated. The net input, Ij, to unit j is computed
using Eq. 1:

	
Ij =

∑

i

wijoi + θj � (1)

Where wij is the weight of the previous layer’s link from
unit i to unit j, and Oi is the previous layer’s output from
unit I, and θj is the bias of the unit j. Given the net input
Ij to unit j, then Oj, the output of unit j, is computed
using Eq. 2:

	
Oj =

1
1 + e−Ij

� (2)

The output value is calculated for each hidden layer, up to
and including the output layer, which yields the network’s
prediction, where ex is the exponential function. To treat
the network’s prediction error, the prediction deviation
is computed and propagated backward by modifying the
weights and biases. For a unit j in the output layer, the
error Errj is computed using Eq. 3:

	 Errj = Oj (1 − Oj) (Tj − Oj)� (3)

Where Tj is the known goal value of the provided train-
ing tuple, and Oj is the actual output of unit j. For a unit j
in the hidden layer, the error is computed using Eq. 4:

	
Errj = Oj (1 − Oj)

∑

k

Errkwjk � (4)

Where wjk is the weight of the link from unit j to unit k in
the next higher layer, and Errk represents unit k’s error.
Therefore, the weights and biases are updated to reflect
the propagated errors. Equations (5) and (6) are used to
update weights, where Δwij is the weight change in wij:

	 ∆wij = (L) ErrjOi � (5)

	 wij = wij + ∆wij � (6)

Where the variable L is the learning rate, the learning rate
set to 1 / t, where t is the number of iterations through
the training set so far. Also, biases are updated by using
Eqs. (7) and (8), where Δθj is the change in bias θj:

	 ∆θj = (L) Errj � (7)

	 θj = θj + ∆θj � (8)

In conclusion, the proposed methodology (EHIDS) aims
to develop a system that is able to identify any abnormal
behavior. Therefore, it focuses on recognizing any poten-
tial attacks that can affect its functionality and preventing
it from system intrusion and malfunctioning.

Experimental evaluation
The proposed model (EHIDS) was implemented in
Python V. 3.7.6. We tested our work on a Raspberry Pi4
node (Model B) [17], which is a low-cost, credit-card
sized computer that runs Linux. Also, it provides a set
of general purpose input/output pins to control and
explore the Internet of Things. From other hand, in order
to make networks more secure, intrusion detection sys-
tems attempt to detect intrusions by achieving two goals:
high detection and low false-alarm rates. So, in this sec-
tion, we will show the outcomes obtained from the pro-
posed hybrid intrusion detection system, compared
with the outcomes of three another recent approaches,
the Cholesky Factorization based Online Sequential
Extreme Learning Machines with Persistent Regulariza-
tion (CF-OSELM-PRFF) [19], the Anomaly Behavior
Analysis Intrusion Detection System (ABA-IDS) [22],
and the Integrated CNN with LSTM-based Fog Comput-
ing Intrusion Detection (ICNN-FCID) model [12], which
was introduced previously in the section of the related
work.

Testbed description
As illustrated before, the first step in the preprocessing
phase is selecting the relevant features according to their
standard deviation values. An extensive set of experi-
ments was carried out to determine the best fit value
for the standard deviation, which showed that there is a
directly proportional relationship between the standard
deviation and the accuracy and that an increase in the
standard deviation leads to more accurate performance,
as illustrated in Table 2. Therefore, we choose features
with a minimum standard deviation of 50 because it
helps improve accuracy.

On the other hand, the Genetic Algorithm is imple-
mented in such a manner that an initial population of
2000 random chromosomes is generated and evaluated,
and the 100 fittest chromosomes are chosen as the start-
ing point for the next generation. We used the following
customized genetic algorithm:

Table 2  The Relationship between Standard Deviation and Accuracy
Standard deviation 30 40 50 60 70 80

Accuracy 93.11 93.88 96.47 94.9 94.1 93.2

Page 8 of 13Mohamed et al. Journal of Cloud Computing (2023) 12:41

As mentioned above, all chromosomes are evaluated
according to the evaluation function for each generation.
After a number of generations have elapsed or reached
a predefined threshold that represents the minimum
accepted fitness, the best chromosome from the popula-
tion is chosen to represent the optimum possible solution
to the task under consideration. The values of the best
chromosome represent the first initial interconnecting
weights of the network and the initial biases associated
with each neuron.

The artificial neural network topology will be config-
ured with four layers: one input layer, two hidden lay-
ers, and one output layer. Now, the BPNN topology is
constructed and ready to use. Firstly, during the train-
ing phase, the weight and bias parameters are adjusted
so that the mean squared error between the network’s
prediction and the real goal value is as small as pos-
sible. Once the classifier model has been trained and its
accuracy is considered acceptable, the classifier model is
ready to work and to be uploaded to the Fog nodes. The
selected features are used as the input value of BPNN,
and the output value is one of the attack labels. The types
of attacks will be divided into normal data and attack
data, with normal data being numbered 1 and attack data
being numbered 2.

Evaluating classifier performance
To determine how effective or “accurate” the classifier
is at detecting intrusion attacks, we must test its perfor-
mance. The following evaluation measures were used in
our experiments:

 	• The accuracy of a classifier.
 	• Precision.

 	• True positive rate or recall.
 	• F-score.

Choosing a suitable performance metric is one of the
most important factors to be considered. The accuracy
of the system is the most widely used statistic for dem-
onstrating its efficiency. The number of cases successfully
identified divided by the total number of cases is known
as the classifier’s accuracy.

	
Accuracy =

TP + TN

TP + FP + FN + TN

The probability of the model correctly classifying any
instance is known as precision or positive predictive
value.

	
Precision =

TP

TP + FP

The proportion of test results correctly identified by
the model is known as the “true positive rate.“ It is also
known as the “recall rate” or “detection rate.“ It is also
most likely known as sensitivity.

	
Recall =

TP

TP + FN

Finally, the harmonic mean of accuracy and recall is the
F-score.

	
Fscore =

2 ∗ (recall ∗ precision)
(precision + recall)

Data sets
Evaluating IDS using traditional benchmark data sets
such as KDD Cup 99 [30] and NSL-KDD [33] yields
unsatisfactory results owing to three fundamental issues:
(1) a lack of current low-footprint attack techniques; (2)
a lack of modern typical traffic patterns; and (3) a dispar-
ity in the distribution of training and testing data sets.
Therefore, for the experimental evaluation purpose of
the proposed approach, we used two different datasets,
the UNSW-NB15 data set [18] and the ToN_IoT data set
[34].

UNSW-NB15 Data Set
This collection of data covers nine types of recent attacks
and normal patterns, as well as 49 features that compose
the flow based between hosts and the network packet
investigation to distinguish between normal and abnor-
mal behaviours. As shown in Table 3, the entire num-
ber of records is 2,540,044 records. The used portion of
this dataset, about 257,673 records, was divided into an

Table 3  UNSW-NB15 data set distribution
Category Training set Testing set
Normal
Analysis
Backdoor
DoS
Exploits
Fuzzers
Generic
Reconnaissance
Shellcode
Worms

56,000
2,000
1,746

12,264
33,393
18,184
40,000
10,491

1,133
130

37,000
677
583

4089
11,132

6,062
18,871

3,496
378

44

Total Records 175,341 82,332

Page 9 of 13Mohamed et al. Journal of Cloud Computing (2023) 12:41

approximate 68%: 32% ratio of the training and testing
data sets, respectively. In this case, the training dataset
has 175,341 records, of which 56,000 are normal connec-
tion records, while the test dataset has 82,332 records,
37,000 of which are normal connection records. More-
over, to achieve the authenticity of IDS evaluations, there
are no redundant records among the training and testing
sets.

ToN_IoT Data Set
The ToN_IoT (UNSW-IoT20) datasets are new genera-
tions of Internet of Things (IoT) and Industrial IoT (IIoT)
datasets for evaluating the accuracy and effectiveness of
various artificial intelligence-based cybersecurity appli-
cations. The datasets include several normal and cyberat-
tack events that were gathered from heterogeneous data
sources, i.e., telemetry datasets of IoT and IIoT sensors.
There are a total of 22,339,021 records in the datasets.
As shown in Table 4, the used portion of this dataset,
about 461,043 records, was divided into an approxi-
mate 68%:32% ratio of the training and testing data sets,
respectively. Moreover, to achieve the authenticity of IDS
evaluations, there are no redundant records among the
training and testing sets.

The experiments
A set of experiments on both the UNSW-NB15 and
ToN_IoT datasets, were conducted to compare the per-
formance evaluation measures of the proposed meth-
odology, “EHIDS,” and three other recent approaches:
“CF-OSELM-PRFF,“ “ABA-IDS,“ and “ICNN-FCID.“ To
check the effect of varying the size of the data set on the
experimental outcomes, the experiments were repeated
with different sample sizes for each performance mea-
sure, as shown in Figs. 2, 3, 4, and 5 for the UNSW-NB15
data set and 6, 7, 8, and 9 for the ToN_IoT data set,
respectively.

Table 4  ToN_IoT data set distribution
Category Training an Testing set
Normal
Backdoor
doS
ddos
injection
mitm
password
ransomware
scanning
xss

300,000
20,000
20,000
20,000
20,000

1,043
20,000
20,000
20,000
20,000

Total Records 461,043

Fig. 5  F-score for EHIDS, CF-OSELM-PRFF, ABA-IDS, and ICNN-FCID with
different sample sizes

Fig. 4  Recall for EHIDS, CF-OSELM-PRFF, ABA-IDS, and ICNN-FCID with dif-
ferent sample size

Fig. 3  Precision for EHIDS, CF-OSELM-PRFF, ABA-IDS, and ICNN-FCID with
different sample sizes

Fig. 2  Accuracy for EHIDS, CF-OSELM-PRFF, ABA-ID,S and ICNN-FCID with
different sample sizes

Page 10 of 13Mohamed et al. Journal of Cloud Computing (2023) 12:41

As shown in Figs. 2, 3, 4, 5, 6, 7, 8 and 9, a compari-
son is made between the performances of “EHIDS,“ “CF-
OSELM-PRFF,“ “ABA-IDS,“ and “ICNN-FCID” through a
different set of experiments with different measures, in
which the x-axis represents the sample size and the y-axis
denotes the performance measure. The experiments
were applied to different sample sizes to verify the effect
of varying data set sizes on the experimental results. As
we note, with the small data volume, the model was not
trained enough to be able to show efficient performance
(i.e., 10–30 K). This means that the model is not trained
to our expectations (the model has low training errors

and high testing errors). When the training data vol-
ume reaches a sufficient volume that enables the model
to enhance its performance, we will notice an improve-
ment in the performance of the model with the increase
in the data volume (i.e., 40–60 K). Furthermore, it can be
observed that the proposed approach (EHIDS) outper-
forms other related work approaches across all measures.
Table 4 shows the average assessment of each methodol-
ogy for each performance measure.

As shown in Table 5, the proposed methodology
EHIDS outperforms other related methodologies in
terms of accuracy, which shows how our system is more
powerful in detecting incoming intrusions. Also, EHIDS
achieved higher precision, which reflects the ability of
EHIDS to detect the correct classification. Also, EHIDS
achieved a higher recall score than other methodolo-
gies, which reflects the ability of EHIDS to classify the
normal connection instances better than others. Finally,
the results show that the EHIDS has a higher value of
F-score, which indicates that the EHIDS is performing
better on recall and precision.

In addition to using the traditional evaluation methods,
e.g., accuracy, detection rate, precision, and false alarm

Table 5  the binary classification results of EHIDS, CF-OSELM-
PRFF, ABA-IDS, and ICNN-FCID.
Data
set

Com-
parison
criteria

EHIDS CF-OSELM-PRFF ABA-IDS ICNN-
FCID

UN-
SW-
NB15
Data
Set

Accuracy 96.47% 94.70% 90.88% 92.38%

Precision
score

96.53% 94.94% 82.50% 94.44%

Recall
score

96.47% 93.12% 91.37% 88.41%

F-score 96.47% 93.54% 86.83% 90.66%

ToN_
IoT
Data
Set

Accuracy 95.36% 91.31% 90.03% 92.26%

Precision
score

99.02% 95.27% 94.05% 95.51%

Recall
score

99.04% 93.12% 94.05% 94.43%

F-score 99.02% 93.54% 94.05% 91.66%

Fig. 9  F-score for EHIDS, CF-OSELM-PRFF, ABA-IDS, and ICNN-FCID with
different sample sizes

Fig. 8  Recall for EHIDS, CF-OSELM-PRFF, ABA-IDS, and ICNN-FCID with dif-
ferent sample sizes

Fig. 7  Precision for EHIDS, CF-OSELM-PRFF, ABA-IDS, and ICNN-FCID with
different sample sizes

Fig. 6  Accuracy for EHIDS, CF-OSELM-PRFF, ABA-ID,S and ICNN-FCID with
different sample sizes

Page 11 of 13Mohamed et al. Journal of Cloud Computing (2023) 12:41

rate, to evaluate the performance of IDS, we also used the
confusion matrix to evaluate the proposed methodology
performance. The confusion matrix is a tabular structure
that depicts both the predicted and actual categoriza-
tion. There are four prospective outputs, as illustrated in
Table 6, with a sample of 60,000 records. In which, true
positive (TP) refers to the number of actual attacks clas-
sified as such; true negative (TN) refers to the number
of normal connections classified as such; false positive
(FP) refers to the number of normal connections classi-
fied as attack class; and false negative (FN) refers to the
number of actual attacks classified as normal connec-
tion. Both (TP) and (TN) are regarded as guides for the
IDS’s correct behavior. Furthermore, (FP) and (FN) rates
reduce the effectiveness of the IDS, where (FP) reduces
the system’s detection capability and (FN) makes the
system vulnerable to intrusion [15]. As a result, in order

for IDS to be effective, the (TP) and (TN) rates should
be maximized while the (FP) and (FN) rates should be
minimized.

After considering all the performance measurements
used in our experiments, we have come to the conclusion
that our proposed approach - which uses GA as an opti-
mization method to generate the initial interconnecting
weights of the network and the initial biases associated
with each neuron - leads to achieving a higher detection
rate and a lower false positive rate.

Furthermore, Figs. 10 and 11 show a comparison
between the execution times of “EHIDS,“ “CF-OSELM-
PRFF,“ “ABA-IDS,“ and “ICNN-FCID” through a different
set of experiments with different dataset sizes and based
on both the UNSW-NB15 and ToN_IoT datasets. Where
the x-axis represents the sample size and the y-axis
denotes the execution time in seconds. It can be observed
that the proposed approach (EHIDS) achieves the lowest
execution time on both data sets compared to the other
related work methods.

Although the Raspberry Pi4, as a platform for evalu-
ating the model’s performance, is much slower than
standard computers because it has limited comput-
ing resources, this approach has brought other benefits,
which can be concluded in an 16.35% and 37.07% reduc-
tion of average execution time compared to the best aver-
age execution time of other related approaches, for both
data sets, respectively, enhancing the acceleration of the
convergence process and saving processing power, as
illustrated in Table 7.

On the whole, through applying the proposed meth-
odology, we could achieve an enhancement in both the
performance metrics and the execution time compared
to other state-of-the-art related methodologies. Which
means that the improvement in both the performance
metrics and the execution time is due to the fact that the
optimization of the interconnecting weights of the net-
work and the biases associated with each neuron causes
a quick and effective establishment of a back-propagation
neural network model. Moreover, the distributed archi-
tecture of Fog computing enables the distribution of the
intrusion detection system over local Fog nodes with a
centralized Cloud, which achieves faster attack detection
than the Cloud intrusion detection mechanism. Which
reveled in enhancing the performance of the classifica-
tion algorithm in addition to the titanic reduction in the
execution time.

Table 6  The confusion matrix for binary classification
Predicted label

Attack type Normal Intrusion
Actual class Normal True negative (14,606) False posi-

tive (4712)

Intrusion False negative (49) True posi-
tive (40,633)

Table 7  Average execution times in seconds for EHIDS,
CF-OSELM-PRFF, ABA-IDS, and ICNN-FCID.
Data Set EHIDS CF-OSELM-PRFF ABA-IDS ICNN-FCID
UNSW-NB15 2.461 2.942 2.951 3.309

ToN_IoT 1.832 3.242 2.946 2.911

Fig. 11  the execution times for EHIDS, CF-OSELM-PRFF, ABA-IDS, and
ICNN-FCID with different sample sizes (ToN_IoT Data Set)

Fig. 10  the execution times for EHIDS, CF-OSELM-PRFF, ABA-IDS, and
ICNN-FCID with different sample sizes (UNSW-NB15 data set)

Page 12 of 13Mohamed et al. Journal of Cloud Computing (2023) 12:41

Conclusion & future work
The features of neural networks make them ideal for
addressing difficult pattern classification challenges.
However, its applicability to various real-world issues
has been impeded due to a lack of supporting algorithms
that reliably find a nearly globally optimal set of weights
and biases in a relatively short time. A genetic algorithm
is a type of optimization method that can be consid-
ered perfect for exploring a large and complex space in
an effective way to find a value that is close to the global
optimum. In this paper, we propose a methodology
that optimizes the artificial neural network parameters
through the use of a genetic algorithm and then deploys
it over the Fog network. In which the network’s linking
weights and the biases associated with each neuron are
optimised using a genetic algorithm. This can help to
establish a quick and effective BPNN model that could
be uploaded to the Fog network for intrusion classifica-
tion purposes. Classification experiments on both the
UNSW-NB15 and ToN_IoT data sets based on the Fog
node Raspberry Pi4 revealed that the optimized model
has a higher intrusion detection rate through decreasing
the neural network error rate and increasing the true pos-
itive rate. Furthermore, achieving up to 37.07% reduction
in the execution time compared to other state-of-the-art
methods, which accelerates the convergence process and
saves processing power. For future work, we recommend
performing further experiments on multi-class classifica-
tion based on diverse datasets to validate the suggested
model. Moreover, we are planning to apply other effec-
tive deep learning algorithms and support our proposed
model with more powerful statistical analysis techniques,
aiming to enhance the proposed methodology. Finally,
conducting more experiments using different evaluation
criteria, such as energy and power consumption rates.

List of abbreviations
ABA-IDS	� Anomaly Behavior Analysis Intrusion Detection System
ANN	� Artificial Neural Network
BPNN	� Back Propagation Neural Networks
CF-OSELM-PRFF	� Cholesky Factorization-based Online Sequential Extreme

Learning Machines
CNN	� Convolutional Neural Network
DDoS	� Distributed Denial of Service
DoS	� Denial of Service
EHIDS	� Enhanced Hybrid Intrusion Detection System
FN	� False Negative
FP	� False Positive
GA	� Genetic Algorithm
ICNN-FCID	� Integrated CNN with LSTM-based Fog Computing

Intrusion Detection
IDS	� Intrusion Detection Systems
IoT	� Internet of Things
IIoT	� Industrial Internet of Things
LSTM	� Long Short-Term Memory networks
MLP	� Multilayer Perceptron
SVM	� Support Vector Machine
TN	� True Negative
TP	� True Positive

Authors’ contributions
Doaa Mohamed proposed the methodology; did all the experiments; wrote
the main manuscript text; prepared all the figures except Fig. 1; and prepared
all the tables. Osama Ismael gave some valuable insights on the proposed
methodology, prepared Fig. 1, and reviewed the manuscript.

Funding
There are no sources of funding.
Open access funding provided by The Science, Technology & Innovation
Funding Authority (STDF) in cooperation with The Egyptian Knowledge Bank
(EKB).
Open access funding provided by The Science, Technology & Innovation
Funding Authority (STDF) in cooperation with The Egyptian Knowledge Bank
(EKB).

Declarations

Competing interests
There is no conflict of interest regarding all the authors.

Received: 1 August 2022 / Accepted: 11 March 2023

References
1.	 Abbas A, Khan MA, Latif S et al (2022) A New Ensemble-Based intrusion

detection system for internet of things. Arab J Sci Eng 47:1805–1819. https://
doi.org/10.1007/s13369-021-06086-5

2.	 Alghayadh F, Debnath D (2021) A hybrid intrusion detection system for Smart
Home Security based on machine learning and user behavior. Adv Internet
Things 11(01):10–25. https://doi.org/10.4236/ait.2021.111002

3.	 Aljawarneh S, Aldwairi M, Yassein M (2018) Anomaly-based intrusion detec-
tion system through feature selection analysis and building hybrid efficient
model. J Comput Sci 25:152–160. https://doi.org/10.1016/j.jocs.2017.03.006

4.	 Amaral J, Oliveira L, Rodrigues J, Han G (2014) and Shu L. “Policy and network-
based intrusion detection system for IPv6-enabled wireless sensor networks”,
IEEE International Conference on Communications (ICC). doi: https://doi.
org/10.1109/icc.2014.6883583

5.	 An X, Su J, Lü X, Lin F (2018) Hypergraph clustering model-based asso-
ciation analysis of DDOS attacks in fog computing intrusion detection
system. EURASIP J Wirel Commun Netw 2018(1). https://doi.org/10.1186/
s13638-018-1267-2

6.	 Han J, Kamber M, Pei J (2012) “Data Mining: Concepts and Techniques”,
393–442. doi: https://doi.org/10.1016/b978-0-12-381479-1.00009-5

7.	 Hindy H, Brosset D, Bayne E, Seeam A, Tachtatzis C, Atkinson C, Bellekens X
(2018) “A Taxonomy and Survey of Intrusion Detection System Design Tech-
niques, Network Threats and Datasets”, Working paper arXivorg

8.	 Houda Z, Brik B, Khoukhi L (2022) “Why should I trust your IDS?”: an Explain-
able Deep Learning Framework for Intrusion Detection Systems in Internet
of Things Networks. IEEE Open Journal of the Communications Society
3:1164–1176. https://doi.org/10.1109/OJCOMS.2022.3188750

9.	 Illy P, Kaddoum G, Miranda C, Kaur K, Garg S (2019) “Securing Fog-to-Things
Environment Using Intrusion Detection System Based on Ensemble Learn-
ing”, IEEE Wireless Communications and Networking Conference (WCNC).
doi: https://doi.org/10.1109/wcnc.2019.8885534

10.	 Imrana Y, Xiang Y, Ali L., and, Abdul-Rauf Z (2021) A bidirectional LSTM deep
learning approach for intrusion detection, vol 185. Expert Systems with
Applications

11.	 Jan S, Ahmed S, Shakhov V, Koo I (2019) Toward a Lightweight Intrusion
Detection System for the internet of things. IEEE Access 7:42450–42471.
https://doi.org/10.1109/access.2019.2907965

12.	 Kalaivani K, Chinnadurai M (2021) “A Hybrid Deep Learning Intrusion Detec-
tion Model for Fog Computing Environment”, Intelligent Automation &
amp; Soft Computing, vol. 29, no. 3, pp. 1–15. doi: https://doi.org/10.32604/
iasc.2021.017515

13.	 Ke G, Hong H (2014) The Research of Network Intrusion Detection Technol-
ogy based on genetic algorithm and BP neural network. Appl Mech Mater
599–601. https://doi.org/10.4028/www.scientific.net/amm.599-601.726

http://dx.doi.org/10.1007/s13369-021-06086-5
http://dx.doi.org/10.1007/s13369-021-06086-5
http://dx.doi.org/10.4236/ait.2021.111002
http://dx.doi.org/10.1016/j.jocs.2017.03.006
http://dx.doi.org/10.1109/icc.2014.6883583
http://dx.doi.org/10.1109/icc.2014.6883583
http://dx.doi.org/10.1186/s13638-018-1267-2
http://dx.doi.org/10.1186/s13638-018-1267-2
http://dx.doi.org/10.1016/b978-0-12-381479-1.00009-5
http://dx.doi.org/10.1109/OJCOMS.2022.3188750
http://dx.doi.org/10.1109/wcnc.2019.8885534
http://dx.doi.org/10.1109/access.2019.2907965
http://dx.doi.org/10.32604/iasc.2021.017515
http://dx.doi.org/10.32604/iasc.2021.017515
http://dx.doi.org/10.4028/www.scientific.net/amm.599-601.726

Page 13 of 13Mohamed et al. Journal of Cloud Computing (2023) 12:41

14.	 Khan S, Parkinson S, Qin Y (2017) Fog computing security: a review of cur-
rent applications and security solutions. J Cloud Comput 6(1). https://doi.
org/10.1186/s13677-017-0090-3

15.	 Khater B, Abdul Wahab A, Idris M, Hussain M, Ibrahim A, Amin M, Shehadeh
H (2021) Classifier performance evaluation for Lightweight IDS using Fog
Computing in IoT Security. Electronics 10(14):1633. https://doi.org/10.3390/
electronics10141633

16.	 Khraisat A, Gondal I, Vamplew P, Kamruzzaman J (2019) “Survey of intrusion
detection systems: techniques, datasets and challenges”, Cybersecurity, 2(1).
doi: https://doi.org/10.1186/s42400-019-0038-7

17.	 Ltd R (2022) Raspberry Pi. from https://www.raspberrypi.com/
18.	 Moustafa N, Slay J (2016) Inform Secur Journal: Global Perspective 25(1–

3):18–31. https://doi.org/10.1080/19393555.2015.1125974. “The evaluation of
Network Anomaly Detection Systems: Statistical analysis of the UNSW-NB15
data set and the comparison with the KDD99 data set”

19.	 Narendra M, Rakesh K (2019) A novel intrusion detection technique based
on Fog Computing using Cholesky Factorization based Online Sequen-
tial Extreme Learning Machines with persistent Regularization”, IJCA.
12:117–1266

20.	 Nayak S, Misra B, Behera H (2014) Impact of data normalization on stock
index forecasting. Int J Comput Inform Syst Industrial Manage Appl
6:357–369

21.	 Pacheco J, Hariri S (2016) “IoT Security Framework for Smart Cyber Infrastruc-
tures”, IEEE 1st International Workshops on Foundations and Applications of
Self* Systems (FAS*W). doi: https://doi.org/10.1109/fas-w.2016.58

22.	 Pacheco J, Benitez V, Felix-Herran L, Satam P (2020) Artificial neural networks-
based intrusion detection system for internet of Things Fog Nodes. IEEE
Access 8:73907–73918. https://doi.org/10.1109/access.2020.2988055

23.	 Pudjihartono N, Fadason T, Kempa-Liehr AW, O’Sullivan JM (2022) A review of
feature selection methods for machine learning-based Disease Risk Predic-
tion. Front Bioinform 2:927312. https://doi.org/10.3389/fbinf.2022.927312

24.	 Rani D, Kaushal N (2020) “Supervised Machine Learning Based Network Intru-
sion Detection System for Internet of Things”, 11Th International Conference

on Computing, Communication and Networking Technologies (ICCCNT). doi:
https://doi.org/10.1109/icccnt49239.2020.9225340

25.	 Ravi V, Chaganti R, Alazab M (2022) “Recurrent deep learning-based feature
fusion ensemble meta-classifier approach for intelligent network intrusion
detection system”,Computers and Electrical Engineering, Volume 102

26.	 Sadaf K, Sultana J (2020) Intrusion detection based on autoencoder and isola-
tion forest in Fog Computing. IEEE Access 8:167059–167068

27.	 Srinivasu P, Avadhani P (2012) Genetic algorithm based weight extraction
algorithm for Artificial neural network classifier in intrusion detection. Proce-
dia Eng 38:144–153. https://doi.org/10.1016/j.proeng.2012.06.021

28.	 Sudqi B, Abdul Wahab A, Idris M, Abdulla M, Ahmed A (2019) A Lightweight
Perceptron-Based intrusion detection system for Fog Computing. Appl Sci
9(1):178. https://doi.org/10.3390/app9010178

29.	 Systems C (2016) “Fog Computing and the internet of things: extend the
cloud to where the Things Are”,www.Cisco.Com,

30.	 Tavallaee M, Bagheri E, Lu W, Ghorbani A (2009) “A Detailed Analysis of the
KDD CUP 99 Data Set”, Submitted to Second IEEE Symposium on Computa-
tional Intelligence for Security and Defense Applications (CISDA)

31.	 Whitley D (1994) A genetic Algorithm Tutorial. Stat Computing” 4(2). https://
doi.org/10.1007/bf00175354

32.	 Yousefpour A, Ibrahim R, Abdul Hamed H, Zaki U, Mohamed K (2017) “Feature
subset selection using mutual standard deviation in sentiment mining”, IEEE
Conference on Big Data and Analytics (ICBDA), doi:https://doi.org/10.1109/
icbdaa.2017.8284100

33.	 NSL-KDD dataset, https://www.unb.ca/cic/datasets/nsl.html
34.	 ToN_IoT datasets (2020) https://www.unsw.adfa.edu.au/unsw-canberra-

cyber/cybersecurity/ADFA-ton-iot-Datasets/, January

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

http://dx.doi.org/10.1186/s13677-017-0090-3
http://dx.doi.org/10.1186/s13677-017-0090-3
http://dx.doi.org/10.3390/electronics10141633
http://dx.doi.org/10.3390/electronics10141633
http://dx.doi.org/10.1186/s42400-019-0038-7
https://www.raspberrypi.com/
http://dx.doi.org/10.1080/19393555.2015.1125974
http://dx.doi.org/10.1109/fas-w.2016.58
http://dx.doi.org/10.1109/access.2020.2988055
http://dx.doi.org/10.3389/fbinf.2022.927312
http://dx.doi.org/10.1109/icccnt49239.2020.9225340
http://dx.doi.org/10.1016/j.proeng.2012.06.021
http://dx.doi.org/10.3390/app9010178
http://dx.doi.org/10.1007/bf00175354
http://dx.doi.org/10.1007/bf00175354
http://dx.doi.org/10.1109/icbdaa.2017.8284100
http://dx.doi.org/10.1109/icbdaa.2017.8284100
https://www.unb.ca/cic/datasets/nsl.html
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-ton-iot-Datasets/
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-ton-iot-Datasets/

	﻿Enhancement of an IoT hybrid intrusion detection system based on fog-to-cloud computing
	﻿Abstract
	﻿Introduction
	﻿Related work
	﻿Hybrid intrusion detection system
	﻿Pre-processing phase
	﻿Optimization phase
	﻿Classification phase

	﻿Experimental evaluation
	﻿Testbed description
	﻿Evaluating classifier performance
	﻿Data sets
	﻿﻿UNSW-NB15 Data Set﻿
	﻿﻿ToN_IoT Data Set﻿

	﻿The experiments
	﻿Conclusion & future work
	﻿References

