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Abstract
Nowadays, with the proliferation of internet of things-connected devices, the scope of cyber-attacks on the 
internet of things has grown exponentially. So, it makes it a necessity to develop an efficient and accurate intrusion 
detection system that should be fast, dynamic, and scalable in an internet of things environment. On the other 
hand, Fog computing is a decentralized platform that extends Cloud computing to deal with the inherent issues of 
the Cloud computing. As well, maintaining a high level of security is critical in order to ensure secure and reliable 
communication between Fog nodes and internet of things devices. To address this issue, we present an intrusion 
detection method based on artificial neural networks and genetic algorithms to efficiently detect various types 
of network intrusions on local Fog nodes. Through this approach, we applied genetic algorithms to optimize the 
interconnecting weights of the network and the biases associated with each neuron. Therefore, it can quickly 
and effectively establish a back-propagation neural network model. Moreover, the distributed architecture of fog 
computing enables the distribution of the intrusion detection system over local Fog nodes with a centralized 
Cloud, which achieves faster attack detection than the Cloud intrusion detection mechanism. A set of experiments 
were conducted on the Raspberry Pi4 as a Fog node, based on the UNSW-NB15 and ToN_IoT data sets for binary-
class classification, which showed that the optimized weights and biases achieved better performance than those 
who used the neural network without optimization. The optimized model showed interoperability, flexibility, and 
scalability. Furthermore, achieving a higher intrusion detection rate through decreasing the neural network error 
rate and increasing the true positive rate is also possible. According to the experiments, the suggested approach 
produces better outcomes in terms of detection accuracy and processing time. In this case, the proposed approach 
achieved an 16.35% and 37.07% reduction in execution time for both data sets, respectively, compared to other 
state-of-the-art methods, which enhanced the acceleration of the convergence process and saved processing 
power.
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Introduction
Nowadays, many companies and start-ups use Cloud 
computing because it’s a cost-effective way of establish-
ing and operating their own system resources. In addi-
tion to location awareness, there are some issues facing 
Cloud computing, such as low latency, geo-location and 
mobility support. In contrast, Fog computing technology 
is a simplified version of the Cloud computing paradigm 
that enables a wide range of applications and services 
with low latency, improved location service awareness, 
mobility, and flexibility [28]. Fog computing is a platform 
similar to Cloud computing that provides end users with 
processing, storage, and application services, as well as 
network services between Fog nodes and Cloud servers 
[29]. Due to its deployment in different locations where 
security is limited, Fog computing faces many security 
and safety issues. Fog devices, for example, are vulnerable 
to a variety of cyber-attacks, such as man-in-the-middle 
and port scan attacks, which violate the privacy of their 
data [14].

In addition, Fog computing is a distributed platform 
that can operate and process data at a regional level and 
may be deployed on a wide range of devices, making it 
ideal for Internet of Things (IoT) applications. The IoT 
has emerged as an industrial revolution in the last decade 
because of the popularity and usage of low-cost, energy-
efficient devices like sensors, actuators, etc., combined 
with a variety of communication mediums. IoT can be 
considered as one of the most recent and widely used 
computing paradigms that have emerged to enhance 
data collection and introduce new types of data services 
[21]. It’s worth mentioning that the internet of things 
exists in many aspects of our lives, with high challenges 
in security.

On the other hand, to assure service quality, intrusion 
detection systems (IDS) can be considered as an essen-
tial component of any security mechanism for Fog and 
IoT networks. As a result, IDS have become an indis-
pensable part of Fog computing and the IoT to ensure 
the quality of service. IDS fall into two major categories: 
misuse detection and anomaly detection. Misuse detec-
tion, also known as signature-based, detects only known 
attacks but fails to detect newly created attacks because 
it mostly depends on the rules that the network admin-
istrator has set. The second category, anomaly detection, 
can solve the problem of the first because it can detect 
new and unknown attacks because it depends on a sta-
tistical approach. However, most of the IDS available use 
only misuse detection because most developed anomaly 
detectors face many challenges, such as generating a 
high rate of false positive alarms and expensive computa-
tion. So in order to build an intrusion detection system, 
we must first understand how an attack occurs, collect 

information, configure remote to local access, and launch 
an attack [3].

Intrusion detection systems use a variety of methods, 
but none of them are completely without flaws. There are 
two types of intrusion detection system software: net-
work-based intrusion detection systems and host-based 
intrusion detection systems. By monitoring network 
traffic, network-based IDS attempt to detect malicious 
activities such as denial-of-service attacks and port scans. 
While the host-based IDS looks at actions and files on 
the host devices.

As mentioned earlier, the Internet of Things is vulner-
able to a variety of attacks, including both internal and 
external intrusions [4]. Therefore, an effective intrusion 
detection system is highly desirable to deal with inappro-
priate use of computers and IoT devices that violate secu-
rity and administrative policies. As a result, in this study, 
we propose a new methodology for improving the intru-
sion detection system for combating IoT attacks deployed 
over the Fog network. This was achieved through using 
a hybrid approach that consists of two algorithms, Back 
Propagation Neural Networks (BPNN) and Genetic 
Algorithms (GA) [31], to efficiently detect various types 
of network intrusions. Through this approach, we pro-
pose the optimization of the weights and biases in neural 
networks using Genetic algorithms to enhance the neu-
ral network performance. Therefore, it can quickly and 
effectively establish a back-propagation neural network 
model. Moreover, we will focus on the network-based 
IDS because it observes all data passing through the net-
work before passing it to hosts inside the network.

The key contributions of this research can be summa-
rized in the following points:

 	• Present a novel approach that uses the Genetic 
algorithms to optimize the Artificial Neural Network 
parameters before deploying it on the Fog network. 
This can aid in establishing a rapid and effective 
BPNN model that can be uploaded to the Fog 
network for anomaly classification purposes.

 	• The optimized model has a greater intrusion 
detection rate since the neural network error rate is 
lower and the true positive rate is higher.

 	• Achieving up to a 37.07% decrease in execution time 
when compared to other cutting-edge approaches, 
which speeds up the convergence process and saves 
computing power.

Related work
In recent years, many IDS have been proposed in the lit-
erature, which are used to monitor IoT-based networks 
against various attacks. However, IDS frequently expe-
rience poor detection accuracy because of composed 
attacks like DDoS and a lack of methodology through 
which the attack data can be exchanged between the 
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network nodes. Much research has been conducted to 
improve IDS performance in a variety of ways, including 
using neural networks and multi-layer perception [22, 
28], combining multiple machine learning algorithms [1, 
2, 12, 25], detecting Distributed Denial of Service (DDoS) 
and Denial of Service (DoS) attacks [5, 11], and other 
enhancements [8–10, 19, 24, 26].

Sudqi et al., [28] introduced a multilayer perceptron 
(MLP) model for intrusion detection. They used two dif-
ferent datasets to evaluate their system; the Australian 
Defense Force Academy Linux Dataset and the Austra-
lian Defense Force Academy Windows Dataset. They 
reduced the number of features by applying mutual infor-
mation feature selection and a modified vector space rep-
resentation via n-gram transformation. Also, they used 
the Raspberry Pi as a Fog device, in which the electrical 
current demand and the voltage were used to determine 
the Raspberry Pi’s power consumption in the experi-
ment’s design.

Pacheco et al., [22] proposed an artificial neural net-
work-based Anomalous Behavior Analysis (ABA-IDS) 
approach to create an adaptive intrusion detection sys-
tem capable of recognizing when a Fog node has been 
hacked and then taking the appropriate precautions to 
ensure communication availability. Their approach com-
prises creating a node’s profile based on the node’s attri-
butes, which is then passed into artificial neural networks 
that are built to characterize the node’s regular functions.

Alghayadh and Debnath [2] proposed a hybrid intru-
sion detection system using multiple machine learning 
algorithms, including random forest, Xgboost, decision 
tree, K-nearest neighbors, and misuse detection tech-
niques designed for smart homes based on user behavior 
profile patterns. They used the CSE-CIC-IDS2018 and 
NSL-KDD datasets to verify their model. Also, Kalaivani 
and Chinnadurai [12] proposed a multi-class attack clas-
sification model based on deep learning methods, called 
ICNN-FCID. They integrated the convolutional neural 
network (CNN) and the Long Short-Term Memory net-
works (LSTM) algorithms in order to predict the network 
attacks in the Fog computing layer. In addition, they used 
the NSL-KDD as a benchmark dataset.

Abbas et al., [1] proposed an ensemble-based intrusion 
detection model. The architecture of the proposed model 
consists of three machine learning algorithms instead of 
using artificial neural networks and deep learning tech-
niques, which are logistic regression, naive Bayes, and 
decision trees. The proposed model has been evaluated 
and analyzed using the CICIDS 2017 dataset in both 
binary and multi-class contexts. Also, Ravi et al., [25] 
proposed using deep learning-based recurrent mod-
els to build a system for cyber–physical network attack 
detection and classification. The proposed model uses a 
kernel-based principal component analysis technique to 

select features and extract the hidden layer features of 
recurrent models. The model employs random forest and 
support vector machine on the extracted features, fol-
lowed by logistic regression for network attack detection 
and classification. They used more than one benchmark 
network intrusion dataset to evaluate the performance 
of the proposed method, including the SDN-IoT, KDD-
Cup-1999, UNSW-NB15, WSN-DS, and CICIDS-2017 
datasets.

An et al., [5] introduced a hypergraph clustering model 
based on the Apriori algorithm to analyze the association 
between Fog nodes that are suffering from the threat of 
DDoS. Also, Jan et al., [11] introduced an attack detec-
tion strategy based on the Support Vector Machine 
(SVM) algorithm, with input given in the form of two 
or three features, to mitigate the most common DDoS 
attack in the IoT environment. They used only one attri-
bute to classify the signal, which is the packet arrival rate 
at the node. Furthermore, they conducted a comparison 
of SVM-based classifiers with other machine learning-
based classifiers, including Neural Network, k-Nearest 
Neighbors, and Decision Tree, to prove their view of the 
advantage of utilizing SVM over other techniques.

Illy et al., [9] described their proposed solution as com-
bining multiple learners using different algorithms (i.e., 
KNN, Random Forest, Bagging and Boosting of deci-
sion trees) and building different classifiers for anomaly 
detection and attack classification. Also, they proposed 
a deployment architecture where anomaly detection 
takes place on the Fog node side while attack classifica-
tion takes place on the Cloud side to guide the intru-
sion prevention tasks. They test their experiments on 
KDDTest + and KDDTest-21. Also, Narendra and Rakesh 
[19] proposed an intrusion detection system on Fog 
nodes for IoT applications. They applied a Persistent 
Regularization algorithm using Cholesky Factorization-
based Online Sequential Extreme Learning Machines 
(CF-OSELM-PRFF). In which IoT-generated attacks are 
detected in local Fog nodes and reported to the cloud 
server.

Sadaf and Sultana [26] proposed the Auto-IF intrusion 
detection system approach for real-time intrusion detec-
tion in Fog computing environments based on isolation 
forest and auto-encoder. On the Fog devices, this tech-
nique conducts binary classification of incoming packets 
where the judgement distinguishes intrusions from regu-
lar packets. They used the NSL-KDD dataset to validate 
their method. Also, Rani et al., [24] proposed a network 
intrusion detection system based on the Random For-
est classifier algorithm. They used two different datasets: 
NSL-KDD and KDD-CUP99, with minimal feature sets. 
Features are selected manually after analyzing different 
attacks and their characteristics. They implemented their 
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method on a synthesized generated network traffic data-
set, so it may not be suitable for real network traffic.

Imrana et al., [10] proposed a bidirectional Long-
Short-Term-Memory (BiDLSTM)-based intrusion detec-
tion system to detect different network intrusion types, 
especially User-to-Root (U2R) and Remote-to-Local 
(R2L) attacks. The model’s performance has been evalu-
ated and tested using the NSL-KDD benchmark dataset. 
Also, Houda et al. [8] proposed a framework consists of 
two phases: the first phase is a Deep Learning-based IoT-
related Intrusion Detection System model, and the sec-
ond phase is an Explainable Artificial Intelligence-based 
model, whose role is to give explanations about the mod-
el’s decisions. The proposed framework uses three main 
Explainable Artificial Intelligence techniques (i.e., Rul-
eFit, Local Interpretable Model-Agnostic Explanations, 
and SHapley Additive exPlanations), on top of the Deep 
Learning Neural Network-based Intrusion Detection 
System model. The proposed framework has been vali-
dated based on two different datasets, the NSL-KDD and 
UNSW-NB15 datasets.

Table  1 shows a summary of the main characteristics 
of the proposed methodology (EHIDS) compared to 
some of the state-of-the-art methodologies. As a conclu-
sion, despite the fact that several Artificial Neural Net-
work (ANN)-based intrusion detection methods have 
been proposed in recent years, and despite the fact that 
they claim to achieve a high performance rate, the above 
methodologies still have some shortcomings that must be 
addressed:

 	• Several of the previous works included DDoS in Fog 
computing and ignored other attacks, whereas our 
proposed model can deal with all types of attacks.

 	• Most of the methods in the literature work on 
the Host-based Intrusion Detection System. In 
contrast, we use Network-based IDS because they 
have a quicker response time than Host-based 
IDS. Furthermore, the Network-based IDS do not 
necessitate any changes to the existing infrastructure 
and monitor everything on a network segment, 
regardless of the target host’s operating system.

 	• Most of the introduced methods use traditional 
feature selection methods (e.g., wrapper methods). 
Traditional feature selection methods fail to detect 
several sensitive features, resulting in a classifier 
that isn’t as sensitive as it should be, which leads to 
incorrect detection. On the contrary, we use filter 
methods that are much faster, require less space, and 
have lower complexity.

Hybrid intrusion detection system
Motivated by the above-mentioned problems, we pro-
pose a novel hybrid approach called “Enhanced Hybrid 
Intrusion Detection System (EHIDS)” to be deployed on 
the Fog network to detect known and newly anomalous 
intrusions attempting to attack the Fog nodes. To build 
and utilize the model, three phases are undergone: the 
pre-processing phase, the optimization phase, and the 
classification phase. In the first phase, the data is pre-
pared to be fit for the classification process. This phase 
consists of three steps: feature selection, categorical data 

Table 1  Summary of the Main Characteristics of the Proposed Methodology versus other State-of-the-Art Methodologies
The methodology Algorithms used Dataset used Feature selection 

methodology
Fog de-
vices used

Detec-
tion 
technique

Proposed methodology 
(EHIDS)

GA and BPNN UNSW-NB15 and
ToN_IoT

Filter methods (Standard 
Deviation)

Raspberry 
Pi4

Anomaly

CF-OSELM-PRFF [19] Cholesky Factorization based Online Sequen-
tial Extreme Learning Machines with Persistent 
Regularization

NSL-KDD N/A Azure 
Cloud 
Service

Anomaly

ABA-IDS [22] ANN Legitimate 
Commands

Pearson Product-
Moment Correlation 
Coefficient

Raspberry 
Pi3 model B

Anomaly

ICNN-FCID [12] CNN and
LSTM Networks

NSL-KDD N/A N/A Anomaly

Ensemble-Based IDS [1] logistic regression, naive Bayes, and decision 
trees

CICIDS 2017 LinearSVM feature
selection

N/A Anomaly

cyber–physical systems 
network intrusion detec-
tion model [25]

Random Forest, SVM and Logistic Regression SDN-IoT, KDD-
Cup-1999, UNSW-
NB15, WSN-DS, and 
CICIDS-2017

kernel-based principal 
component analysis 
technique

N/A Anomaly

BiDLSTM-based intrusion 
detection system [10]

bidirectional LSTM NSL-KDD N/A N/A Anomaly

XAI-based IDS [8] RuleFit, Local Interpretable Model-Agnostic
Explanations, and SHapley Additive 
exPlanations

NSL-KDD and 
UNSW-NB15

N/A N/A --
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conversion to numerical data, and normalisation. In the 
second phase, we optimize the neural network param-
eters, namely, weights and biases, through using the 
Genetic algorithm instead of selecting them randomly. 
Finally, in the third phase, we build the classification 
model using BPNN, which is uploaded to the Fog net-
work. Attacks generated by IoT devices are detected by 
local Fog nodes and reported to the intrusion history 
repository. In contrast, if the log is classified as normal, 
it will be passed to the cloud server to be processed. This 
had a positive impact on the predictability of the IDS. 
The next three subsections give a detailed description of 
these three phases.

Pre-processing phase
Both the training and testing datasets require this phase. 
It is divided into three major steps: feature selection, con-
verting categorical to numerical data, and data normal-
ization. These steps are very important to enhance the 
quality of the results. The network generates a huge vol-
ume of traffic, which slows down the intrusion detection 
process. For detection purposes, the data often includes 
some irrelevant and redundant information, so it is 
important to choose only the relevant information. As a 
result, feature selection is an essential part of any network 
intrusion detection system that can effectively identify a 
subset of the most relevant features in the dataset accord-
ing to certain criteria in order to improve system perfor-
mance and reduce computation time. Thus, removing 
those irrelevant features does not have a negative effect 
on the system’s performance. Moreover, using all of the 
features increases the system’s complexity while decreas-
ing its accuracy. Thus, we aim to select the most suitable 
subset of features that are relevant to the required task.

As a result, the primary goal of feature selection is to 
make data mining algorithms more efficient. We can 
achieve several benefits by reducing the number of fea-
tures and deleting unnecessary or redundant features, 
such as speeding up the classification model generation 
and enhancing system accuracy. There are two methods 
for feature selection: filter methods and wrapper meth-
ods. In the filter methods, features are ranked based 
on statistical methods, whereas the wrapper meth-
ods attempt to use only a subset of features to train the 
model. Despite the fact that the filter methods may occa-
sionally be unable to identify the best subset of features, 
the wrapper methods can always identify the best subset 
of features [23]. But wrapper methods are not the most 
efficient feature selection tools to be considered in the 
case of large datasets because they are computationally 
very costly. Moreover, compared to utilizing the subset 
of features from the filter methods, using the subset of 
features from the wrapper techniques makes the model 
more vulnerable to overfitting. Overall, the particular 

strengths and weaknesses of each method mean that 
there is no one best method that is fit for all use cases; it 
depends on the dataset being used and the specific goals 
that the methodology aims to accomplish. Therefore, in 
our case, we recommend using filter methods over wrap-
per methods because they are much faster and do not 
require model training [7, 16].

In this research, we suggested using the standard 
deviation [32] to select the best features that achieved a 
higher standard deviation. According to the experiments 
we conducted, as illustrated in the following section, 
increasing the standard deviation can improve accuracy. 
Therefore, we set the minimum threshold of the standard 
deviation at 50. In actuality, a large standard deviation 
implies that the feature is extended over a wide range 
of values, whereas a low standard deviation implies that 
the feature values are extremely near the mean. As a 
result, choosing features with a higher standard deviation 
results in a more accurate prediction.

On the other hand, machine learning classifiers require 
each instance in the input data to be represented as a vec-
tor of real numbers. As a result, in the second step, all 
the categorical values are transformed into numerical 
form. Also, the class label is transformed into zero or one, 
for the normal and attack classes, respectively. Last but 
not least, when we have a huge dataset with thousands 
of rows in the training and testing files, data set normal-
ization is required. In our proposed model, we normalize 
data using the min-max normalization method [20]. As a 
result, every item of data in the training data set has the 
same scale (e.g., between 0 and 1), significantly reducing 
the training time.

Optimization phase
During the learning and training of BPNN, there are two 
main factors that affect the model’s performance. The 
first is the initial neural interconnecting weights and the 
initial biases associated with each neuron, and the sec-
ond is their modified values. The initial interconnecting 
weights and biases of BPNN are often randomly gener-
ated, which may cause the classifier model to run into 
partial optimization and therefore decrease the likeli-
hood of obtaining the best performance and results. Fur-
thermore, since the equations used to adjust the BPNN’s 
interconnecting weights and biases produce very small 
values, the network’s convergence velocity is always slow, 
and sometimes it does not even converge. These BPNN 
shortages are required to be addressed, optimized, and 
improved.

The Genetic algorithm is being used to generate alter-
native solutions for a given problem and refine them over 
several generations. Each solution holds all the param-
eters (i.e., weights and biases) that may assist with the 
upgrading outcomes. For BPNN, weights in all layers 
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help achieve high accuracy, and bias is another parameter 
in the Neural Network that is used to adjust the output 
along with the weighted sum of the neuron’s inputs. In 
this way, bias is a constant that aids the model in achiev-
ing the best fit regarding the given data. In a neural net-
work, each neuron has a bias, the bias is learnable, and 
the bias also increases the flexibility of the model.

In the search space of the issue being optimised, a 
chromosome represents a single solution. With refer-
ence to our problem, a chromosome is nothing more 
than a collection of weight and bias values. Thus, the 
model generates a random population of alternative solu-
tions and then evaluates each one for success, choosing 
the best chromosome to pass on their “genes” to the next 
generation, including minor mutations to add diversity. 
Each chromosome in a population is assessed and ranked 
based on its relative strength within the population; the 
goal of the evaluation of the chromosome is to calcu-
late its fitness. The procedure is repeated until the pro-
gramme produces a workable solution. As a result, the 
chromosome with the highest fitness level will be chosen 
and fed to the BPNN. In comparison to our proposed 
methodology, which uses GA to improve the BPNN by 
predicting the best weights and biases, there have been 
other research efforts that attempted to optimise and 
improve the artificial neural network by using GA over 
fog computing, but their efforts were limited to predict-
ing the neural network weights only, e.g. [13] and [27].

Classification phase
For this phase, we aim to find a classification model 
that describes and distinguishes normal and intrusion 
classes so that we can use it to forecast the class whose 
label is unknown. Building the classification model is 
based on analyzing a collection of datasets. This dataset 
contains both normal and anomalous network traffic, 
which allows the classifier to determine patterns with a 

sufficient number of samples. For training and testing the 
classifier, the dataset is divided into two parts: training 
and testing, respectively.

In addition, the back-propagation neural network is 
one of the most common classification methods, and it 
has been proven to be successful in identifying various 
forms of intrusions. The BPNN is a network of linked 
input/output units with a weight assigned to each con-
nection; it also conducts the learning process on a mul-
tilayer feed-forward neural network. The topology of the 
proposed multilayer feed-forward neural network con-
sists of four layers, as follows: an input layer with a num-
ber of nodes equal to the number of chosen features; two 
hidden layers, the first with twenty nodes and the second 
with ten nodes; and an output layer with only one node. 
Each node has connections to every neuron in the previ-
ous layer. Each connection has a weight that represents 
how strongly any two nodes are connected, as shown in 
Fig. 1.

The features chosen for each training tuple correspond 
to the network’s inputs. These inputs are transferred to 
a second layer (the “hidden layer”) after passing through 
the input layer and being weighted. The outputs of the 
first hidden layer units represent the inputs to the sec-
ond hidden layer. Each output unit receives as input a 
weighted sum of the outputs from the previous hidden 
layer’s units. The hidden and output nodes are math-
ematical devices that compute the weighted sum of their 
inputs, in addition to the bias term, and then produce an 
output. As experiments showed, the initial optimized val-
ues of the weights and biases are generated by the genetic 
algorithm, which has a great effect on the resulting accu-
racy. The weights and biases are adjusted for each train-
ing tuple in order to reduce the mean squared error 
between the network’s prediction and the actual target 
value. These adjustments are made in a “backwards” way, 

Fig. 1  The multilayer feed-forward neural network topology
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starting with the output layer and working down through 
each hidden layer to the first hidden layer [6].

Each input linked to the unit is multiplied by its associ-
ated weight to calculate the net input to the unit, which 
is then aggregated. The net input, Ij, to unit j is computed 
using Eq. 1:

	
Ij =

∑

i

wijoi + θj � (1)

Where wij is the weight of the previous layer’s link from 
unit i to unit j, and Oi is the previous layer’s output from 
unit I, and θj is the bias of the unit j. Given the net input 
Ij to unit j, then Oj, the output of unit j, is computed 
using Eq. 2:

	
Oj =

1
1 + e−Ij

� (2)

The output value is calculated for each hidden layer, up to 
and including the output layer, which yields the network’s 
prediction, where ex is the exponential function. To treat 
the network’s prediction error, the prediction deviation 
is computed and propagated backward by modifying the 
weights and biases. For a unit j in the output layer, the 
error Errj is computed using Eq. 3:

	 Errj = Oj (1 − Oj) (Tj − Oj)� (3)

Where Tj is the known goal value of the provided train-
ing tuple, and Oj is the actual output of unit j. For a unit j 
in the hidden layer, the error is computed using Eq. 4:

	
Errj = Oj (1 − Oj)

∑

k

Errkwjk � (4)

Where wjk is the weight of the link from unit j to unit k in 
the next higher layer, and Errk represents unit k’s error. 
Therefore, the weights and biases are updated to reflect 
the propagated errors. Equations (5) and (6) are used to 
update weights, where Δwij is the weight change in wij:

	 ∆wij = (L) ErrjOi � (5)

	 wij = wij + ∆wij � (6)

Where the variable L is the learning rate, the learning rate 
set to 1 / t, where t is the number of iterations through 
the training set so far. Also, biases are updated by using 
Eqs. (7) and (8), where Δθj is the change in bias θj:

	 ∆θj = (L) Errj � (7)

	 θj = θj + ∆θj � (8)

In conclusion, the proposed methodology (EHIDS) aims 
to develop a system that is able to identify any abnormal 
behavior. Therefore, it focuses on recognizing any poten-
tial attacks that can affect its functionality and preventing 
it from system intrusion and malfunctioning.

Experimental evaluation
The proposed model (EHIDS) was implemented in 
Python V. 3.7.6. We tested our work on a Raspberry Pi4 
node (Model B) [17], which is a low-cost, credit-card 
sized computer that runs Linux. Also, it provides a set 
of general purpose input/output pins to control and 
explore the Internet of Things. From other hand, in order 
to make networks more secure, intrusion detection sys-
tems attempt to detect intrusions by achieving two goals: 
high detection and low false-alarm rates. So, in this sec-
tion, we will show the outcomes obtained from the pro-
posed hybrid intrusion detection system, compared 
with the outcomes of three another recent approaches, 
the Cholesky Factorization based Online Sequential 
Extreme Learning Machines with Persistent Regulariza-
tion (CF-OSELM-PRFF) [19], the Anomaly Behavior 
Analysis Intrusion Detection System (ABA-IDS) [22], 
and the Integrated CNN with LSTM-based Fog Comput-
ing Intrusion Detection (ICNN-FCID) model [12], which 
was introduced previously in the section of the related 
work.

Testbed description
As illustrated before, the first step in the preprocessing 
phase is selecting the relevant features according to their 
standard deviation values. An extensive set of experi-
ments was carried out to determine the best fit value 
for the standard deviation, which showed that there is a 
directly proportional relationship between the standard 
deviation and the accuracy and that an increase in the 
standard deviation leads to more accurate performance, 
as illustrated in Table  2. Therefore, we choose features 
with a minimum standard deviation of 50 because it 
helps improve accuracy.

On the other hand, the Genetic Algorithm is imple-
mented in such a manner that an initial population of 
2000 random chromosomes is generated and evaluated, 
and the 100 fittest chromosomes are chosen as the start-
ing point for the next generation. We used the following 
customized genetic algorithm:

Table 2  The Relationship between Standard Deviation and Accuracy
Standard deviation 30 40 50 60 70 80

Accuracy 93.11 93.88 96.47 94.9 94.1 93.2
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As mentioned above, all chromosomes are evaluated 
according to the evaluation function for each generation. 
After a number of generations have elapsed or reached 
a predefined threshold that represents the minimum 
accepted fitness, the best chromosome from the popula-
tion is chosen to represent the optimum possible solution 
to the task under consideration. The values of the best 
chromosome represent the first initial interconnecting 
weights of the network and the initial biases associated 
with each neuron.

The artificial neural network topology will be config-
ured with four layers: one input layer, two hidden lay-
ers, and one output layer. Now, the BPNN topology is 
constructed and ready to use. Firstly, during the train-
ing phase, the weight and bias parameters are adjusted 
so that the mean squared error between the network’s 
prediction and the real goal value is as small as pos-
sible. Once the classifier model has been trained and its 
accuracy is considered acceptable, the classifier model is 
ready to work and to be uploaded to the Fog nodes. The 
selected features are used as the input value of BPNN, 
and the output value is one of the attack labels. The types 
of attacks will be divided into normal data and attack 
data, with normal data being numbered 1 and attack data 
being numbered 2.

Evaluating classifier performance
To determine how effective or “accurate” the classifier 
is at detecting intrusion attacks, we must test its perfor-
mance. The following evaluation measures were used in 
our experiments:

 	• The accuracy of a classifier.
 	• Precision.

 	• True positive rate or recall.
 	• F-score.

Choosing a suitable performance metric is one of the 
most important factors to be considered. The accuracy 
of the system is the most widely used statistic for dem-
onstrating its efficiency. The number of cases successfully 
identified divided by the total number of cases is known 
as the classifier’s accuracy.

	
Accuracy =

TP + TN

TP + FP + FN + TN

The probability of the model correctly classifying any 
instance is known as precision or positive predictive 
value.

	
Precision =

TP

TP + FP

The proportion of test results correctly identified by 
the model is known as the “true positive rate.“ It is also 
known as the “recall rate” or “detection rate.“ It is also 
most likely known as sensitivity.

	
Recall =

TP

TP + FN

Finally, the harmonic mean of accuracy and recall is the 
F-score.

	
Fscore =

2 ∗ (recall ∗ precision)
(precision + recall)

Data sets
Evaluating IDS using traditional benchmark data sets 
such as KDD Cup 99 [30] and NSL-KDD [33] yields 
unsatisfactory results owing to three fundamental issues: 
(1) a lack of current low-footprint attack techniques; (2) 
a lack of modern typical traffic patterns; and (3) a dispar-
ity in the distribution of training and testing data sets. 
Therefore, for the experimental evaluation purpose of 
the proposed approach, we used two different datasets, 
the UNSW-NB15 data set [18] and the ToN_IoT data set 
[34].

UNSW-NB15 Data Set
This collection of data covers nine types of recent attacks 
and normal patterns, as well as 49 features that compose 
the flow based between hosts and the network packet 
investigation to distinguish between normal and abnor-
mal behaviours. As shown in Table  3, the entire num-
ber of records is 2,540,044 records. The used portion of 
this dataset, about 257,673 records, was divided into an 

Table 3  UNSW-NB15 data set distribution
Category Training set Testing set
Normal
Analysis
Backdoor
DoS
Exploits
Fuzzers
Generic
Reconnaissance
Shellcode
Worms

56,000
2,000
1,746

12,264
33,393
18,184
40,000
10,491

1,133
130

37,000
677
583

4089
11,132

6,062
18,871

3,496
378

44

Total Records 175,341 82,332
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approximate 68%: 32% ratio of the training and testing 
data sets, respectively. In this case, the training dataset 
has 175,341 records, of which 56,000 are normal connec-
tion records, while the test dataset has 82,332 records, 
37,000 of which are normal connection records. More-
over, to achieve the authenticity of IDS evaluations, there 
are no redundant records among the training and testing 
sets.

ToN_IoT Data Set
The ToN_IoT (UNSW-IoT20) datasets are new genera-
tions of Internet of Things (IoT) and Industrial IoT (IIoT) 
datasets for evaluating the accuracy and effectiveness of 
various artificial intelligence-based cybersecurity appli-
cations. The datasets include several normal and cyberat-
tack events that were gathered from heterogeneous data 
sources, i.e., telemetry datasets of IoT and IIoT sensors. 
There are a total of 22,339,021 records in the datasets. 
As shown in Table  4, the used portion of this dataset, 
about 461,043 records, was divided into an approxi-
mate 68%:32% ratio of the training and testing data sets, 
respectively. Moreover, to achieve the authenticity of IDS 
evaluations, there are no redundant records among the 
training and testing sets.

The experiments
A set of experiments on both the UNSW-NB15 and 
ToN_IoT datasets, were conducted to compare the per-
formance evaluation measures of the proposed meth-
odology, “EHIDS,” and three other recent approaches: 
“CF-OSELM-PRFF,“ “ABA-IDS,“ and “ICNN-FCID.“ To 
check the effect of varying the size of the data set on the 
experimental outcomes, the experiments were repeated 
with different sample sizes for each performance mea-
sure, as shown in Figs. 2, 3, 4, and 5 for the UNSW-NB15 
data set and 6, 7, 8, and 9 for the ToN_IoT data set, 
respectively.

Table 4  ToN_IoT data set distribution
Category Training an Testing set
Normal
Backdoor
doS
ddos
injection
mitm
password
ransomware
scanning
xss

300,000
20,000
20,000
20,000
20,000

1,043
20,000
20,000
20,000
20,000

Total Records 461,043

Fig. 5  F-score for EHIDS, CF-OSELM-PRFF, ABA-IDS, and ICNN-FCID with 
different sample sizes

 

Fig. 4  Recall for EHIDS, CF-OSELM-PRFF, ABA-IDS, and ICNN-FCID with dif-
ferent sample size

 

Fig. 3  Precision for EHIDS, CF-OSELM-PRFF, ABA-IDS, and ICNN-FCID with 
different sample sizes

 

Fig. 2  Accuracy for EHIDS, CF-OSELM-PRFF, ABA-ID,S and ICNN-FCID with 
different sample sizes
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As shown in Figs. 2, 3, 4, 5, 6, 7, 8 and 9,  a compari-
son is made between the performances of “EHIDS,“ “CF-
OSELM-PRFF,“ “ABA-IDS,“ and “ICNN-FCID” through a 
different set of experiments with different measures, in 
which the x-axis represents the sample size and the y-axis 
denotes the performance measure. The experiments 
were applied to different sample sizes to verify the effect 
of varying data set sizes on the experimental results. As 
we note, with the small data volume, the model was not 
trained enough to be able to show efficient performance 
(i.e., 10–30 K). This means that the model is not trained 
to our expectations (the model has low training errors 

and high testing errors). When the training data vol-
ume reaches a sufficient volume that enables the model 
to enhance its performance, we will notice an improve-
ment in the performance of the model with the increase 
in the data volume (i.e., 40–60 K). Furthermore, it can be 
observed that the proposed approach (EHIDS) outper-
forms other related work approaches across all measures. 
Table 4 shows the average assessment of each methodol-
ogy for each performance measure.

As shown in Table  5, the proposed methodology 
EHIDS outperforms other related methodologies in 
terms of accuracy, which shows how our system is more 
powerful in detecting incoming intrusions. Also, EHIDS 
achieved higher precision, which reflects the ability of 
EHIDS to detect the correct classification. Also, EHIDS 
achieved a higher recall score than other methodolo-
gies, which reflects the ability of EHIDS to classify the 
normal connection instances better than others. Finally, 
the results show that the EHIDS has a higher value of 
F-score, which indicates that the EHIDS is performing 
better on recall and precision.

In addition to using the traditional evaluation methods, 
e.g., accuracy, detection rate, precision, and false alarm 

Table 5  the binary classification results of EHIDS, CF-OSELM-
PRFF, ABA-IDS, and ICNN-FCID.
Data 
set

Com-
parison 
criteria

EHIDS CF-OSELM-PRFF ABA-IDS ICNN-
FCID

UN-
SW-
NB15 
Data 
Set

Accuracy 96.47% 94.70% 90.88% 92.38%

Precision 
score

96.53% 94.94% 82.50% 94.44%

Recall 
score

96.47% 93.12% 91.37% 88.41%

F-score 96.47% 93.54% 86.83% 90.66%

ToN_
IoT
Data 
Set

Accuracy 95.36% 91.31% 90.03% 92.26%

Precision 
score

99.02% 95.27% 94.05% 95.51%

Recall 
score

99.04% 93.12% 94.05% 94.43%

F-score 99.02% 93.54% 94.05% 91.66%

Fig. 9  F-score for EHIDS, CF-OSELM-PRFF, ABA-IDS, and ICNN-FCID with 
different sample sizes

 

Fig. 8  Recall for EHIDS, CF-OSELM-PRFF, ABA-IDS, and ICNN-FCID with dif-
ferent sample sizes

 

Fig. 7  Precision for EHIDS, CF-OSELM-PRFF, ABA-IDS, and ICNN-FCID with 
different sample sizes

 

Fig. 6  Accuracy for EHIDS, CF-OSELM-PRFF, ABA-ID,S and ICNN-FCID with 
different sample sizes
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rate, to evaluate the performance of IDS, we also used the 
confusion matrix to evaluate the proposed methodology 
performance. The confusion matrix is a tabular structure 
that depicts both the predicted and actual categoriza-
tion. There are four prospective outputs, as illustrated in 
Table 6, with a sample of 60,000 records. In which, true 
positive (TP) refers to the number of actual attacks clas-
sified as such; true negative (TN) refers to the number 
of normal connections classified as such; false positive 
(FP) refers to the number of normal connections classi-
fied as attack class; and false negative (FN) refers to the 
number of actual attacks classified as normal connec-
tion. Both (TP) and (TN) are regarded as guides for the 
IDS’s correct behavior. Furthermore, (FP) and (FN) rates 
reduce the effectiveness of the IDS, where (FP) reduces 
the system’s detection capability and (FN) makes the 
system vulnerable to intrusion [15]. As a result, in order 

for IDS to be effective, the (TP) and (TN) rates should 
be maximized while the (FP) and (FN) rates should be 
minimized.

After considering all the performance measurements 
used in our experiments, we have come to the conclusion 
that our proposed approach - which uses GA as an opti-
mization method to generate the initial interconnecting 
weights of the network and the initial biases associated 
with each neuron - leads to achieving a higher detection 
rate and a lower false positive rate.

Furthermore, Figs.  10 and 11 show a comparison 
between the execution times of “EHIDS,“ “CF-OSELM-
PRFF,“ “ABA-IDS,“ and “ICNN-FCID” through a different 
set of experiments with different dataset sizes and based 
on both the UNSW-NB15 and ToN_IoT datasets. Where 
the x-axis represents the sample size and the y-axis 
denotes the execution time in seconds. It can be observed 
that the proposed approach (EHIDS) achieves the lowest 
execution time on both data sets compared to the other 
related work methods.

Although the Raspberry Pi4, as a platform for evalu-
ating the model’s performance, is much slower than 
standard computers because it has limited comput-
ing resources, this approach has brought other benefits, 
which can be concluded in an 16.35% and 37.07% reduc-
tion of average execution time compared to the best aver-
age execution time of other related approaches, for both 
data sets, respectively, enhancing the acceleration of the 
convergence process and saving processing power, as 
illustrated in Table 7.

On the whole, through applying the proposed meth-
odology, we could achieve an enhancement in both the 
performance metrics and the execution time compared 
to other state-of-the-art related methodologies. Which 
means that the improvement in both the performance 
metrics and the execution time is due to the fact that the 
optimization of the interconnecting weights of the net-
work and the biases associated with each neuron causes 
a quick and effective establishment of a back-propagation 
neural network model. Moreover, the distributed archi-
tecture of Fog computing enables the distribution of the 
intrusion detection system over local Fog nodes with a 
centralized Cloud, which achieves faster attack detection 
than the Cloud intrusion detection mechanism. Which 
reveled in enhancing the performance of the classifica-
tion algorithm in addition to the titanic reduction in the 
execution time.

Table 6  The confusion matrix for binary classification
Predicted label

Attack type Normal Intrusion
Actual class Normal True negative (14,606) False posi-

tive (4712)

Intrusion False negative (49) True posi-
tive (40,633)

Table 7  Average execution times in seconds for EHIDS, 
CF-OSELM-PRFF, ABA-IDS, and ICNN-FCID.
Data Set EHIDS CF-OSELM-PRFF ABA-IDS ICNN-FCID
UNSW-NB15 2.461 2.942 2.951 3.309

ToN_IoT 1.832 3.242 2.946 2.911

Fig. 11  the execution times for EHIDS, CF-OSELM-PRFF, ABA-IDS, and 
ICNN-FCID with different sample sizes (ToN_IoT Data Set)

 

Fig. 10  the execution times for EHIDS, CF-OSELM-PRFF, ABA-IDS, and 
ICNN-FCID with different sample sizes (UNSW-NB15 data set)
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Conclusion & future work
The features of neural networks make them ideal for 
addressing difficult pattern classification challenges. 
However, its applicability to various real-world issues 
has been impeded due to a lack of supporting algorithms 
that reliably find a nearly globally optimal set of weights 
and biases in a relatively short time. A genetic algorithm 
is a type of optimization method that can be consid-
ered perfect for exploring a large and complex space in 
an effective way to find a value that is close to the global 
optimum. In this paper, we propose a methodology 
that optimizes the artificial neural network parameters 
through the use of a genetic algorithm and then deploys 
it over the Fog network. In which the network’s linking 
weights and the biases associated with each neuron are 
optimised using a genetic algorithm. This can help to 
establish a quick and effective BPNN model that could 
be uploaded to the Fog network for intrusion classifica-
tion purposes. Classification experiments on both the 
UNSW-NB15 and ToN_IoT data sets based on the Fog 
node Raspberry Pi4 revealed that the optimized model 
has a higher intrusion detection rate through decreasing 
the neural network error rate and increasing the true pos-
itive rate. Furthermore, achieving up to 37.07% reduction 
in the execution time compared to other state-of-the-art 
methods, which accelerates the convergence process and 
saves processing power. For future work, we recommend 
performing further experiments on multi-class classifica-
tion based on diverse datasets to validate the suggested 
model. Moreover, we are planning to apply other effec-
tive deep learning algorithms and support our proposed 
model with more powerful statistical analysis techniques, 
aiming to enhance the proposed methodology. Finally, 
conducting more experiments using different evaluation 
criteria, such as energy and power consumption rates.
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