
Saravanan et al. Journal of Cloud Computing           (2023) 12:24 
https://doi.org/10.1186/s13677-023-00401-1

RESEARCH Open Access

© The Author(s) 2023, corrected publication 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 
International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you 
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To 
view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Journal of Cloud Computing:
Advances, Systems and Applications

Improved wild horse optimization with levy 
flight algorithm for effective task scheduling 
in cloud computing
G. Saravanan1, S. Neelakandan2*, P. Ezhumalai3 and Sudhanshu Maurya4 

Abstract 

Cloud Computing, the efficiency of task scheduling is proportional to the effectiveness of users. The improved sched-
uling efficiency algorithm (also known as the improved Wild Horse Optimization, or IWHO) is proposed to address 
the problems of lengthy scheduling time, high-cost consumption, and high virtual machine load in cloud computing 
task scheduling. First, a cloud computing task scheduling and distribution model is built, with time, cost, and virtual 
machines as the primary factors. Second, a feasible plan for each whale individual corresponding to cloud computing 
task scheduling is to find the best whale individual, which is the best feasible plan; to better find the optimal indi-
vidual, we use the inertial weight strategy for the Improved whale optimization algorithm to improve the local search 
ability and effectively prevent the algorithm from reaching premature convergence. To deliver services and access to 
shared resources, Cloud Computing (CC) employs a cloud service provider (CSP). In a CC context, task scheduling has 
a significant impact on resource utilization and overall system performance. It is a Nondeterministic Polynomial (NP)-
hard problem that is solved using metaheuristic optimization techniques to improve the effectiveness of job schedul-
ing in a CC environment. This incentive is used in this study to provide the Improved Wild Horse Optimization with 
Levy Flight Algorithm for Task Scheduling in cloud computing (IWHOLF-TSC) approach, which is an improved wild 
horse optimization with levy flight algorithm for cloud task scheduling. Task scheduling can be addressed in the cloud 
computing environment by utilizing some form of symmetry, which can achieve better resource optimization, such 
as load balancing and energy efficiency. The proposed IWHOLF-TSC technique constructs a multi-objective fitness 
function by reducing Makespan and maximizing resource utilization in the CC platform. The IWHOLF-TSC technique 
proposed combines the wild horse optimization (WHO) algorithm and the Levy flight theory (LF). The WHO algorithm 
is inspired by the social behaviours of wild horses. The IWHOLF-TSC approach’s performance can be validated, and the 
results evaluated using a variety of methods. The simulation results revealed that the IWHOLF-TSC technique outper-
formed others in a variety of situations.

Keywords  Task scheduling, Wild Horse Optimization (WHO), Cloud computing, Utilization of resources, Metaheuristic 
algorithms

Introduction
Customers’ access to diverse administrations and assets 
can be transformed using cloud computing. Clients can 
use the cloud to rapidly extend their capabilities without 
having to invest in licensing or foundations [1]. As time 
has passed, cloud computing has grown in popularity 
among clients as a means of obtaining administrations. 
Several task scheduling strategies have been proposed 
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to enhance system performance by optimizing resource 
utilization. However, symmetry-based strategies have 
received little consideration. Given the widespread adop-
tion of cloud computing technology, it is anticipated that 
symmetry will be employed to enhance cloud computing 
performance.

Cloud computing has the advantages of flexibility, con-
stant quality, and less maintenance because the admin-
istrations and products are maintained by the outsider 
organization. These are the hypotheses that explain why 
the cloud is so prominent. Simplified terms for these 
cloud administrations include Software on Demand, Plat-
form on Demand, and Infrastructure on Demand (IaaS) 
[2–4]. With cloud computing, multiple tasks can be car-
ried out in the background at the same time. Server farm 
and board costs can be kept in check through the innova-
tive use of virtualization and board robotization. In the 
age of cloud computing, making a reservation seems like 
a contradiction in terms. Ad-lobbing the asset utiliza-
tion rate has the purpose of arriving at a perfect booking 
calculation Allocating diverse resources to the required 
errands is an NP-complete issue. Some Grid and Cloud 
system techniques have been implemented because of 
this factor. By employing meta-heuristics based on pop-
ulations, it is possible to expand the size of the search 
area and yet achieve better outcomes [5–7]. Single-based 
meta-heuristic computations, rather than doing a thor-
ough search, use different methods to arrive at the opti-
mum answer for a random wellness task. As a result, 
utilizing population-based meta-heuristics to identify the 
best arrangement requires far less effort than using sin-
gle-based meta-heuristics. Both calculations presented 
above have advantages and disadvantages. After then, a 
combination of meta-heuristics calculations is created 
by merging the two computations, which eliminates the 
negative marks in the separate calculations. With each 
recreation, the combined meta-heuristics calculation 
provides the best outcomes [8]. An alternative business 
model that is rapidly gaining traction around the world 
is the Internet-enabled business (e-Company). Internet-
enabled businesses are transforming computing into 
a paradigm that consists of services that are commod-
itized and distributed in the same way that water, elec-
tricity, or gas are traditionally delivered. It doesn’t matter 
where services are located or offered; users can use them 
according to their needs. Several computer paradigms 
have claimed to be able to deliver utility computing.

A cloud computing environment’s fundamental purpose 
is to make the most efficient use of available computing 
resources. In the optimization process, scheduling meth-
ods are critical. As a result, user tasks must be scheduled 
using an efficient scheduling technique [9]. To reduce 
the total execution time, scheduling algorithms aim to 

distribute the workload across the available processors 
and maximize their efficiency. Many firms are migrating 
their infrastructure and operations to the cloud rather than 
retaining them on-premises, emphasizing the significance 
of installing a new CC solution. Cloud-based apps and ser-
vices are becoming increasingly important [10]. As a result, 
the services’ quality needed to be carefully addressed. Fur-
thermore, the CC platform allows us to use many virtual 
resources for all the required tasks, rendering traditional 
and manual scheduling methods ineffective and demand-
ing the creation of unique effective scheduling solutions.

However, task scheduling remains one of the major 
issues, potentially affecting performance, QoS, and user 
experience. As a result, the critical technical contribu-
tion in this paper, based on the idea is to introduce an 
enhanced solution with a novel genetic algorithm to 
exploit the collaboration between thin-thick clients and 
cloud network to optimise task scheduling of the pro-
cessing system to deal with the issues, thereby improv-
ing QoS, user experience, and system reliability. Our 
proposal considers not only network contention but 
also the cost charged to cloud customers (CCs), as these 
two factors play important roles in meeting user expec-
tations. Furthermore, the approach is experimentally 
evaluated and compared to others. The results show that 
our method is more efficient at task scheduling and more 
cost-effective than other approaches.

For cloud job scheduling, this study introduces the 
IWHOLF-TSC technique, which is an enhanced wild 
horse optimization with levy flight algorithm. The pro-
posed IWHOLF-TSC technique reduces the CC plat-
form’s makespan and maximizes the utilization of the CC 
platform’s resources to construct a multi-objective fitness 
function [11]. The suggested IWHOLF-TSC technique 
combines the wild horse optimization (WHO) algorithm 
with the Levy flight theory (LF). The social living traits of 
wild horses inspire the WHO algorithm. The performance 
validation of the IWHOLF-TSC approach can be done 
and the outcomes evaluated using a variety of methods.

This paper’s contributions are as follows: (1) A 
metaheuristic optimization techniques for task scheduling 
is proposed, and IWHO is used to solve the entire prob-
lem; (2) an IWHO algorithm is proposed, which improves 
the convergence and accuracy of the WOA-based method, 
which improves the efficiency of task scheduling; and (3) 
describes the implementation process of the IWHOLF-
TSC algorithm and compares it with the ACO, PSO, and 
WOA algorithms. The results of the experiments show 
that the algorithm works under a variety of task quantity 
conditions. The scheduling effect of down is superior.

The rest of this article is structured as follows. The related 
work is introduced in the second section. IWHOLF-TSC 
is introduced in the third section. The fourth section 
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proposes the improved IWC implementation details, sim-
ulated the algorithm, and explained the scheduling effect. 
This article concludes with the fifth section.

Related work
In Pradeep, K., et al. [1], the Lion Advancement (LOA) and 
Opposition Based Learning (OBL) calculations are used 
in Crossbreed Oppositional Lion Enhancement Calcula-
tion (OLOA) With Cloud sim programming conditions, 
the given arrangement is recreated and displayed, and the 
obtained results show a significant improvement in execu-
tion over existing calculations such as Particle Swarm 
Optimization (PSO), Oppositional Dark Wolf Streamlin-
ing Agent (OGWO), and Genetic calculations (GA).

In Natesan, G. et al. [2], when compared to three recent 
planning calculations, GA-ETI reduced the time it took 
to execute work processes by 11–85 percent without 
increasing the cost. For a tough test and to integrate 
several upgrade objectives, GA-ETI shows the most effi-
cient technique to building the optimal layer-scheduler 
for the framework of a work process supervisor. In Gob-
alakrishnan, N, et al. [3], an alternative to this approach is 
Particle Swarm Optimization (PSO), which makes use of 
both artificial and simulated ringing organisms in a sym-
biotic search (SASOS). Time spent by the executive team, 
implementation costs, communication costs, energy and 
resource consumption, epsilon restraint, and penalty 
characteristics are all comparable objectives.

In Casas, I., et  al. [4], the multi-take interlace peak 
scheduling method (MIPSM) has been presented as a 
planning technique for quickly altering the content of 
resource loads. Three queues are created for CPU, CPU-
intensive I/O memory capacity, and memory-intensive 
I/O. During the execution of planned operations, resource 
load peaks are dispersed. Using as minimal CPU, I/O, and 
memory as feasible is the purpose of each of the three 
queues in this system. In Zhou, J., et  al. [5], to consider, 
the budget, budget, and performance optimization, I 
developed a resource cost model. To improve the quality 
of the solution, the augmented ant colony algorithm and 
feedback were utilized in a certain order. A check-up to 
reduce both runtime and fitness expenses, a hybrid glow-
worm swarm optimization technique was created.

Nanjappan et  al. [6] the proposed algorithm uses an 
ANFIS-BWO (Adaptive-Neuro-Fuzzy-Inference Sys-
tem-Black-Widow-Optimization) technique to allocate 
a proper VM for each task to reduce time delay. Another 
important goal for optimum consumption of cloud prop-
erties is resource scheduling. The BWO algorithm is used 
to generate an ideal solution set. The presented technique 
can allocate the VMs present on the cloud using the best 
scheduler schemes. The introduced technique’s primary 
goal is to reduce computation time and cost while also 

minimising energy consumption for various tasks. Tong 
Zhou et al. [7] To design new reward functions to enhance 
the decision-making abilities of multiple reinforcement 
learning-based AI schedulers (RL). Using real-world case 
studies, the proposed methodology is evaluated and vali-
dated in a smart factory. Experiment results demonstrate 
that the new architecture for smart factories not only 
improves the learning and scheduling efficiency of multiple 
AI schedulers, but also effectively manages unanticipated 
events such as rush orders and machine breakdowns.

Mohammad Hasani Zade et al. [8] The suggested algo-
rithm has two stages (i.e., meta-scheduler and local sched-
uler). The tasks are assigned to hosts in the meta-scheduler 
stage based on their priorities, completion dates, and host 
power. With the suggested Parallel Reinforcement Learn-
ing Caledonian Crow, the best mapping between tasks 
and virtual machines is discovered in the local-scheduler 
stage (PRLCC). The New Caledonian Crow Learning 
Algorithm (NCCLA), Reinforcement Learning (RL), and 
parallel strategy are all combined in the proposed PRLCC. 
Kaur & Kaur et al. [9]. To save cost and time developed a 
hybrid algorithm that combines heuristic and metaheuris-
tic algorithms. To address the problem of task scheduling 
in cloud computing, which necessitates non-traditional 
optimization attitudes to achieve the optimal solution, 
the current paper proposes a hybrid multiple-objective 
approach called hybrid grey wolf and whale optimization 
(HGWWO) algorithms, which integrates two algorithms, 
namely, the grey wolf optimizer (GWO) and the whale 
optimization algorithm (WOA), with the goal of combin-
ing the advantages of each algorithm for miniaturisation.

Thekkepuryil et  al. [10] the authors propose an 
improved version of the ant-lion optimization (ALO) 
algorithm that is crossbred with the popular particle 
swarm optimization (PSO) algorithm to improve sys-
tem scheduling precision for cloud computing. A new 
security technique known as Data Encryption Standard 
(DES) is used, which encodes the information present in 
the cloud while scheduling is performed. The research’s 
goal is to contribute an improved system scheduling 
framework that is more secure than existing frame-
works. Improvement parameters are evaluated in terms 
of time, load, and cost. Shiau et  al. [11] Cloud comput-
ing has been used to create cloud computing classrooms. 
Cloud computing student BI is unclear. Most research-
ers have compared few users’ BI theories. This study 
tested, compared, and unified six theories: service qual-
ity (SQ), self-efficacy (SE), the motivational model (MM), 
the technology acceptance model (TAM), and extension 
of the Theory of Reasoned Action/ Theory of planned 
behavior (TRA/TPB) in cloud computing classrooms.

Palos-Sanchez, et  al. [12]. studied Data Replication and 
Management, two important technologies for managing 
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cloud data. These techniques ensure QoS for data opera-
tions (search, upload, download, replicate, etc.). Compar-
ing and analysing techniques based on the above features. 
Researcher’s analyses data replication techniques and cloud 
deployment of data-intensive apps. The paper’s knowledge 
can be used to design and model cloud-based mechanisms 
and approaches. Medara et  al. [13] The energy-efficient 
and reliability aware workflow task scheduling in cloud 
environment (EERS) algorithm is introduced in this paper, 
which conserves energy while making the most of the sys-
tem’s reliability. To begin, use a task-rank calculation pro-
gramme to keep task dependencies intact. Following that, a 
task clustering algorithm is used to reduce communication 
costs, resulting in lower energy consumption.

T. Dillon et  al. [14] presented the problems and diffi-
culties with cloud computing. We explained how Cloud 
computing, Service-Oriented Computing, and Grid 
computing are related. We examined a few difficulties 
encountered when adopting cloud computing. After 
highlighting the interoperability problem, various solu-
tions are discussed for various cloud service deployment 
models. Fan et al. [15] This study examines the short- and 
long-term competition between SaaS and SWS using a 
game theoretical approach. We examine both the long-
term quality competition between the two firms as well 
as a model of price competition over one period. Soft-
ware-as-a-service businesses can effectively differentiate 
their products by reducing the cost of system implemen-
tation by bundling software with services.

Agrawal et  al. [16]. Cloud computing is a rapidly 
expanding and evolving platform. It offers its custom-
ers excellent services. Cloud computing development 
is significantly improving in terms of security in educa-
tional use. It provides numerous methods for accessing 
various resources’ platform applications via on-demand 
web pages. This paper demonstrates various trending 
technologies, cloud computing features, and cloud com-
puting security, as well as their application in educa-
tion. Duraipandian. 2022 [17] Artificial Intelligence (AI) 
modernises today’s society and paves the way for many 
digital applications to flourish. AI is important in every-
thing from agriculture to space science. Improvements 
to electronic processors and other chips are also assist-
ing AI in gaining computational efficiency. The design of 
micro electronic devices is allowing sensors to be moved 
to specific locations via Internet of Things (IoT) commu-
nication. The goal of this author is to examine the per-
formance of AI methodologies in various applications to 
identify research gaps.

Palos-Sanchez et al., [18] examine the state of this tech-
nology from two angles: that of the European Union and, 
specifically, that of SMEs. The European Commission’s 
strategic positions will then be evaluated considering the 

effects of adopting the cloud paradigm. Haag et al., [19] 
Identify five new research areas, including theoretical 
and practical phenomena, that describe the factors that 
influence the adoption of cloud services in organizations. 
These areas include information technology (IT)-related 
public threat appeals, trust in technology versus ven-
dor trust, bring your own cloud, organizational identity 
transformation, and intelligent clusters of IT initiatives.

Ramezani et  al., [20] an interval many-objective evo-
lutionary algorithm (InMaOEA) is proposed for solv-
ing the cloud computing task scheduling problem. An 
interval many-objective cloud task scheduling optimi-
zation (I-MCTSO) model is developed by transforming 
uncertain factors into interval parameters. This model 
considers four optimization objectives: task completion 
rate, task make time, scheduling cost, and load balance. 
Mohammad Hasani et  al., [21] a presentation designed 
to improve the performance of the Red Fox Optimiza-
tion (RFO) algorithm. Initially, a Quasi-Opposition Based 
Learning method is used to generate the initial popula-
tion, and a Levy flight method is employed to improve 
the exploratory ability of newly generated foxes. Two 
fuzzy control systems are used to achieve a balance 
between exploration and exploitation. Table  1 summa-
rizes and compares the existing approaches.

In [5] the authors propose an improved version of the 
ant-lion optimization (ALO) algorithm that is crossbred 
with the popular particle swarm optimization (PSO) 
algorithm to improve system scheduling precision for 
cloud computing. A new security technique known as 
Data Encryption Standard (DES) is used, which encodes 
the information present in the cloud while schedul-
ing is performed. The research’s goal is to contribute an 
improved system scheduling framework that is more 
secure than existing frameworks. Improvement param-
eters are evaluated in terms of time, load, and cost.

Nanjappan et al. [6] The energy-efficient and reliability 
aware workflow task scheduling in cloud environment 
(EERS) algorithm is introduced in this paper, which con-
serves energy while making the most of the system’s reli-
ability. To begin, use a task-rank calculation programme 
to keep task dependencies intact. Following that, a task 
clustering algorithm is used to reduce communication 
costs, resulting in lower energy consumption.

Agrawal et  al. [16]. Cloud computing is a rapidly 
expanding and evolving platform. It offers its customers 
excellent services. Cloud computing development is sig-
nificantly improving in terms of security in educational 
use. It provides numerous methods for accessing vari-
ous resources’ platform applications via on-demand web 
pages. This paper demonstrates various trending tech-
nologies, cloud computing features, and cloud computing 
security, as well as their application in education.
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Artificial Intelligence (AI) modernises today’s soci-
ety and paves the way for many digital applications 
to flourish. AI is important in everything from agri-
culture to space science.  The advancement of cloud 
storage and wireless communication systems is assist-
ing AI in achieving certain goals in the digital world. 
Improvements to electronic processors and other 
chips are also assisting AI in gaining computational 
efficiency. The design of micro electronic devices is 
allowing sensors to be moved to specific locations via 
Internet of Things (IoT) communication. The goal of 
this author is to examine the performance of AI meth-
odologies in various applications in order to identify 
research gaps.

The proposed model
In this research, a new IWHOLF-TSC technique has 
been developed to effectually schedule tasks in CC 
environment. The proposed IWHOLF-TSC tech-
nique has derived a fitness function by minimizing 
make span and maximizing resource usage in the CC 
platform. The proposed IWHOLF-TSC technique 
integrates the concepts of WHO algorithm, which is 
stimulated from the social living characteristics of wild 
horses with LF. Figure 1 illustrates the system architec-
ture of TS in CC.

Problem Formulation
The problem of TS from the cloud was determined as for 
scheduling, distributing, and assigning several various tasks 
to several VM efficiently and for performing every task that 
is able from minimum execution time [33]. The cloud sys-
tem (CS) contains (Npm) physical machines (PM), and all 
machines contain (Nvm) VM as demonstrated in Eq. (1).

where PMi, (i = 1, 2, . . . ,Npm) refers the PM carried out 
from the cloud and it could be written as:

where VMk , (k = 1, 2, . . . ,Nvm) defines the kth VM. Nvm 
signifies the amount of VM and VMk refers the kth VM 
devices from the cloud. The feature of VMk was defined as:

where id signifies the identifier amount of VM and 
MIPSk refers the report processing acceleration of VM by 
millions of instructions-per-seconds.

where Ntsk defines the number of tasks i projected by users. 
Taski implies the ith task from the task series that is defined as:

(1)CS = PM1,PM2, . . . ,PMi, . . . ,PMNpm

(2)PM =
[

VM1,VM2, . . . ,VMk , . . . ,VMNvm

]

(3)VMk = [SIDVk ,mipsk ]

(4)T =
[

Task1,Task1, . . . ,Taski, . . . ,TaskNtsk

]

Table 1  Summary of related works

Reference. No & Year Methodology/Techniques Features Disadvantages

Ipsita Kar et.al. (2016) [22] Genetic Algorithm and Darwin 
Theory

Global Search solution and self- man-
aging scheme

Maximum Flowtime and resource 
utilization

Pan Yi.et.al (2016) [23] Tabu Search based on techniques Execution time and Throughput Resource allocation time

X. -F. et.al (2018) [24] Ant Colony Optimization Randomization Techniques Robustness and Effective Virtual 
Machine utility

M.Kaur.et.al (2016) [25] Bacterial Foraging Algorithm Makespan and Throughput Minimum Flow time and Resource 
usage

S. Belgian (2014).[26] Cat Swarm Optimization Algorithm Optimal Resource utilization and 
Minimum iterations

In-secure Data access and throughput

Natesan.et.al (2019) [27] grey wolf Algorithm Randomization and parameter-based 
resource allocation

Multimodality support and conver-
gence speed

Hariharan et. al. (2019) [28] Whale and BAT optimization algo-
rithm (WBAT)

Multi-objective job scheduling using 
hybridization

Complicated algorithm compared to 
other algorithms

K.Devi et. al. (2020) [29] Deep Learning Based Cloud based 
Task Scheduling

Limits resource starvation and to 
guarantee fairness among the parties 
using the resources

As the number of cloud users 
increases, the scheduling becomes 
limited

Essam H et. al. (2021) [30] Meta-heuristic task scheduling Distribute complex tasks (cloudlets) 
to limited resources, within a reason-
able time

The dilemmas of resources being 
underutilized (underloaded) and 
overutilized (overloaded)

Wanneng Shu et. al. (2021) [31] Agile response task scheduling 
optimization

Explore the probability density func-
tion of the task request to avoid the 
timeout

Queue overflow happens, leads to 
network congestion

AK Reshmy et. al. (2019) [32] Multilevel Fault-Tolerance Aware 
Scheduling Technique

Overcomes the real-time failure in the 
system

Mostly rely on the reactive scheme of 
checkpoint mechanism
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where SIDTi represents the identification number of jth 
task and task − lengthi signifies the length of tasks [34]. 
Time ECTi defines the predicted completion time to ith 
task; LIi refers the task preference from the number of 
tasks Ntsk . The Expected Complete Time (ECT) measure 
of size Ntsk × Nvm signifies the execution time required 
that carry out the tasks on all computing devices VM 
which is resolved by the subsequent matrix:

Design of IWHOLF Algorithm
The WHO approach mathematically simulates and dupli-
cates the social life performance of these wild horses nat-
urally [35]. The horse usually lives from herd with stallion 
and several foals as well as mares. It can be demonstrated 
that variations of performances are containing mate and 
graze, pursue, dominate, command. In the 5 steps for 
WHO techniques are listed under Primary, an initial 
population was separated as to several groups. N  refers 
the number of populations and G signifies the number 
of groups from this technique [36]. All groups have a 

(5)Taski = [SIDTi,Task − lengthi,ECTi, LIi]

(6)ECT =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ECT1,1 ECT1,2 ECT1,3 ECT1,Nvm

ECT2,1 ECT2,2 ECT2,3 ECT2,Nvm

⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯

ECTNt,k
., 1 ECTNtsk

., 2 … ECTNtsk ,Nvm

⎤
⎥
⎥
⎥
⎥
⎥
⎦

leader (stallion), thus the number of stallions from this 
technique is equivalent G , and (NG) denotes the residual 
population (Foal and mare) were distributed similarly 
amongst these groups. The subsequent formula is pre-
sented for simulating the grazing performance:

where Xj
i,G signifies the present place of foal/mare 

group members, Stallion defines the stallion place, R 
refers the uniform stochastic number in the range of -2 
and 2, and Z implies the adaptive process computed in 
the subsequent formula:

where P refers the vector containing zero to one, 
−→
R1 and 

−→
R3 implies the arbitrary number from the range of zero 
and one, R2 represents the uniform arbitrary number 
from the range of zero and one, TDR stands for the adap-
tive parameter which begins with 1 and reduces still it 
attains 0 finally, the execution of technique based on sub-
sequent formula:

where it implies the existing iteration and maxit 
stands for the maximal number of iterations. For imple-
menting the mate performance of horses, the foal 

(7)X
j

i,G
= 2Z cos (2�RZ) ×

(
Stallionj − X

j

i,G

)
+ Stallionj

(8)P = ���⃗R1 < TDR;IDX = (P == 0);Z = R2ΘIDX + ���⃗R3Θ(∼ IDX)

(9)TDR = 1− it ×

(

1

maxit

)

Fig. 1  System architecture of Task scheduling in CC
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drives in group i to temporary group but foal drives 
in group j to temporary group [37]. For simulating the 
mate performance of horses, the Crossover function of 
mean form is presented as:

During the WHO technique, Stallions (group leaders) lead 
the group to water hole[38]. The Stallions compete to this 
water hole thus the domination group utilizes this water hole 
primarily afterward another group utilizes the water hole. The 
subsequent formula is mentioned that step of technique:

where StalllionGi  refers the next place of leaders. WH sig-
nifies the place of water hole. During the subsequent stage, 
leader is selected based on fitness. The leader place and rel-
evant member are modifying dependent upon this formula:

The IWHOLF was dependent upon cuckoo search 
(CS) technique[39]. In the iteration of presented tech-
nique a novel solution was created utilizing the Levy 
flight as the subsequent formula:

where Xi,G implies the ith place of group member, γ 
represents the step scaling size, Xg stands for the global 
optimum solutions, ⊕ stands for the procedure of ele-
ment‐wise multiplication, � denotes the Levy flight (LF) 
exponents, but u and v are determined as:

The standard deviations σu and σv are formulated as:

where Ŵ refers the Gamma function, a novel candi-
date solution was created and was executed. The prin-
cipal benefit of this enhancement was capability of the 
presented method for balancing global exploration and 
local exploitation.

(10)XP
G,K = Crossover

(

X
q
G,i,X

Z
G,j

)

i �= j �= k , p = q = end,Crossover = Mean

(11)

StallionGi
=

⎧
⎪
⎨
⎪
⎩

2Z cos (2𝜋RZ) × (WH − StallionGi
)

+WHifR3 > 0.5

2Z cos (2𝜋RZ) × (WVH − StallionGi
)

−WHifR3 ≤ 0.5

(12)StallionGi
=

{
XG,i if cos t(XG,i) < cos t(StallionGi

)

StallionGi
if cos t(XG,i) > cos t(StallionGi

)

(13)

Xi,G = Xi,G − 𝛾(Xi,G − Xg )⊕ Levy(𝜆) = Xi,G +
0.01u

|v|1∕𝜆
(Xi,G − Xg )

(14)u ∼ N
(

0, σ 2
u

)

, v ∼ N
(

0, σ 2
v

)

(15)σu = [
sin( �π

2
)..Ŵ(1+ �)

2(�−1)�Ŵ( 1+�

2
)

]1/�, σv = 1

Application of IWHOLF Algorithm for Task Scheduling
A major objective function of the IWHOLF technique 
is to reduce the makespan value by ordering the appro-
priate collection of tasks to be executed on VMs [40]. 

Since resource usage is related to makespan value, a 
higher usage value indicated that the CSP receives huge 
profit as shown in Algorithm.1.

Algorithm. 1 Task Scheduling

where k = 1, 2, 3,…, NVM , i = 1, 2, 3,…, Ntsk , and ECTik 
means required execution time of ith tasks on kth VM. 
NVM represents the total VM count and Ntsk represents 
task count. The integrated fitness value with multi-objec-
tive function of all collections is determined by the use 

(16)ECTik =
task − length

mipsk

(17)Ru =

∑m
i=1 CTi

makespan×m
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of Eq.  (13) that represents the evolution power of the 
organisms.

Generally, the demanded tasks are planned to free VMs 
and the tasks are attended depending upon the order. The 
major intention of task scheduling over VMs is the way of 
attaining high usage of VMs along with minimal makes-
pan values[41]. The Expected Time to Compute (ETC) of 
provide task to be listed on every VM can be used by the 
IWHOLF-TSC technique for scheduling process.

Experimental validation
To further validate the algorithm’s task scheduling effect 
in cloud computing, the IWC algorithm is compared to 
the ACO, PSO, and WOA algorithms. Table  1 lists the 
parameters required by the algorithm. Choose a CPU 
Core i3, memory 4 G DDR3, a hard disc capacity of 1000 
G, Windows 7, and MATLAB 2012. The experiment is 
divided into small-scale and large-scale cloud comput-
ing tasks. The comparison indicators are cost value, time 
value, and memory load value. To explain the effect of 
better scheduling, this paper sets the number of small-
scale tasks to [0, 1000] and the number of large-scale 
tasks to [1000, 10000].

To demonstrate the algorithm’s efficiency in cloud com-
puting task scheduling, the ant colony algorithm (ACO), 
particle swarm optimization (PSO), and whale optimi-
zation algorithm (WOA) were chosen from the classical 
algorithms and compared with the algorithm proposed 
herein for cloud computing task scheduling. The Cloud-
Sim simulation platform was then used to simulate the 
cloud computing environment. Table  2 shows the main 
parameters required by the algorithm in this case. When 
combined with the characteristics of the tasks in cloud 
computing, the tasks were divided into small-scale tasks 
and large-scale tasks, which were compared in the QoS 
indicators based on time and cost.

A brief makespan (MKS) analysis of the IWHOLF-
TSC technique is compared with recent methods under 
small tasks are provided in Table 3 and Fig. 2. The results 
referred that the IWHOLF-TSC method has obtain-
able lower MKS under all tasks. For instance, with 100 
tasks, the IWHOLF-TSC system has provided minimal 
MKS of 58 whereas the WOA, MSA, ALO, and MALO 
approaches have reached increased MKS of 94, 88, 83, 
and 66 correspondingly. In addition, with 500 tasks, the 
IWHOLF-TSC method has demonstrated lower MKS of 
382 whereas the WOA, MSA, ALO, and MALO tech-
niques have able higher MKS of 480, 458, 439, and 425 
correspondingly [74–77]. At last, with 1000 tasks, the 
IWHOLF-TSC method has provided decreased MKS of 

(18)
F =

(
max

{
ECTik

}
&min

{
Ruk

})
,∀ ∈

[
1,Ntsk

]
mappedtokthVM

776 whereas the WOA, MSA, ALO, and MALO tech-
niques have depicted improved MKS of 961, 931, 904, 
and 858 correspondingly.

A detailed MKS analysis of the IWHOLF-TSC 
approach is compared with recent algorithms under large 
tasks are given in Table  4 and Fig.  3. The results dem-
onstrated that the IWHOLF-TSC method has offered 
reduced MKS under all tasks. For instance, with 1100 
tasks, the IWHOLF-TSC method has provided minimal 
MKS of 1054 but the WOA, MSA, ALO, and MALO 
techniques have attained higher MKS of 1172, 1124, 
1140, and 1086 correspondingly. Followed by, with 1500 
tasks, the IWHOLF-TSC method has outperformed 
lower MKS of 1406 whereas the WOA, MSA, ALO, and 
MALO algorithms have accomplished higher MKS of 
1539, 1476, 1460, and 1428 correspondingly. Besides, 
with 2000 tasks, the IWHOLF-TSC methodology has 
provided lower MKS of 1793 whereas the WOA, MSA, 
ALO, and MALO systems have portrayed increased MKS 
of 1999, 1989, 1970, and 1901 respectively.

A degree of imbalance (DOI) analysis of the IWHOLF-
TSC method is compared with recent methods under 
numerous tasks in Table  5 and Fig.  4. The results indi-
cated that the IWHOLF-TSC method has offered 
reduced DOI under all tasks [78–82]. For instance, with 
100 tasks, the IWHOLF-TSC method has provided 

Table 2  Simulation environments

Parameters Value

Simulation Software Tool CloudSim Software Version 4.0

Host Machine Intel i5 6300U CPU @ 2.4 GHz

Host Machine Memory Capacity 20 GB

No. of Virtual Machine 32

No. of Cloudlet 1024

Table 3  MKS Analysis of IWHOLF-TSC model under small tasks

Makespan (Small Tasks)

No. of Tasks WOA MSA ALO MALO IWHOLF-TSC

100 94 88 83 66 58

200 153 137 123 113 96

300 292 273 249 229 191

400 379 360 333 306 265

500 480 458 439 425 382

600 618 586 539 520 480

700 716 678 654 629 572

800 817 781 724 705 659

900 896 871 814 787 730

1000 961 931 904 858 776
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minimal DOI of 0.843 whereas the WOA, MSA, ALO, 
and MALO techniques [83–88] have reached maximum 
DOI of 1.628, 1.534, 1.327, and 0.965 respectively.

Moreover, with 500 tasks, the IWHOLF-TSC method 
has demonstrated lower DOI of 0.866 whereas the WOA, 
MSA, ALO, and MALO techniques have accomplished 
higher DOI of 1.853, 1.745, 1.360, and 1.049 respec-
tively. Furthermore, with 1000 tasks, the IWHOLF-TSC 
method has provided decreased DOI of 0.885 whereas 
the WOA, MSA, ALO, and MALO techniques have 
depicted improved DOI of 2.450, 2.182, 1.623, and 1.280 
respectively.

Table 6 and Fig. 5 provide a fitness function analysis of 
the WOH and IWHOLF techniques under distinct itera-
tions. The results indicated that the IWHOLF technique 

Fig. 2  Comparative MKS Analysis of IWHOLF-TSC model under small tasks

Table 4  MKS Analysis of IWHOLF-TSC model under large tasks

Makespan (Large Tasks)

No. of Tasks WOA MSA ALO MALO IWHOLF-TSC

1100 1172 1124 1140 1086 1054

1200 1229 1191 1172 1134 1099

1300 1365 1340 1321 1267 1203

1400 1432 1413 1381 1349 1292

1500 1539 1476 1460 1428 1406

1600 1692 1647 1609 1530 1492

1700 1755 1720 1688 1622 1577

1800 1875 1825 1790 1726 1692

1900 1986 1901 1863 1821 1749

2000 1999 1989 1970 1901 1793

Fig. 3  Comparative MKS Analysis of IWHOLF-TSC model under large tasks
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has resulted in effectual outcomes with optimal fitness val-
ues under all iterations. For instance, with 100 iterations, 
the IWHOLF technique has resulted in lower fitness value 
of 188.46 whereas the WHO has offered slightly increased 
fitness value of 197.38. In addition, with 500 iterations, the 
IWHOLF technique has attained reduced lower fitness 
value of 77.58 whereas the WHO has reached consider-
ably enhanced fitness value of 96.84. Concurrently, with 
1000 iterations, the IWHOLF technique has resulted in 
lower fitness value of 77.58 whereas the WHO has offered 
slightly increased fitness value of 86.50.

Finally, a computation time (CT) analysis of the 
IWHOLF-TSC method is compared with recent meth-
ods under numerous tasks in Table  7 and Fig.  6. By 
observing the values, it is evident that the IWHOLF-
TSC method has attained minimal CT under all tasks. 
For instance, with 100 tasks, the IWHOLF-TSC method 
has offered lower CT of 19.05 min whereas the WOA, 

MSA, ALO, and MALO techniques have obtained 
higher CT of 155.70  min, 111.33  min, 72.28  min, and 
51 min respectively.

Moreover, with 500 tasks, the IWHOLF-TSC method 
has reached minimal CT of 320.75  min whereas the 
WOA, MSA, ALO, and MALO techniques have accom-
plished maximum CT of 446.77  min, 409.48  min, 
386.42  min, and 365.12  min respectively. Further-
more, with 1000 tasks, the IWHOLF-TSC method has 
reached reduced CT of 489.35 min whereas the WOA, 
MSA, ALO, and MALO techniques have exhibited 
increased CT of 636.67  min, 602.93  min, 624.23  min, 
and 572.77  min respectively. The above-mentioned 
tables and figures ensured the betterment of the 
IWHOLF-TSC technique over the other methods.

Table 5  DOI Analysis of IWHOLF-TSC model under diverse tasks

Degree of imbalance

No. of Tasks WOA MSA ALO MALO IWHOLF-TSC

100 1.628 1.534 1.327 0.965 0.843

200 1.369 1.294 1.261 1.002 0.866

300 1.364 1.327 1.214 1.026 0.857

400 1.745 1.613 1.115 0.970 0.852

500 1.853 1.745 1.360 1.049 0.866

600 1.858 1.712 1.463 1.045 0.871

700 2.163 1.764 1.618 1.021 0.880

800 2.309 1.971 1.529 1.092 0.857

900 2.445 2.145 1.576 1.148 0.918

1000 2.450 2.182 1.623 1.280 0.885

Fig. 4  Comparative DOI Analysis of IWHOLF-TSC with existing models

Table 6  Fitness Function Analysis of IWHOLF with WOH 
algorithms

Fitness Function

No. of Iterations WOH IWHOLF

0 206.52 209.13

100 197.38 188.46

200 108.76 95.86

300 96.04 85.93

400 97.23 78.38

500 96.84 77.58

600 96.44 77.58

700 86.50 77.58

800 86.50 77.58

900 86.50 77.58

1000 86.50 77.58
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Figure  7 and Table  8  illustrate a comparative suc-
cess rate examination of the IWHOLF-TSC approach 
with other existing methods. The figure shows that 
the cloud computing approach has resulted in higher 
performance with success rate. For example, with 
no of tasks 100, the success rate value is 85.478% for 
IWHOLF-TSC, whereas the WOA, MSA, ALO, and 
MALO models have obtained success rate of 77.345%, 
73.768%, 61.526%, and 65.026%, respectively. However, 
the IWHOLF-TSC model has shown maximum per-
formance with different data set size. Similarly, under 
1000 tasks, the success rate value of IWHOLF-TSC is 
93.775%, while it is 83.879%, 75.943%, 64.837%, and 
68.937% for WOA, MSA, ALO, and MALO models, 
respectively.

Fig. 5  Comparative Fitness Function Analysis of IWHOLF with WOH algorithms

Table 7  CT Analysis of IWHOLF-TSC model under varying tasks

Computation Time (min)

No. of Tasks WOA MSA ALO MALO IWHOLF-TSC

100 155.70 111.33 72.28 51.00 19.05

200 155.70 130.85 98.92 81.17 42.12

300 281.72 249.77 230.25 216.05 146.83

400 311.88 287.03 265.73 260.42 210.72

500 446.77 409.48 386.42 365.12 320.75

600 480.48 444.98 420.13 398.85 370.45

700 505.33 475.15 455.63 437.88 411.27

800 574.55 537.27 521.30 500.00 464.52

900 617.13 578.10 588.73 544.37 480.48

1000 636.67 602.93 624.23 572.77 489.35

Fig. 6  Comparative CT Analysis of IWHOLF-TSC model
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Table 9 and Fig. 8 explain the resource utilization of the 
IWHOLF-TSC method with other existing techniques. 
The data clearly explains that the proposed method has 
the least resource utilization compared to the other 
methods in all aspects. For example, with 100 tasks, the 
proposed method has a resource utilization of 36.837%, 
while it is 71.623%, 58.436%, 48.873%, and 41.653% 
for WOA, MSA, ALO, and MALO, respectively. The 
IWHOLF-TSC method has greater performance with 
less resource utilization. Similarly, with 1000 tasks, the 
proposed method has 38.434% of resource utilization 
whereas the methods for WOA, MSA, ALO, and MALO 

have resource utilization of 79.526%, 69.733%, 56.432%, 
and 49.432%, respectively.

Conclusion
In this article, a new IWHOLF-TSC technique for 
effectively scheduling tasks in a CC environment is pre-
sented. The purpose of this article is to introduce an 
IWHOLF-TSC based task scheduling method in cloud 
computing task scheduling, with the goal of improv-
ing the effect of cloud computing task scheduling. Two 
optimization strategies based on the IWHOLF-TSC 
algorithm are proposed to further improve scheduling 

Fig. 7  Success rate analysis of IWHOLF-TSC model under varying tasks

Fig. 8  Resource utilization analysis of IWHOLF-TSC model under varying tasks
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performance based on the IWHOLF-TSC algorithm. 
When compared to some commonly used metaheuris-
tic algorithms, the experimental results show that it 
can be used in system load and system resource utilisa-
tion. Cloud computing systems’ cost-effectiveness has 
greatly improved. The proposed IWHOLF-TSC tech-
nique derives a fitness function in the CC platform by 
minimising Makespan and maximising resource usage. 
The proposed IWHOLF-TSC technique incorporates 
WHO algorithm concepts that are stimulated by the 
social living characteristics of wild horses with LF. The 
performance validation of the IWHOLF-TSC technique 
can be carried out and the results evaluated using a 
variety of metrics. The IWHOLF-TSC method achieved 
a lower MKS of 382 while the WOA, MSA, ALO, and 

MALO techniques achieved higher MKS of 480, 458, 
439, and 425, respectively. The IWHOLF-TSC method 
yielded a low MKS of 1054, whereas the WOA, MSA, 
ALO, and MALO techniques yielded higher MKS of 
1172, 1124, 1140, and 1086, respectively. In the simu-
lation experiment, IWHOLF-TSC was pitted against 
the ant colony algorithm, the particle swarm algorithm, 
and the whale optimization algorithm across a variety 
of tasks. According to the results, the IWHOLF-TSC 
algorithm performs well in terms of task scheduling 
time, scheduling cost, and virtual machine. The appli-
cation is used to schedule cloud computing tasks. 
Resource allocation and clustering processes for IoT 
assisted cloud environments can be designed as part of 
the future scope.
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