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Abstract 

Cloud computing is an extremely important infrastructure used to perform tasks over processing units. Despite its 
numerous benefits, a cloud platform has several challenges preventing it from carrying out an efficient workflow 
submission. One of these is linked to task scheduling. An optimization problem related to this is the maximal determi-
nation of cloud computing scheduling criteria. Existing methods have been unable to find the quality of service (QoS) 
limits of users- like meeting the economic restrictions and reduction of the makespan. Of all these methods, the Het-
erogeneous Earliest Finish Time (HEFT) algorithm produces the maximum outcomes for scheduling tasks in a hetero-
geneous environment in a reduced time. Reviewed literature proves that HEFT is efficient in terms of execution time 
and quality of schedule. The HEFT algorithm makes use of average communication and computation costs as weights 
in the DAG. In some cases, however, the average cost of computation and selecting the first empty slot may not be 
enough for a good solution to be produced. In this paper, we propose different HEFT algorithm versions altered to 
produce improved results. In the first stage (rank generation), we execute several methodologies to calculate the 
ranks, and in the second stage, we alter how the empty slots are selected for the task scheduling. These alterations do 
not add any cost to the primary HEFT algorithm, and reduce the makespan of the virtual machines’ workflow submis-
sions. Our findings suggest that the altered versions of the HEFT algorithm have a better performance than the basic 
HEFT algorithm regarding decreased schedule length of the workflow problems. 
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Introduction
Cloud computing works on a “pay for each use” system 
where clients access the cloud services without having 
full knowledge of the distribution policies and hosting 
specifics [1–3]. This provides global on-request access to 
a shared pool of assets such as storage space, computing 
servers, and web facilities for a reduced time to shop for 
enterprises and determine the logical findings [4]. Cli-
ents can access these assets steadily with no stress and no 
need to communicate with the facility provider [5, 6]. The 
aim of cloud infrastructure is to provide an easy-to-use 
workspace for dynamic applications.

The workspace can be obtained when various computer 
hardware are integrated with software package services. 
These facilities allow clients to transmit their submissions 
in cyberspace through the indication of their execution, 
accessibility, and Quality of Service (QoS) necessities [7]. 
As a result of the different configuration, deployment, 
and arrangement necessities of such submissions, the 
approaches for asset management and task scheduling 
becomes basic in the development of the efficiency and 
effectiveness of the cloud framework [8, 9]. In a distrib-
uted framework, all the jobs may be imagined as execut-
ing the various tasks in it. These tasks are classified into 
dependent and independent tasks. While independent 
tasks can be performed concurrently by several Virtual 
Machines (VMs), dependent tasks have to be planned 
through the fulfilment of their precedence relation-
ships. This can be presented as a Directed Acyclic Graph 
(DAG) where the graph vertices or nodes represent tasks, 
and edges represent links between the tasks [10, 11]. It 
is compulsory to perform tasks with precedence restric-
tions in a scheduling order that decreases the schedule 
makespan. NP-Complete is the discovery of the maximal 
results for a task scheduling challenge [10].

Task scheduling issues can be classified into two pri-
mary classes: the deterministic and non-deterministic 
scheduling. The deterministic (compile-time) schedul-
ing is sub-divided into the heuristics-based [12, 13] and 
Guided Random Search-Based (GRSB) [14–16]. Deter-
ministic task scheduling is also referred to as static 
scheduling. The GRSB algorithms (Genetic Algorithms) 
cost more than heuristics-based scheduling algorithms 
because the algorithms need more iterations to gener-
ate an enhanced schedule. The heuristics-based algo-
rithms on the other hand, provide approximate solutions 
in record time. They can be categorized as duplication-
related [17, 18], clustering-based [19, 20], and list-based 
[21–23]. The duplication-based heuristics have higher 
time complexity, while clustering-based heuristics are 
suitable for homogeneous frameworks.

In this paper, we considered list-based heuristics 
because of their decreased duration and efficiency in 

delivering a shorter makespan. They work in two primary 
stages for task scheduling. In the first stage, calculation 
of rank is done for individual tasks, after that arranged in 
a descending order. In the second stage, we schedule the 
task with the highest rank value on the available machine. 
The Heterogeneous Earliest Finish Time (HEFT) proce-
dure is the most popular among its counterparts for het-
erogeneous computing because of its high performance 
trade-off and low costs [24].

The following are the main contributions of this study:

•	 We design and propose three altered versions of the 
HEFT algorithm for rank calculation and processor 
selection, and to reduce the duration for the task 
scheduling.

•	 We lay out the challenge of task scheduling on heter-
ogeneous machines and the cloud framework-related 
features for efficiently managing the specified tasks 
on the available VMs through the inclusion of the 
dependency restrictions among the tasks.

•	 We analyse and compare the proposed algorithms 
with the basic HEFT algorithm, the AVCT (Average 
Computation Cost) algorithm on arbitrarily created 
DAGs of real-world applications.

The novelty of the proposed method lies in the different 
methodologies in the two stages of the HEFT algorithm. 
In the first stage (rank generation), we execute several 
methodologies to calculate the ranks, and in the second 
stage, we alter how the empty slots are selected for the 
task scheduling. These alterations do not add any cost to 
the primary HEFT algorithm, and reduce the makespan 
of the virtual machines’ workflow submissions. From the 
computational analyses and experiments we carried out, 
we observed the significant differences between the per-
formance of the basic HEFT algorithm (AVCT approach) 
and our proposed altered versions MXCT (Maximum 
Computation Cost), MNCT (Minimum Computation 
Cost), and AVBS (Average Computation Cost and Best 
Empty Slot), regarding the schedule makespan that was 
produced. This implies that the scheme used affects the 
schedule length. We also observed that using the aver-
age value scheme for rank calculation and selection of the 
first empty slot is not always the best option. Our find-
ings indicate that our proposed improved versions per-
form better than the basic HEFT algorithm regarding the 
decreased schedule length of the workflow problems run-
ning on the virtual machines.

The rest of this paper is organized as follows: Section 2 
reviews the related literature. Section  3 briefly intro-
duces multiprocessor task scheduling, and describes the 
problem model. Section 4 explores the HEFT algorithm 
and the proposed methodology. Section 5 discusses the 
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experimental results. Finally, Section  6 concludes the 
paper.

Literature review
The authors in [5] proposed a community-based cloud 
framework to manage emergencies. Its aim is to coor-
dinate and oversee different organizations and combine 
large amounts of heterogeneous data in order to deploy 
logistics and personnel to search and rescue. The frame-
work can also be utilized in the assessment of damage. 
In [6], to make clear the fundamentals of cloud comput-
ing, the authors explained the features of the areas which 
distinguish cloud computing from other research areas. 
They mainly compared cloud computing to grid comput-
ing and gave insights to the essentials of both concepts. 
The authors in [7] proposed a toolkit which allows the 
simulation and modelling of application provisioning 
and cloud computing systems. The aim was to achieve 
resource performance and application workload models 
under different user and system configurations. In [8], 
the authors provided a brief but comprehensive overview 
into speech bifurcation, both into series and single words 
with unrestricted speech, and presented a methodology 
which converts vocal signals into text. The authors in [9] 
proposed a game theoretic framework for the manage-
ment of dynamic cloud services, including allocation of 
resources and assignment of tasks, with the aim of pro-
viding reliable cloud services. The proposed framework 
would assist cloud service providers in the management 
of their resources in a cloud computing environment.

In [10], the authors presented an algorithm for sched-
uling of tasks that makes use of the standard deviation 
of the estimated task execution time on the resources 
available in the computing environment. This approach 
considers the heterogeneity of the task and significantly 
reduces the execution time of a specific application. The 
authors in [11] proposed improved versions of algo-
rithms specifically for heterogeneous systems used for 
compilation of time list scheduling where the priorities of 
the tasks are computed. In [14], the authors examined the 
dynamic scheduling of tasks in a multiprocessor system 
in order to obtain a viable solution making use of genetic 
algorithms integrated with popular heuristics. The exper-
imental results showed that the genetic algorithm can 
used for task scheduling to meet deadlines. The authors 
in [15] designed a genetic evolution-based algorithm to 
find an optimal solution for task scheduling in a multi-
processor system in record time. In [16], the authors pro-
vided a comprehensive overview of genetic algorithms, 
its techniques, tools and research results which would 
allow the algorithms to be applied to real-world prob-
lems in different fields. The authors in [12] presented 
two novel algorithms for heterogeneous processors with 

the goal of attaining speedy scheduling time and high 
performance. The experimental results revealed that 
the proposed algorithms performed better than existing 
algorithms in terms of quality and cost of schedules.

In [13], the authors proposed an algorithm for sched-
uling tasks in a multicore processor system which sig-
nificantly decreases the recovery time in case the system 
fails. The proposed algorithm is based on a check point-
ing method. The authors in [17] proposed a cutting-edge 
duplication-based algorithm to reduce the schedule 
makespan and delay of the task execution. The proposed 
algorithm schedules tasks with the lowest redundant 
duplications. In [18], the authors presented a list sched-
uling algorithm to consider the heterogeneity of com-
munication and computation. They also proposed a 
novel approach for priority computation which consid-
ers the difference in performances in the target comput-
ing system making use of variance. The authors in [23] 
proposed a ranking algorithm based on the parent–child 
relationship and the priority assignment stage of the 
HEFT algorithm designed for task scheduling in a mul-
tiprocessor system. The proposed algorithm works on 
the keywords’ density, the age of the webpage, and the 
amount of node successors.

The problem model
Multiprocessor task scheduling
Previously, various researchers have proposed several 
list scheduling procedures to resolve the task schedul-
ing issue. The HEFT algorithm [12] estimates the tasks’ 
ascendant rank values with the average communication 
and computation cost. The Standard Deviation Based 
Task Scheduling (SDBATS) [10] uses the standard devi-
ation of transmission and computational expenses to 
approximate ascendant rank values. The Critical Path 
on a Processor (CPOP) [12] adds the descendant and 
ascendant rank values to create an important track and 
precedence column. During each stage of the DAG, the 
Performance Effective Task Scheduling (PETS) [25] 
includes the average computation cost, data transmis-
sion and reception cost to fix the tasks’ rank values. The 
Duplication based Heterogeneous Earliest Finish time 
(HEFD) [18] uses task variance as a feature of hetero-
geneity to approximate the transmission and computa-
tion costs among tasks. Predict Earliest Finish Time 
(PEFT) [24] is created on the look-forward technique, 
and approximates the descendent tasks through the cal-
culation of an Optimistic Cost value Table (OCT). The 
OCT is a 2D array whose columns and rows indicate the 
number of processors and tasks, respectively. Each ele-
ment in the OCT ( ti,pj ) shows the optimum of the short-
est ways of ti offspring tasks to the leaving node, noting 
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that machine pj is nominated for task ti . All these algo-
rithm calculations rely on standard deviation or the aver-
age of task weights on accessible machines. They do not 
include the framework heterogeneity. The most recent 
effort shows how standard deviation includes task and 
heterogeneity on existing machines. The various task 
scheduling algorithms and their limitations, tools, and 
parameters were analyzed in [26, 27].

We believe that the HEFT algorithm’s efficiency can be 
improved by using three versions of the basic HEFT algo-
rithm. This paper proposes two schemes of the first stage 
(rank calculation), and a different approach for selection 
of the empty slot. We examined the schedules makes-
pan generated by each version and regarded the mini-
mum length makespan as the result. Although it slightly 
increases the algorithm’s costs, it is a trade-off between 
time complexity and performance. Our evaluation illus-
trates that the proposed versions produce high value 
schedules in terms of higher efficiency and decreased 
schedule length.

The model and objective function
The model of the scheduling structure consists of a 
target computation architecture, a submission (appli-
cation), and scheduling standards. A problem can 
be indicated as a (DAG) = G (T, E, R, C) (see Fig.  1), 
where T = {ti, i = 0, 1, 2, ..., n− 1} is a set of n tasks 
[28–30]. Symbol E indicates a set of edges between tasks 
E = {ei,j , i < j} , and ei,j represents the precedence limita-
tions between two linked tasks. Tasksti,tj ∈ T, which are 
connected to each other, signifying the precedence limi-
tation of task tj being dependent on task ti for its opera-
tion. It illustrates that task ti results will be applied as the 
input value for task tj , and tj cannot begin its implemen-
tation beforeti . The task tj is the heir of ti and ti is the pre-
decessor of tj . Here, R signifies a 2D matrix of sizev ×m , 
and rij in R denotes the estimated operating time of vi on 
jth processor. A matrix CmC(t × t) represents the com-
munication cost between any two tasks ti andtj . In the 
graph below, a task with no ancestor is referred to as an 
entry task, and a task that has no descendant is referred 
to as an exit (leaving) task.

A cloud framework consists of a set 
VM = {vmiwherei = 0, 1, 2, . . . .m− 1} of m VMs that 
self-regulate and are linked over a high-rate network as 
illustrated in Fig. 2. The Data Transfer Frequency (DTF) 
may change because of the modified network band-
width of cloud architecture. DTF can be written as an 
m×m two-dimensional array, and among any two VMs 
asDTFm×m . The Probable Execution Cost (PEC) can 
be indicated by an extra 2D array PECn×m to carry 
out a task ti on a VM vmj , where 0 <= i <= n− 1 and 
0 <= j <= m− 1.  The PEC builds on the VM’s speed of 
computation and can be different for each VM.

The communication cost between vmx and vmy depends 
on two aspects. The first is the processors’ installed fre-
quency on both sides of communications. The second is 
the frequency’s correspondence cost value. We assume 

Fig. 1  A model DAG

Fig. 2  Task scheduling in a cloud-based framework
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that each VM workstation can transmit to other worksta-
tions of a different VM with no conflict on the transmis-
sion channel. We also assume that tasks planned on the 
similar VM have no cost of communication among them.

The aim of the task arrangement challenge is to organ-
ize all the tasks of a given submission to machines for the 
application’s completion time to reduce, fulfilling all the 
precedence limitations.

Methodology
Review of the HEFT algorithm
The HEFT algorithm is designed to schedule the DAG 
tasks into heterogeneous processors. The HEFT proce-
dure has two basic stages: the rank generation and the 
processor selection stages. In the first stage, HEFT car-
ries out a calculation of ranks for all the tasks and prior-
itizes them according to a descending order of their rank 
values. It is initiated by assigning weights to each DAG 
node and edge for rank calculation, based on the average 
communication and computation cost.

In the second stage, HEFT chooses the tasks based on 
their priority values and schedules each nominated task on 
the most suitable processor, which can decrease the sched-
ule length of the task. HEFT also arranges the tasks in an 
empty slot between two previously planned tasks on a 
processor if the precedence constraints are observed. The 
HEFT algorithm looks for an empty slot on a processor 

until it finds one that can carry the computation cost of the 
chosen task.

HEFT procedure makes use of average communication 
and computation costs as DAG weights for calculation of 
ranks, and selection of processor. The first empty slot is 
always considered for the task scheduling. In some cases, 
however, the average cost of computation and selection 
of the first empty slot may not be a good solution. Con-
sider the sample DAG in Fig. 3. The cost of probable exe-
cution of every task on three different VMs is shown in 
Table 1. The edges of the sample DAG are labelled with 
the average cost of communication.

Fig. 3  Model task graph (using 10 tasks)

Table 1  Probable Execution Cost (PEC) matrix

Task VM1 VM2 VM3

T1 10 6 9

T2 10 23 23

T3 10 9 7

T4 18 17 18

T5 5 2 23

T6 7 5 16

T7 17 9 17

T8 40 16 19

T9 18 9 8

T10 26 10 24
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In this example, if prioritization of tasks is done using 
the average cost of computation of all three VMs (as in 
the basic HEFT), then the scheduling order would be 
T1,T2,T3,T4,T6,T8,T5,T10,T7,T9, and the schedule 
length would be 98. Figure 4 illustrates this. Assume the 
assigning of priorities is done using the optimal value of 
the cost of computation over the three VMs on which a 
task may be executed. In such a situation, the task sched-
uling order would be T1,T2,T3,T4,T6,T8,T5,T10,T9,T7, 
and the schedule length would be 96. Figure 5 illustrates 
this. This is lesser than the schedule length obtained 
by the basic HEFT algorithm. Similarly, if priorities are 
assigned using the minimum value of the cost of compu-
tation over the three VMs on which a task may operate, 
and then the task scheduling length and order would be 
the same as found in the basic HEFT algorithm. This is 
illustrated in Fig. 6.

Conversely, if the processor selection stage is altered, 
the schedule length obtained may change. Here, the 
calculations of ranks are done using the average com-
putation cost value. In the above example, if we choose 
an empty slot in which a task has the lowest finish time 

instead of the initial slot, the schedule length would go 
down to 89 as task T5 is now scheduled on VM2 (22 to 
27, see Fig. 7) instead of VM1 (24 to 26 in case of the 
basic HEFT, see Fig. 4). We find that the average cost 
of computation value for rank calculation and selec-
tion of the first empty slot for scheduling of tasks are 
not the best choices. The schedule lengths gotten may 
change.

The proposed methodology for cloud environment
We propose the altered versions of the basic HEFT algo-
rithm to acquire improved results for task arrangement 
challenges in the cloud environment. Figure 8 illustrates 
this. In the first stage (rank generation), we execute a 

Fig.4  Scheduling of DAG with original HEFT algorithm. (Use of 
Average Computation Cost in Rank Calculation & Schedule length is 
98)

Fig.5  Scheduling of DAG with modified HEFT Algorithm. (Use Of 
maximum Computation Cost in Rank Calculation & Schedule length 
is 96)
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distinct methodology, and in the second stage (resource 
selection), we alter the mode of selection of empty slots 
for task scheduling. These modifications do not incur any 
additional cost compared to the basic HEFT algorithm. 

The changes we propose in each stage are explained 
below.

Rank generation stage
In this stage, each task’s precedence should be decided 
with the descendant or ascendant rank value. The formu-
las below calculate the task’s upward rank:

If Task Ti is an exit task, the rank of task Ti is defined by 
the Rank Function:

Else,

where wk
i  is the computation amount of task Ti on 

resource k and 1 ≤ k ≤ n , suc(Ti) is the set of the direct 
successors of task Ti and avg(commi,z) is the average 
cost of communication between the tasks Ti and Tz . 
Here, f  represents a function which could be the max-
imum, minimum or average value of the cost of com-
putation. As the rank is calculated recursively from the 
exit node, it is referred to as the Upward Rank value.

(1)Rankup(Ti) = f (w1
i , ..w

k
i , ..w

n
i )

(2)
Rankup(Ti) = f (w1

i , ..w
k
i , ..w

n
i )+ max

∀Tz∈suc(Ti)
avg commi,z + Rankup(Tz)

Fig.6  Scheduling of DAG with modified HEFT Algorithm. (Use of 
minimum computation cost in rank calculation & schedule length is 
98)

Fig.7  Scheduling of DAG with modified HEFT algorithm. (Use Of min 
schedule length idle slot in processor selection & Schedule length is 
89)
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If Task Ti is an entry task, the rank of Task Ti is 
defined by the Rank Function:

Else

where, pre(Ti)  is the group of direct predecessor of 
Task Ti . After calculating the each task rank, a task list 
is created through the arrangement of the tasks accord-
ing to their descending order of Rankup.

The Resource Selection Stage.
In this stage, we propose a novel approach to deter-

mine the empty slot for the selected task. Here, the 
search for an appropriate empty slot for a task on a 
resource starts when all the ancestors of Task Ti trans-
mit the required input data to that resource. The search 
continues until an empty slot which can hold the cost of 
computation of Task Ti and in which the selected Task 

(3)Rankdw(Ti) = 0

(4)Rankdw(Ti) = max
∀Tz∈pre(Ti)

(avg(commz,i)+ Rankdw(Tz)+ f (w1
i , ..w

k
i , ..w

n
i ))

Ti has the lowest finish time is found. In Fig. 8 complete 
algorithm of HEFT is presented.

Results and discussion

In this paper, we created a system that complements 
the basic HEFT algorithm, and improves the proces-
sor selection and prioritization of task processes. Input 
fed into the system includes the cost of communication, 
the Probable Execution Cost Matrix, the DAG show-
ing dependencies, and the number of VMs and tasks. 
To assess the performance of our algorithm, we gener-
ated varied scheduling problems and attempted to solve 
them with the altered versions of the HEFT algorithm, 
as well as the basic HEFT algorithm.

We designed an automated system to make scheduling 
issues of different sizes. This is done to prevent partiality 

Fig. 8  The complete HEFT algorithm
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when offering values of different parameters. Our sys-
tem assigns the parameters to random values in suitable 
ranges. We created problems for our experiments with 
the following features:

•	 Size of the problem (the number of tasks) which 
ranges from 50 to 80 with an interval of 5.

•	 The number of each task’s successor with the excep-
tion of the exit task which is an arbitrary number 
that ranges from 0 to 10.

Fig. 9  Variations in schedule length obtained from the AVCT approach and MXCT approach

Fig. 10  Variations in schedule length obtained from the AVCT approach and MNCT approach

Table 2  Comparison of AVCT, MXCT and MNCT algorithms

Problem Percentage Approaches Outcomes

33% AVCT Equal Schedule Length

MXCT

MNCT

67% MXCT Vs AVCT 36% Equal Schedule Length

39% MXCT Gives better Schedule Length

25% MXCT Gives worse Schedule Length

MNCT Vs AVCT 27% Equal Schedule Length

40% MNCT Gives better Schedule Length

33% MNCT Gives worse Schedule Length
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•	 The task implementation time, this is an arbitrary 
number which ranges from 1 to 20.

•	 The task communication time, this is an arbitrary 
number between 1 and 50.

•	 The amount of VMs is considered as either 4 or 5.
•	 In all the DAGs, the tasks’ ranks are calculated using 

the upward rank calculation formula.

Investigation on the rank generation stage
To calculate a particular value for the method f  in Rank 
Function, we use three techniques:

	(i)	 AVCT (Average Computation cost) approach: This 
returns the average task cost of computation over 
every VM. It is used in the basic HEFT algorithm.

	(ii)	 MXCT (Maximum computation cost) approach: 
This returns a maximum task cost of computation 
over every VM.

	(iii)	 MNCT (Minimum computation cost) approach: 
This returns a minimum task cost of computation 
over every VM.

In all the approaches, the first empty slot which 
can hold the task cost of computation is studied (as 
in the basic HEFT). We operate the basic HEFT algo-
rithm (AVCT approach) and our proposed approaches 
(MNCT and MXCT approach) on 100 different prob-
lems with different Problem Identification Numbers 
(PIN) 800 to 899 for problem size 80. The experi-
mental results reveal that for 33% of problems, all 
the algorithms have equal length of schedule. For the 
remaining 67%, the MXCT approach provides equal 
length of schedule in 36%, better length of schedule in 
39%, and worse length of schedule in 25% of the cases 
compared to the AVCT approach. The differences 
in the schedule lengths gotten from the AVCT and 
MXCT algorithms are illustrated in Fig. 9.

Similarly, for the remaining 67% of the problems, the 
MNCT approach provides equal length of schedule 
lengths in 27%, better length of schedule in 40%, and 

worse schedule lengths in 33% of the cases in comparison 
to the AVCT approach. The differences in the schedule 
lengths gotten from the AVCT and MNCT algorithms 
are illustrated in Fig.  10. Table  2 compares the three 
approaches.

From our analysis, we observed that there are note-
worthy differences between the basic HEFT algorithm’s 
performance (AVCT approach), and the altered versions 
(MNCT and MXCT). We also observed that using an 
average value scheme for rank calculation is not always 
the best choice.

Investigation on the resource selection stage
We used two approaches to select an empty slot for task 
scheduling:

	(i)	 AVCT approach (the basic HEFT algorithm-aver-
age cost of computation and the first empty slot).

	(ii)	 AVBS (average computation cost and best empty 
slot) approach: This approach uses the average cost 
of computation to calculate the ranks and selects 
an empty slot where the selected task has the low-
est finish time.

We took 100 sample problems of each size ranging 
from 50 to 80 with an interval of 5. Table 3 shows how 
we ran both algorithms on sample problems, and how 
the results were analysed. We observed that that AVBS 
algorithm has a better performance than the AVCT algo-
rithm. The results from the experiment shows that the 
AVBS algorithm has a reduced average length of schedule 
in 86% problem sets and slightly greater average schedule 
length in 14% problem sets in comparison to the AVCT 
algorithm.

Conclusion
In cloud computing, scalable resources are offered as 
services to clients through the Internet. Thus, a cloud 
service provider has more clients to attend to in the 
cloud computing architecture. As a result of this, task 

Table 3  Comparison of the AVCT and AVBS algorithms

Problem Size Number of Resources AVCT algorithm (Average of Hundred 
problems)

AVBS Algorithm 
(Average of hundred 
problems)

50 4 425.50 425.14

55 4 457.34 457.32

60 4 491.12 490.94

65 4 548.24 548.26

70 4 574.66 574.18

75 5 623.21 622.02

80 5 665.97 665.61
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scheduling is one of the biggest challenges in establish-
ing a functional and efficient cloud computing environ-
ment. In this paper, we proposed different versions of 
the heuristic-based algorithm Heterogeneous Earliest 
Finish Time (HEFT) which carries out task scheduling 
and allocates resources in the cloud computing environ-
ment. On comparison of our proposed approach to other 
frameworks in terms of schedule length, we discovered 
that our approach performs better. We observed that the 
original HEFT algorithm ‘s efficiency can be enhanced by 
choosing the best result from each approach ‘s schedules. 
Although this may lead to the algorithm having a higher 
cost, it is a trade-off between cost and performance. We 
may further consider the Nature-inspired optimiza-
tion algorithm-based scheduling for more effective task 
scheduling in the cloud environment. The existing work 
can be extended for dynamic task scheduling in the 
future.
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