
Hai et al. Journal of Cloud Computing (2023) 12:15
https://doi.org/10.1186/s13677-022-00374-7

RESEARCH

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Open Access

Journal of Cloud Computing:
Advances, Systems and Applications

Task scheduling in cloud environment:
optimization, security prioritization
and processor selection schemes
Tao Hai1,2, Jincheng Zhou1,3*, Dayang Jawawi2, Dan Wang3,4, Uzoma Oduah5*, Cresantus Biamba6* and
Sanjiv Kumar Jain7 

Abstract 

Cloud computing is an extremely important infrastructure used to perform tasks over processing units. Despite its
numerous benefits, a cloud platform has several challenges preventing it from carrying out an efficient workflow
submission. One of these is linked to task scheduling. An optimization problem related to this is the maximal determi-
nation of cloud computing scheduling criteria. Existing methods have been unable to find the quality of service (QoS)
limits of users- like meeting the economic restrictions and reduction of the makespan. Of all these methods, the Het-
erogeneous Earliest Finish Time (HEFT) algorithm produces the maximum outcomes for scheduling tasks in a hetero-
geneous environment in a reduced time. Reviewed literature proves that HEFT is efficient in terms of execution time
and quality of schedule. The HEFT algorithm makes use of average communication and computation costs as weights
in the DAG. In some cases, however, the average cost of computation and selecting the first empty slot may not be
enough for a good solution to be produced. In this paper, we propose different HEFT algorithm versions altered to
produce improved results. In the first stage (rank generation), we execute several methodologies to calculate the
ranks, and in the second stage, we alter how the empty slots are selected for the task scheduling. These alterations do
not add any cost to the primary HEFT algorithm, and reduce the makespan of the virtual machines’ workflow submis-
sions. Our findings suggest that the altered versions of the HEFT algorithm have a better performance than the basic
HEFT algorithm regarding decreased schedule length of the workflow problems.

Keywords  HEFT Algorithm, Cloud Computing, Task Scheduling, NP-complete

*Correspondence:
Jincheng Zhou
guideaaa@126.com
Uzoma Oduah
uoduah@unilag.edu.ng
Cresantus Biamba
cresantus.biamba@hig.se
1 School of Computer and Information, Qiannan Normal University
for Nationalities, Duyun 558000, China
2 Faculty of Computing, Universiti Teknologi Malaysia (UTM), 81310
UTM Skudai, Johor Bahru, Johor, Malaysia
3 Key Laboratory of Complex Systems and Intelligent Optimization
of Guizhou, Duyun 558000, China
4 School of Mathematics and Statistics, Qiannan Normal University
for Nationalities, Duyun 558000, China
5 Department of Physics, Faculty of Science, University of Lagos,
Lagos 100213, Nigeria

6 School of Mathematics and Statistics, Department of Educational
Sciences, Faculty of Education and Business Studies, University of Gävle,
Gävle, Sweden
7 Electrical Engineering Department, Medi-Caps University,
Indore 452012, India

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-022-00374-7&domain=pdf

Page 2 of 12Hai et al. Journal of Cloud Computing (2023) 12:15

Introduction
Cloud computing works on a “pay for each use” system
where clients access the cloud services without having
full knowledge of the distribution policies and hosting
specifics [1–3]. This provides global on-request access to
a shared pool of assets such as storage space, computing
servers, and web facilities for a reduced time to shop for
enterprises and determine the logical findings [4]. Cli-
ents can access these assets steadily with no stress and no
need to communicate with the facility provider [5, 6]. The
aim of cloud infrastructure is to provide an easy-to-use
workspace for dynamic applications.

The workspace can be obtained when various computer
hardware are integrated with software package services.
These facilities allow clients to transmit their submissions
in cyberspace through the indication of their execution,
accessibility, and Quality of Service (QoS) necessities [7].
As a result of the different configuration, deployment,
and arrangement necessities of such submissions, the
approaches for asset management and task scheduling
becomes basic in the development of the efficiency and
effectiveness of the cloud framework [8, 9]. In a distrib-
uted framework, all the jobs may be imagined as execut-
ing the various tasks in it. These tasks are classified into
dependent and independent tasks. While independent
tasks can be performed concurrently by several Virtual
Machines (VMs), dependent tasks have to be planned
through the fulfilment of their precedence relation-
ships. This can be presented as a Directed Acyclic Graph
(DAG) where the graph vertices or nodes represent tasks,
and edges represent links between the tasks [10, 11]. It
is compulsory to perform tasks with precedence restric-
tions in a scheduling order that decreases the schedule
makespan. NP-Complete is the discovery of the maximal
results for a task scheduling challenge [10].

Task scheduling issues can be classified into two pri-
mary classes: the deterministic and non-deterministic
scheduling. The deterministic (compile-time) schedul-
ing is sub-divided into the heuristics-based [12, 13] and
Guided Random Search-Based (GRSB) [14–16]. Deter-
ministic task scheduling is also referred to as static
scheduling. The GRSB algorithms (Genetic Algorithms)
cost more than heuristics-based scheduling algorithms
because the algorithms need more iterations to gener-
ate an enhanced schedule. The heuristics-based algo-
rithms on the other hand, provide approximate solutions
in record time. They can be categorized as duplication-
related [17, 18], clustering-based [19, 20], and list-based
[21–23]. The duplication-based heuristics have higher
time complexity, while clustering-based heuristics are
suitable for homogeneous frameworks.

In this paper, we considered list-based heuristics
because of their decreased duration and efficiency in

delivering a shorter makespan. They work in two primary
stages for task scheduling. In the first stage, calculation
of rank is done for individual tasks, after that arranged in
a descending order. In the second stage, we schedule the
task with the highest rank value on the available machine.
The Heterogeneous Earliest Finish Time (HEFT) proce-
dure is the most popular among its counterparts for het-
erogeneous computing because of its high performance
trade-off and low costs [24].

The following are the main contributions of this study:

•	 We design and propose three altered versions of the
HEFT algorithm for rank calculation and processor
selection, and to reduce the duration for the task
scheduling.

•	 We lay out the challenge of task scheduling on heter-
ogeneous machines and the cloud framework-related
features for efficiently managing the specified tasks
on the available VMs through the inclusion of the
dependency restrictions among the tasks.

•	 We analyse and compare the proposed algorithms
with the basic HEFT algorithm, the AVCT (Average
Computation Cost) algorithm on arbitrarily created
DAGs of real-world applications.

The novelty of the proposed method lies in the different
methodologies in the two stages of the HEFT algorithm.
In the first stage (rank generation), we execute several
methodologies to calculate the ranks, and in the second
stage, we alter how the empty slots are selected for the
task scheduling. These alterations do not add any cost to
the primary HEFT algorithm, and reduce the makespan
of the virtual machines’ workflow submissions. From the
computational analyses and experiments we carried out,
we observed the significant differences between the per-
formance of the basic HEFT algorithm (AVCT approach)
and our proposed altered versions MXCT (Maximum
Computation Cost), MNCT (Minimum Computation
Cost), and AVBS (Average Computation Cost and Best
Empty Slot), regarding the schedule makespan that was
produced. This implies that the scheme used affects the
schedule length. We also observed that using the aver-
age value scheme for rank calculation and selection of the
first empty slot is not always the best option. Our find-
ings indicate that our proposed improved versions per-
form better than the basic HEFT algorithm regarding the
decreased schedule length of the workflow problems run-
ning on the virtual machines.

The rest of this paper is organized as follows: Section 2
reviews the related literature. Section 3 briefly intro-
duces multiprocessor task scheduling, and describes the
problem model. Section 4 explores the HEFT algorithm
and the proposed methodology. Section 5 discusses the

Page 3 of 12Hai et al. Journal of Cloud Computing (2023) 12:15 	

experimental results. Finally, Section 6 concludes the
paper.

Literature review
The authors in [5] proposed a community-based cloud
framework to manage emergencies. Its aim is to coor-
dinate and oversee different organizations and combine
large amounts of heterogeneous data in order to deploy
logistics and personnel to search and rescue. The frame-
work can also be utilized in the assessment of damage.
In [6], to make clear the fundamentals of cloud comput-
ing, the authors explained the features of the areas which
distinguish cloud computing from other research areas.
They mainly compared cloud computing to grid comput-
ing and gave insights to the essentials of both concepts.
The authors in [7] proposed a toolkit which allows the
simulation and modelling of application provisioning
and cloud computing systems. The aim was to achieve
resource performance and application workload models
under different user and system configurations. In [8],
the authors provided a brief but comprehensive overview
into speech bifurcation, both into series and single words
with unrestricted speech, and presented a methodology
which converts vocal signals into text. The authors in [9]
proposed a game theoretic framework for the manage-
ment of dynamic cloud services, including allocation of
resources and assignment of tasks, with the aim of pro-
viding reliable cloud services. The proposed framework
would assist cloud service providers in the management
of their resources in a cloud computing environment.

In [10], the authors presented an algorithm for sched-
uling of tasks that makes use of the standard deviation
of the estimated task execution time on the resources
available in the computing environment. This approach
considers the heterogeneity of the task and significantly
reduces the execution time of a specific application. The
authors in [11] proposed improved versions of algo-
rithms specifically for heterogeneous systems used for
compilation of time list scheduling where the priorities of
the tasks are computed. In [14], the authors examined the
dynamic scheduling of tasks in a multiprocessor system
in order to obtain a viable solution making use of genetic
algorithms integrated with popular heuristics. The exper-
imental results showed that the genetic algorithm can
used for task scheduling to meet deadlines. The authors
in [15] designed a genetic evolution-based algorithm to
find an optimal solution for task scheduling in a multi-
processor system in record time. In [16], the authors pro-
vided a comprehensive overview of genetic algorithms,
its techniques, tools and research results which would
allow the algorithms to be applied to real-world prob-
lems in different fields. The authors in [12] presented
two novel algorithms for heterogeneous processors with

the goal of attaining speedy scheduling time and high
performance. The experimental results revealed that
the proposed algorithms performed better than existing
algorithms in terms of quality and cost of schedules.

In [13], the authors proposed an algorithm for sched-
uling tasks in a multicore processor system which sig-
nificantly decreases the recovery time in case the system
fails. The proposed algorithm is based on a check point-
ing method. The authors in [17] proposed a cutting-edge
duplication-based algorithm to reduce the schedule
makespan and delay of the task execution. The proposed
algorithm schedules tasks with the lowest redundant
duplications. In [18], the authors presented a list sched-
uling algorithm to consider the heterogeneity of com-
munication and computation. They also proposed a
novel approach for priority computation which consid-
ers the difference in performances in the target comput-
ing system making use of variance. The authors in [23]
proposed a ranking algorithm based on the parent–child
relationship and the priority assignment stage of the
HEFT algorithm designed for task scheduling in a mul-
tiprocessor system. The proposed algorithm works on
the keywords’ density, the age of the webpage, and the
amount of node successors.

The problem model
Multiprocessor task scheduling
Previously, various researchers have proposed several
list scheduling procedures to resolve the task schedul-
ing issue. The HEFT algorithm [12] estimates the tasks’
ascendant rank values with the average communication
and computation cost. The Standard Deviation Based
Task Scheduling (SDBATS) [10] uses the standard devi-
ation of transmission and computational expenses to
approximate ascendant rank values. The Critical Path
on a Processor (CPOP) [12] adds the descendant and
ascendant rank values to create an important track and
precedence column. During each stage of the DAG, the
Performance Effective Task Scheduling (PETS) [25]
includes the average computation cost, data transmis-
sion and reception cost to fix the tasks’ rank values. The
Duplication based Heterogeneous Earliest Finish time
(HEFD) [18] uses task variance as a feature of hetero-
geneity to approximate the transmission and computa-
tion costs among tasks. Predict Earliest Finish Time
(PEFT) [24] is created on the look-forward technique,
and approximates the descendent tasks through the cal-
culation of an Optimistic Cost value Table (OCT). The
OCT is a 2D array whose columns and rows indicate the
number of processors and tasks, respectively. Each ele-
ment in the OCT ( ti,pj ) shows the optimum of the short-
est ways of ti offspring tasks to the leaving node, noting

Page 4 of 12Hai et al. Journal of Cloud Computing (2023) 12:15

that machine pj is nominated for task ti . All these algo-
rithm calculations rely on standard deviation or the aver-
age of task weights on accessible machines. They do not
include the framework heterogeneity. The most recent
effort shows how standard deviation includes task and
heterogeneity on existing machines. The various task
scheduling algorithms and their limitations, tools, and
parameters were analyzed in [26, 27].

We believe that the HEFT algorithm’s efficiency can be
improved by using three versions of the basic HEFT algo-
rithm. This paper proposes two schemes of the first stage
(rank calculation), and a different approach for selection
of the empty slot. We examined the schedules makes-
pan generated by each version and regarded the mini-
mum length makespan as the result. Although it slightly
increases the algorithm’s costs, it is a trade-off between
time complexity and performance. Our evaluation illus-
trates that the proposed versions produce high value
schedules in terms of higher efficiency and decreased
schedule length.

The model and objective function
The model of the scheduling structure consists of a
target computation architecture, a submission (appli-
cation), and scheduling standards. A problem can
be indicated as a (DAG) = G (T, E, R, C) (see Fig. 1),
where T = {ti, i = 0, 1, 2, ..., n− 1} is a set of n tasks
[28–30]. Symbol E indicates a set of edges between tasks
E = {ei,j , i < j} , and ei,j represents the precedence limita-
tions between two linked tasks. Tasksti,tj ∈ T, which are
connected to each other, signifying the precedence limi-
tation of task tj being dependent on task ti for its opera-
tion. It illustrates that task ti results will be applied as the
input value for task tj , and tj cannot begin its implemen-
tation beforeti . The task tj is the heir of ti and ti is the pre-
decessor of tj . Here, R signifies a 2D matrix of sizev ×m ,
and rij in R denotes the estimated operating time of vi on
jth processor. A matrix CmC(t × t) represents the com-
munication cost between any two tasks ti andtj . In the
graph below, a task with no ancestor is referred to as an
entry task, and a task that has no descendant is referred
to as an exit (leaving) task.

A cloud framework consists of a set
VM = {vmiwherei = 0, 1, 2,m− 1} of m VMs that
self-regulate and are linked over a high-rate network as
illustrated in Fig. 2. The Data Transfer Frequency (DTF)
may change because of the modified network band-
width of cloud architecture. DTF can be written as an
m×m two-dimensional array, and among any two VMs
asDTFm×m . The Probable Execution Cost (PEC) can
be indicated by an extra 2D array PECn×m to carry
out a task ti on a VM vmj , where 0 <= i <= n− 1 and
0 <= j <= m− 1. The PEC builds on the VM’s speed of
computation and can be different for each VM.

The communication cost between vmx and vmy depends
on two aspects. The first is the processors’ installed fre-
quency on both sides of communications. The second is
the frequency’s correspondence cost value. We assume

Fig. 1  A model DAG

Fig. 2  Task scheduling in a cloud-based framework

Page 5 of 12Hai et al. Journal of Cloud Computing (2023) 12:15 	

that each VM workstation can transmit to other worksta-
tions of a different VM with no conflict on the transmis-
sion channel. We also assume that tasks planned on the
similar VM have no cost of communication among them.

The aim of the task arrangement challenge is to organ-
ize all the tasks of a given submission to machines for the
application’s completion time to reduce, fulfilling all the
precedence limitations.

Methodology
Review of the HEFT algorithm
The HEFT algorithm is designed to schedule the DAG
tasks into heterogeneous processors. The HEFT proce-
dure has two basic stages: the rank generation and the
processor selection stages. In the first stage, HEFT car-
ries out a calculation of ranks for all the tasks and prior-
itizes them according to a descending order of their rank
values. It is initiated by assigning weights to each DAG
node and edge for rank calculation, based on the average
communication and computation cost.

In the second stage, HEFT chooses the tasks based on
their priority values and schedules each nominated task on
the most suitable processor, which can decrease the sched-
ule length of the task. HEFT also arranges the tasks in an
empty slot between two previously planned tasks on a
processor if the precedence constraints are observed. The
HEFT algorithm looks for an empty slot on a processor

until it finds one that can carry the computation cost of the
chosen task.

HEFT procedure makes use of average communication
and computation costs as DAG weights for calculation of
ranks, and selection of processor. The first empty slot is
always considered for the task scheduling. In some cases,
however, the average cost of computation and selection
of the first empty slot may not be a good solution. Con-
sider the sample DAG in Fig. 3. The cost of probable exe-
cution of every task on three different VMs is shown in
Table 1. The edges of the sample DAG are labelled with
the average cost of communication.

Fig. 3  Model task graph (using 10 tasks)

Table 1  Probable Execution Cost (PEC) matrix

Task VM1 VM2 VM3

T1 10 6 9

T2 10 23 23

T3 10 9 7

T4 18 17 18

T5 5 2 23

T6 7 5 16

T7 17 9 17

T8 40 16 19

T9 18 9 8

T10 26 10 24

Page 6 of 12Hai et al. Journal of Cloud Computing (2023) 12:15

In this example, if prioritization of tasks is done using
the average cost of computation of all three VMs (as in
the basic HEFT), then the scheduling order would be
T1,T2,T3,T4,T6,T8,T5,T10,T7,T9, and the schedule
length would be 98. Figure 4 illustrates this. Assume the
assigning of priorities is done using the optimal value of
the cost of computation over the three VMs on which a
task may be executed. In such a situation, the task sched-
uling order would be T1,T2,T3,T4,T6,T8,T5,T10,T9,T7,
and the schedule length would be 96. Figure 5 illustrates
this. This is lesser than the schedule length obtained
by the basic HEFT algorithm. Similarly, if priorities are
assigned using the minimum value of the cost of compu-
tation over the three VMs on which a task may operate,
and then the task scheduling length and order would be
the same as found in the basic HEFT algorithm. This is
illustrated in Fig. 6.

Conversely, if the processor selection stage is altered,
the schedule length obtained may change. Here, the
calculations of ranks are done using the average com-
putation cost value. In the above example, if we choose
an empty slot in which a task has the lowest finish time

instead of the initial slot, the schedule length would go
down to 89 as task T5 is now scheduled on VM2 (22 to
27, see Fig. 7) instead of VM1 (24 to 26 in case of the
basic HEFT, see Fig. 4). We find that the average cost
of computation value for rank calculation and selec-
tion of the first empty slot for scheduling of tasks are
not the best choices. The schedule lengths gotten may
change.

The proposed methodology for cloud environment
We propose the altered versions of the basic HEFT algo-
rithm to acquire improved results for task arrangement
challenges in the cloud environment. Figure 8 illustrates
this. In the first stage (rank generation), we execute a

Fig.4  Scheduling of DAG with original HEFT algorithm. (Use of
Average Computation Cost in Rank Calculation & Schedule length is
98)

Fig.5  Scheduling of DAG with modified HEFT Algorithm. (Use Of
maximum Computation Cost in Rank Calculation & Schedule length
is 96)

Page 7 of 12Hai et al. Journal of Cloud Computing (2023) 12:15 	

distinct methodology, and in the second stage (resource
selection), we alter the mode of selection of empty slots
for task scheduling. These modifications do not incur any
additional cost compared to the basic HEFT algorithm.

The changes we propose in each stage are explained
below.

Rank generation stage
In this stage, each task’s precedence should be decided
with the descendant or ascendant rank value. The formu-
las below calculate the task’s upward rank:

If Task Ti is an exit task, the rank of task Ti is defined by
the Rank Function:

Else,

where wk
i is the computation amount of task Ti on

resource k and 1 ≤ k ≤ n , suc(Ti) is the set of the direct
successors of task Ti and avg(commi,z) is the average
cost of communication between the tasks Ti and Tz .
Here, f represents a function which could be the max-
imum, minimum or average value of the cost of com-
putation. As the rank is calculated recursively from the
exit node, it is referred to as the Upward Rank value.

(1)Rankup(Ti) = f (w1
i , ..w

k
i , ..w

n
i)

(2)
Rankup(Ti) = f (w1

i , ..w
k
i , ..w

n
i)+ max

∀Tz∈suc(Ti)
avg commi,z + Rankup(Tz)

Fig.6  Scheduling of DAG with modified HEFT Algorithm. (Use of
minimum computation cost in rank calculation & schedule length is
98)

Fig.7  Scheduling of DAG with modified HEFT algorithm. (Use Of min
schedule length idle slot in processor selection & Schedule length is
89)

Page 8 of 12Hai et al. Journal of Cloud Computing (2023) 12:15

If Task Ti is an entry task, the rank of Task Ti is
defined by the Rank Function:

Else

where, pre(Ti) is the group of direct predecessor of
Task Ti . After calculating the each task rank, a task list
is created through the arrangement of the tasks accord-
ing to their descending order of Rankup.

The Resource Selection Stage.
In this stage, we propose a novel approach to deter-

mine the empty slot for the selected task. Here, the
search for an appropriate empty slot for a task on a
resource starts when all the ancestors of Task Ti trans-
mit the required input data to that resource. The search
continues until an empty slot which can hold the cost of
computation of Task Ti and in which the selected Task

(3)Rankdw(Ti) = 0

(4)Rankdw(Ti) = max
∀Tz∈pre(Ti)

(avg(commz,i)+ Rankdw(Tz)+ f (w1
i , ..w

k
i , ..w

n
i))

Ti has the lowest finish time is found. In Fig. 8 complete
algorithm of HEFT is presented.

Results and discussion

In this paper, we created a system that complements
the basic HEFT algorithm, and improves the proces-
sor selection and prioritization of task processes. Input
fed into the system includes the cost of communication,
the Probable Execution Cost Matrix, the DAG show-
ing dependencies, and the number of VMs and tasks.
To assess the performance of our algorithm, we gener-
ated varied scheduling problems and attempted to solve
them with the altered versions of the HEFT algorithm,
as well as the basic HEFT algorithm.

We designed an automated system to make scheduling
issues of different sizes. This is done to prevent partiality

Fig. 8  The complete HEFT algorithm

Page 9 of 12Hai et al. Journal of Cloud Computing (2023) 12:15 	

when offering values of different parameters. Our sys-
tem assigns the parameters to random values in suitable
ranges. We created problems for our experiments with
the following features:

•	 Size of the problem (the number of tasks) which
ranges from 50 to 80 with an interval of 5.

•	 The number of each task’s successor with the excep-
tion of the exit task which is an arbitrary number
that ranges from 0 to 10.

Fig. 9  Variations in schedule length obtained from the AVCT approach and MXCT approach

Fig. 10  Variations in schedule length obtained from the AVCT approach and MNCT approach

Table 2  Comparison of AVCT, MXCT and MNCT algorithms

Problem Percentage Approaches Outcomes

33% AVCT Equal Schedule Length

MXCT

MNCT

67% MXCT Vs AVCT 36% Equal Schedule Length

39% MXCT Gives better Schedule Length

25% MXCT Gives worse Schedule Length

MNCT Vs AVCT 27% Equal Schedule Length

40% MNCT Gives better Schedule Length

33% MNCT Gives worse Schedule Length

Page 10 of 12Hai et al. Journal of Cloud Computing (2023) 12:15

•	 The task implementation time, this is an arbitrary
number which ranges from 1 to 20.

•	 The task communication time, this is an arbitrary
number between 1 and 50.

•	 The amount of VMs is considered as either 4 or 5.
•	 In all the DAGs, the tasks’ ranks are calculated using

the upward rank calculation formula.

Investigation on the rank generation stage
To calculate a particular value for the method f in Rank
Function, we use three techniques:

	(i)	 AVCT (Average Computation cost) approach: This
returns the average task cost of computation over
every VM. It is used in the basic HEFT algorithm.

	(ii)	 MXCT (Maximum computation cost) approach:
This returns a maximum task cost of computation
over every VM.

	(iii)	 MNCT (Minimum computation cost) approach:
This returns a minimum task cost of computation
over every VM.

In all the approaches, the first empty slot which
can hold the task cost of computation is studied (as
in the basic HEFT). We operate the basic HEFT algo-
rithm (AVCT approach) and our proposed approaches
(MNCT and MXCT approach) on 100 different prob-
lems with different Problem Identification Numbers
(PIN) 800 to 899 for problem size 80. The experi-
mental results reveal that for 33% of problems, all
the algorithms have equal length of schedule. For the
remaining 67%, the MXCT approach provides equal
length of schedule in 36%, better length of schedule in
39%, and worse length of schedule in 25% of the cases
compared to the AVCT approach. The differences
in the schedule lengths gotten from the AVCT and
MXCT algorithms are illustrated in Fig. 9.

Similarly, for the remaining 67% of the problems, the
MNCT approach provides equal length of schedule
lengths in 27%, better length of schedule in 40%, and

worse schedule lengths in 33% of the cases in comparison
to the AVCT approach. The differences in the schedule
lengths gotten from the AVCT and MNCT algorithms
are illustrated in Fig. 10. Table 2 compares the three
approaches.

From our analysis, we observed that there are note-
worthy differences between the basic HEFT algorithm’s
performance (AVCT approach), and the altered versions
(MNCT and MXCT). We also observed that using an
average value scheme for rank calculation is not always
the best choice.

Investigation on the resource selection stage
We used two approaches to select an empty slot for task
scheduling:

	(i)	 AVCT approach (the basic HEFT algorithm-aver-
age cost of computation and the first empty slot).

	(ii)	 AVBS (average computation cost and best empty
slot) approach: This approach uses the average cost
of computation to calculate the ranks and selects
an empty slot where the selected task has the low-
est finish time.

We took 100 sample problems of each size ranging
from 50 to 80 with an interval of 5. Table 3 shows how
we ran both algorithms on sample problems, and how
the results were analysed. We observed that that AVBS
algorithm has a better performance than the AVCT algo-
rithm. The results from the experiment shows that the
AVBS algorithm has a reduced average length of schedule
in 86% problem sets and slightly greater average schedule
length in 14% problem sets in comparison to the AVCT
algorithm.

Conclusion
In cloud computing, scalable resources are offered as
services to clients through the Internet. Thus, a cloud
service provider has more clients to attend to in the
cloud computing architecture. As a result of this, task

Table 3  Comparison of the AVCT and AVBS algorithms

Problem Size Number of Resources AVCT algorithm (Average of Hundred
problems)

AVBS Algorithm
(Average of hundred
problems)

50 4 425.50 425.14

55 4 457.34 457.32

60 4 491.12 490.94

65 4 548.24 548.26

70 4 574.66 574.18

75 5 623.21 622.02

80 5 665.97 665.61

Page 11 of 12Hai et al. Journal of Cloud Computing (2023) 12:15 	

scheduling is one of the biggest challenges in establish-
ing a functional and efficient cloud computing environ-
ment. In this paper, we proposed different versions of
the heuristic-based algorithm Heterogeneous Earliest
Finish Time (HEFT) which carries out task scheduling
and allocates resources in the cloud computing environ-
ment. On comparison of our proposed approach to other
frameworks in terms of schedule length, we discovered
that our approach performs better. We observed that the
original HEFT algorithm ‘s efficiency can be enhanced by
choosing the best result from each approach ‘s schedules.
Although this may lead to the algorithm having a higher
cost, it is a trade-off between cost and performance. We
may further consider the Nature-inspired optimiza-
tion algorithm-based scheduling for more effective task
scheduling in the cloud environment. The existing work
can be extended for dynamic task scheduling in the
future.

Acknowledgements
This work was supported by UTM Research Fellow (No.00P27), the National
Natural Science Foundation of China (No.61862051), the Science and Technol-
ogy Foundation of Guizhou Province (No.[2019]1299, No.ZK[2022]449), the
Top-notch Talent Program of Guizhou province (No.KY[2018]080), the Natural
Science Foundation of Education of Guizhou province (No.[2019]203) and the
Funds of Qiannan Normal University for Nationalities (No. qnsy2019rc09). The
Educational Department of Guizhou under Grant NO. KY[2019]067.

Authors’ contributions
Conceptualization by Tao Hai, Dan Wang; Methodology by Dayang Jawawi;
Software by Jincheng Zhou; formal analysis by Dawang Jawani and Uzoma
Oduah investigation by Tao Hai and Dan Wang; Resources and data collection
by Jincheng Zhou, Cresantus Biamba; Writing by: Dan Wang, Sanjiv Kumar
Jain and Tao Hai; Validation by: Uzoma Oduah, Sanjiv Kumar Jain and Jincheng
Zhou; Funding Acquisition by Cresantus Biamba. The author(s) read and
approved the final manuscript.

Funding
The project was supported by the Department of Culture Studies, Religious
Studies and Educational Sciences, University of Gävle, Gävle, Sweden.

Availability of data and materials
The supporting data can be provided on request.

Declarations

Ethics approval and consent to participate
The research has consent for Ethical Approval and Consent to participate.

Consent for publication
Consent has been granted by all authors and there is no conflict.

Competing interests
There are no competing interests.

Received: 30 August 2022 Accepted: 18 September 2022

References
	1.	 Zomaya AY (1996) Parallel and Distributed Computing Handbook.

McGraw-Hill, New York

	2.	 Buyya R, Yeo CS, Venugopal S, Broberg J, Brandic I (2009) Cloud comput-
ing and emerging it platforms: Vision, hype, and reality for delivering
computing as the 5th utility. Future Generation Comp Syst 25(6):599–616

	3.	 N. Tziritas, S. U. Khan, C.-Z. Xu, and J. Hong, (2012)“An optimal fully
distributed algorithm to minimize the resource consumption of cloud
applications,” CoRR, vol. abs/1206.6207, .

	4.	 Mr. Prince Gupta, Dr. Rajeev Sharma, Dr. Sachi Gupta, (2021) “Resource
Management, Issues, Challenges and Future Directions in Fog Comput-
ing: A Comprehensive Survey”, Published in Design Engineering, ISSN:
0011–9342, , Issue: 7, Pages: 14580–14593.

	5.	 J. Li, Q. Li, S. Khan, and N. Ghani, (2011) “Community-based cloud for
emergency management,” in Proc. SoSE, .

	6.	 Hashemi SM, Bardsiri AK (2012) Cloud computing vs. grid computing.
ARPN J Syst Softw 2:188–194

	7.	 Calheiros RN, Ranjan R, Beloglazov A, De Rose CAF, Buyya R (2011)
Cloudsim: A toolkit for modelling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms. Softw
Pract Exper 41(1):23–50

	8.	 Gaurav Agarwal, Dr. Vikas Maheshkar, Dr. Sushila Maheshkar, Dr. Sachi
Gupta, (2018) “Vocal Mood Recognition: Text Dependent Sequential and
Parallel Approach”, Published in International Conference on Signals,
Machines and Automation (SIGMA’18), February 23–25, .

	9.	 Shin KS, Park M-J, Jung J-Y (2014) Dynamic task assignment and resource
management in cloud services by using bargaining solution. Concurr
Comput Pract Exp 26(7):1432–1452

	10.	 E. U. Munir, S. Mohsin, A. Hussain, M.W. Nisar, and S. Ali, (2013) “SDBATS:
A novel algorithm for task scheduling in heterogeneous computing
systems.” in Proc. IEEE IPDPS Workshops (IPDPSW).

	11.	 Andrei Radulescu and Arjan J. C. van Gemund. (2000) Fast and effective
task scheduling in Heterogeneous system. Proceedings of the 9th Het-
erogeneous Computing Workshop.

	12.	 Topcuouglu H, Hariri S, Wu M-Y (2002) Performance-effective and low-
complexity task scheduling for heterogeneous computing. IEEE Trans
Parallel Distributed Syst 13(3):260–274

	13.	 S. Gotoda, M. Ito, and N. Shibata, (2012) “Task scheduling algorithm for
multi-core processor system for minimizing recovery time in case of
single node fault.” in Proc. IEEE CCGRID, pp. 260–267.

	14.	 Sachi Gupta, Vikas Mittal and Gaurav Agarwal, “Task Scheduling in
Multiprocessor System Using Genetic Algorithm”, in Proceedings of 2nd
International Conference on Machine Learning and Computing (ICMLC-
2010), ISBN: 9780769539775.

	15.	 Sachi Gupta, Gaurav Agarwal and Vikas Mittal, (2013) “An Efficient and
robust Genetic Algorithm for Multiprocessor Scheduling”, in International
Journal of Computer Theory and Engineering (IJCTE), Vol. 5, No.2, ISSN:
1793–8201.

	16.	 Goldberg DC (1989) Genetic Algorithms in Search. Wesley publishing,
Optimization and Machine Learning. Add

	17.	 Jing Mei KL, Li K (2014) A resource-aware scheduling algorithm with
reduced task duplication on heterogeneous computing systems. J Super-
computer 68(3):1347–1377

	18.	 Tang X, Li K, Liao G, Li R (2010) List scheduling with duplication for
heterogeneous computing systems. J Parallel Distributed Computing
70(4):323–329

	19.	 Cirou B, Jeannot E (2001) Triplet. A clustering scheduling algorithm for
heterogeneous systems. In proceedings of International Conference on
Parallel Processing Workshop

	20.	 Fiore U, Palmieri F, Castiglione A, De Santis A (2014) A cluster-based data-
centric model for network-aware task scheduling in distributed systems.
Int J Parallel Program 42(5):755–775

	21.	 Gaurav Agarwal, Sachi Gupta, Praful Saxena and Saurabh Mukherjee,
“Web Graph Based Ranking Algorithm for Search Engines”, in Proceedings
of International Conference on Network Communication and Computer
(ICNCC-2011), ISBN: 9781424495504.

	22.	 Sachi Gupta, Saurabh Mukherjee and Gaurav Agarwal, “List Schedul-
ing Heuristic: Efficient Prioritization and Processor Selection Schemes
for Heft Algorithm”, in Proceedings of International Conference on
Industrial Applications of Soft Computing Techniques (IIASCT-2011), ISBN:
9789381361221.

	23.	 Gaurav Agarwal, Sachi Gupta and Saurabh Mukherjee, “Web Graph Based
Search by Using Density of Keywords and Age Factor”, in Proceedings of

Page 12 of 12Hai et al. Journal of Cloud Computing (2023) 12:15

International Conference on Computer Science and Information Technol-
ogy (ICCSIT-2012), ISBN: 9789381693766.

	24.	 Arabnejad H, Barbosa J (2013) List Scheduling Algorithm for Heterogene-
ous Systems by an Optimistic Cost Table. Parallel and Distributed Systems,
IEEE Transactions on 25(3):682–694

	25.	 E. Ilavarasan, P. Thambidurai, and R. Mahilmannan, (2005) “Performance
effective task scheduling algorithm for heterogeneous computing
system.” in Proc. ISPDC. IEEE Computer Society pp. 28–38.

	26.	 Fard HM, Prodan R, Fahringer T (2014) Multi-objective list scheduling of
workflow applications in distributed computing infrastructures. J Parallel
Distributed Comp 74(3):2152–2165

	27.	 Fard HM, Prodan R, Barrionuevo JJD, Fahringer T (2012) "A Multi-objective
Approach for Workflow Scheduling in Heterogeneous Environments,"
2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (ccgrid 2012), Ottawa, ON, Canada, pp. 300-309. https://​doi.​
org/​10.​1109/​CCGrid.​2012.​114

	28.	 Dai Y, Zhang X (2014) A Synthesized Heuristic Task Scheduling Algorithm.
Scientific World J 2014:9

	29.	 Ali S, Siegel HJ, Maheswaran M, Hensgen DA, Ali S (2000) “Task execution
time modelling for heterogeneous computing systems.” in Heterogene-
ous Computing Workshop. pp 185–199

	30.	 Agarwal G, Om H (2021) Parallel training models of deep belief network
using MapReduce for the classifications of emotions. Int J Syst Assur Eng
Manag. https://​doi.​org/​10.​1007/​s13198-​021-​01394-3

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1109/CCGrid.2012.114
https://doi.org/10.1109/CCGrid.2012.114
https://doi.org/10.1007/s13198-021-01394-3

	Task scheduling in cloud environment: optimization, security prioritization and processor selection schemes
	Abstract
	Introduction
	Literature review
	The problem model
	Multiprocessor task scheduling
	The model and objective function

	Methodology
	Review of the HEFT algorithm
	The proposed methodology for cloud environment
	Rank generation stage

	Results and discussion
	Investigation on the rank generation stage
	Investigation on the resource selection stage

	Conclusion
	Acknowledgements
	References

