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Abstract

Execution tracing

The growth of the Internet of things (IoT) has ushered in a new area of inter-connectivity and innovation in the home.
Many devices, once separate, can now be interacted with remotely, improving efficiency and organization. This,
however, comes at the cost of rising security vulnerabilities. Vendors are competing to create and release quickly
innovative connected objects, without focusing on the security issues. As a consequence, attacks involving smart
devices, or targeting them, are proliferating, creating threats to user’s privacy and even their physical security.
Additionally, the heterogeneous technologies involved in loT make attempts to develop protection on smart devices
much harder. Most of the intrusion detection systems developed for those platforms are based on network activity.
However, on many systems, intrusions cannot easily or reliably be detected from network traces. We propose a novel
host-based automated framework for intrusion detection. Our work combines user space and kernel space
information and machine learning techniques to detect various kinds of intrusions in smart devices. Our solution use
tracing techniques to automatically get devices behavior, process this data into numeric arrays to train several
machine learning algorithms, and raise alerts whenever an intrusion is found. We implemented several machine
learning algorithms, including deep learning ones, to achieve high detection capabilities, while adding little overhead
on the monitored devices. We tested our solution within a realistic home automation system with actual threats.

Keywords: Host-based intrusion detection system, Internet of things, Anomaly detection, Machine learning,

Introduction

Cisco estimates approximately 50 billion smart devices
connected to the Internet in 2020, or 6.58 things per
inhabitant [1]. This refers to the connection of various
embedded devices such as sensors, actuators, and vehi-
cles able to interact with each other [2]. While this growth
induces the production of innovative objects, like con-
nected speakers able to respond to a verbal request or
order products, it creates a huge security threat for con-
sumers and companies, as attackers can gain access to
devices within a home or office. In the race to develop
innovative and profitable technology, security concerns
are often secondary. The targeting of insecure devices
can have far-reaching consequences, like the Mirai botnet
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infecting poorly secured devices, using a default password,
to launch one of the most powerful DDoS campaigns
ever seen in 2016 [3] against the Dyn DNS server. This
cyber-attack succeeded in making unreachable for many
hours some of the most popular websites on the Amer-
ican west coast. Most of the time, these devices have
limited resources, and there is a huge heterogeneity in the
connected device software, including the operating sys-
tem, and the network protocols. For those reasons, the
security community keeps raising alarms on the vulnera-
bility of IoT devices, as did OWASP with its TOP 10 IoT
vulnerability list [4].

To improve the security of IoT devices, some work
has been done to detect intrusions on smart devices.
ZarpelAco et al. [5] highlighted the need to install host-
based intrusion detection systems (HIDS) since they can
monitor more information about the connected device,
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and therefore can help to detect attacks that could not
be identified with network information. Furthermore, the
author explains that traditional HIDS are not effective for
IoT. All of the intrusion detection systems (IDS) presented
in this article are network-based, while we could only find
a few host-based intrusion detection systems for IoT.

Many host-based solutions have been developed for tra-
ditional systems such as OSSEC [6] or Sagan [7], which
provide multi-level monitoring of systems, with alerts cor-
relation or active response. In addition, work by that of
Bezerra et al. [8] and Breitenbacher et al. [9] are able to
offer lightweight solutions for intruder detection while
maintaining a high degree of accuracy. However, even
if those solutions can be lightweight, for instance when
using the OSSEC agent, the limited resources of smart
devices cannot let those tools process the collected pieces
of information directly on the device. Moreover, those
tools may not be compatible with smart objects hardware
such as ARM CPUs. As a consequence, those solutions
cannot detect intrusions, based on host information on
smart devices. Our goals are therefore to determine if a
lightweight and efficient HIDS for smart home devices can
be developed and to study how machine learning algo-
rithms could be used with tracing data to achieve good
detection capabilities.

In this paper, we propose a complete framework for
the dynamic automated analysis of IoT. We collect multi-
level information on the monitored devices, with tracing
techniques, and stream this data to an analysis engine,
either located on a device inside the network system, on
a dedicated machine inside the home, or in the cloud.
The analysis engine can use several machine learning
algorithms to detect anomalies on device behavior. Then,
when appropriate, alerts are raised by the analysis system
with the name of the device and the kind of threat that has
been detected.

We have several contributions within this article. First,
we provide a complete tracing architecture where a user
only has to specify what tracepoints (s)he wants to moni-
tor and how often (s)he wants to receive this information.
Our solution then activates tools that will send snap-
shots of the trace events at the user-specified interval.
Then, we provide an automatic tool for trace analysis,
which can extract features from events and process them
to become usable with open-sourced machine learning
libraries. We also developed a convenient way to label
each event. Finally, we optimized and compared several
machine learning, and deep learning algorithms to get the
best detection capabilities.

The paper is structured as followed: “Related work”
discusses the proposed works about intrusion detec-
tion, smart homes and tracing that have been proposed.
“Proposed solution” focuses on the solution proposed,
with the framework architecture and a detailed review
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of each of its components. In “Use case’, we explain our
experimental set-up and the proposed implementation.
“Evaluation”  sections highlights and discusses some
results about the efficiency and the overhead introduced
by our solution. Finally, “Conclusion and future work”
section concludes on the whole framework developed.

Related work

Smart home and associated threats

We will refer to a smart home as a residence where smart
devices such as sensors and actuators are connected to
provide monitoring and/or new entertainment capabili-
ties to its inhabitants. The typical architecture of such
a residence is described in Fig. 1, where all the smart
devices are part of the IoT Network, managed by a home
controller that is the gateway with other Internet-based
devices. This device is responsible to link the Z-Wave or
the ZigBee network to the traditional IP network. Some
authors like Cheng et al. [10] distinguished the IoT net-
works according to the network protocol used by the
devices or according to the primary purpose of the device
(e.g., healthcare, entertainment or surveillance). However,
even with the supporting infrastructure, the devices often
rely on a home controller as a gateway to the traditional
network.

Whether it is for personal comfort, with the possibil-
ity to manage the electricity consumption more efficiently,
or for healthcare, Gubbi [11] explains that homes will be
the first area where connected devices will be deployed,
before entering companies and more large-scale deploy-
ments. However, the article highlights that the security
of such devices and networks is a crucial challenge, both
at the device scale, with software and protocols, and at
the cloud scale, with data protection for privacy and iden-
tity management. The work of Hui et al. [12] comes
to the same conclusion regarding security and privacy.
They are important challenges to achieve consumer adop-
tion of smart homes. Moreover, the author identifies
different threats, such as personal data theft like pho-
tos, videos, and documents, or the spying on personal
habits that could be revealed to third parties. Moreover,
smart devices are usually produced in large quantities,
and vulnerabilities are often found after their release. One
of the major issues is that those devices are often not
updated, and if available the update process should be
secured [13].

As smart devices are more widespread over homes,
attackers are increasingly targeting such devices. The
Mirai attack involved more than 200,000 infected devices
[14]. Saxena et al. [15] focuses on several attacks that
strike smart devices, while Sikder et al. [16] highlights the
threats on sensors inside such a network. While Babar et
al. [17] proposed a taxonomy for IoT attacks, we decided
to summarize the main ideas from those article as follow :
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e Data exfiltration: either eavesdropping on private life,
information theft, or inference, the attacker’s goal is
to obtain some confidential pieces of information
that (s)he could benefit from;

e Data alteration: this may be achieved via the injection
of false data or command to some device, via a replay
or person-in-the-middle attack. The attacker’s goal
here is to change a systems behavior in order to abuse
it.

e Denial of service: the intrusion’s purpose is to make a
system unreachable for the user. The target system
can be a smart device that the intruder will infect, like
the Brickerbot malware [18] which bricks the device
by wiping its files and corrupting its memory.
Alternatively, the attacker’s target may be a remote
system. This was the case for the infamous Mirai
botnet, responsible for the largest DDoS attack at the
time, on remote servers such as OVH and DYN DNS
[19].

e Intrusion inside a network: connected devices,
especially home controllers, may be used to enter a
traditional network and then allow the attacker to
bypass some security protections such as an external
firewall.

e Physical security: smart devices could threaten its
user physical security. For instance, if an intruder can
control a connected oven and a smart gas valve, (s)he
might be able to make the oven explode and therefore
hurt objects and persons around. Furthermore, with
connected pacemakers which are proved to be
vulnerable, or connected cars being remotely
controlled, the threats associated with cyber-physical
systems are rising.

Intrusion detection in loT context

Intrusion detection system

A distinction is made between network-based IDS (NIDS)
and host-based IDS (HIDS), as explained by Sabahi et
al. [20], even if some work has been done using both
approaches with a hybrid IDS. However, the author high-
lighted that regardless of the type of data collected, the
detection can be obtained with two techniques: misuse
detection or anomaly detection. The first type of detec-
tion relies on an expert system, which can be based on the
known threats signature, with rules about the collected
data or on state transitions in the system, while the sec-
ond monitors the system behavior to detect anomalies and
therefore potential intrusions. Both methods have ben-
efits, with misuse detection being accurate and working
well on known threats, according to ZarpelAco et al. [5],
but being unable to detect new attacks, unlike anomaly
detection. However, anomaly detection requires to char-
acterize and identify the normal behavior of the system,
which can be difficult to achieve.

Intrusion detection systems have been studied for a long
time, however, as highlighted by ZarpelAco et al. [5], tradi-
tional IDS failed at protecting connected device for three
main reasons: the devices have limited resources, often
insufficient to run a traditional agent, smart devices usu-
ally work under a mesh network where they can forward
packets while being an endpoint, and there is considerable
heterogeneity in the technologies and network protocols
used in IoT. Furthermore, little work has been done with
HIDS, as ZarpelA¢o et al. [5] only studied NIDS. However,
Nobakht developed a whole framework to deploy a host-
based intrusion detection system on software-defined
networks (SDN) [21], but the researcher still relies on net-
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work information to detect intrusions. Moreover, SDNs
are not yet deployed in homes, which makes this solution
inconvenient for now.

While tracing has been used for a long time to detect
intrusions, especially system anomalies, either in tradi-
tional or embedded systems [22], Eskandari et al. [23]
explained that intrusions can be detected via tracing from
incoherent events (for instance, the execution of /bin/bash
on systems that are not supposed to) or from sequences of
events that are unusual.

Anomaly detection

Chandola et al. [24] defined anomaly detection as a set of
techniques that aim at finding data that does not match
the expected behavior. According to the author, this prob-
lem can occur in many fields, including fraud detection,
fault detection, and intrusion detection. Furthermore, the
article highlights several techniques that have been used
for years to find anomalies, including classification, clus-
tering, and statistics.

Murtaza et al. [25] provide several examples of tracing
to detect anomalies in software. In doing this they high-
lighted the need to use kernel traces with classification
techniques to improve the accuracy of anomaly detection.
Other work has been proposed to combine tracing events
and anomaly detection, such as another work by Mur-
taza et al. [26] in a paper where he and his co-authors
compared three anomaly detection techniques that only
rely on syscalls to detect intrusions. They used three dif-
ferent machine learning algorithms, but without studying
the overhead introduced by their solution or trying more
recent deep neural network techniques.

It is very important to distinguish classification, cluster-
ing, and statistics when it comes to detecting anomalies
on a system.

e C(lassification aims at associating a class to each input
element fed to the algorithm. For instance, when
focusing on intrusion detection, one may want to
know if the input is an intrusion or belongs to the
normal system behavior. One may also want to detect
if this is a network intrusion or a software intrusion.
Classification can be achieved for each input event or
for the sequence of input data. When focusing on
each input, one might consider using machine
learning algorithms, like those explained later in the
article. When focusing on sequences, Chandola et al.
[27] distinguished three categories of techniques:
kernel-based techniques, window-based technique,
and Markovian techniques (including Hidden
Markov Models). In the field of Machine Learning,
this is an example of supervised learning techniques.

® Clustering aims to find some relations between input
data to create groups of elements. For instance, while
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tracing a system, a user could obtain network events,
syscall events, and scheduler events. It is very likely
that network events look similar, quite different from
syscall events. In that case, clustering could be used
to automatically split the input data into three sets:
network events, syscall events, and scheduler events.
Several techniques have been studied, and Jain
distinguished hierarchical algorithms, partitional
algorithms, and some other techniques [28]. The user
may not know how many different groups should be
used to split the data. Those techniques belong to the
second category, unsupervised Machine Learning.

e Statistics could be used to detect anomalies if the user
has a good knowledge of the system behavior and can
easily quantify this behavior with figures. For
instance, when the goal is to know whether there is
an anomaly on a machine, one can monitor some
metrics such as the CPU usage, the network latency,
or the memory usage. When detecting that one of
those metrics is above an arbitrary threshold, one can
assume there is an anomaly on the system.

Tracing and debugging embedded device

Several techniques can be used to collect data about a
system, such as tracing, debugging, or profiling. Trac-
ing is a set of techniques that can provide a user with
detailed information on a system, either hardware or soft-
ware. Tracing is different from profiling, as detailed in
[29]. While profiling aims at getting general statistics on
a system, tracing gets a precise and timestamped log of
the system execution when an event occurs. Therefore,
tracing can be used to investigate short duration episodes,
while profiling only detects changes that affect the system
for a longer period of time. Tracepoints are small pieces
of code for collecting information, that are available in
instrumented kernels, such as the Linux kernel, or can be
added in software. When the runtime hits a tracepoint,
the tracer is called, and will record an event which con-
tains information about the state of the system at the time
the tracepoint was hit.

Several tracers exist with different functionality. One
of the most effective for Linux systems is LTTng [30],
which can trace both user space and kernel space [31].
This tool can help users to get detailed information about
a system. It is very flexible, the user can choose which
tracepoints (s)he wants to monitor and produce a list of
accurate timestamped events in a binary format called
CTF (Common Trace Format). In addition, Desnoyers et
al. explained how easy it was to port LT Tng to new embed-
ded architectures [32]. The main requirement for using
LTTng is to have a Linux system, which is the case for
most smart devices. Nonetheless, some tracers such as
Barectf can be run on bare-metal systems [33]. This tracer
has the advantage of producing CTF traces, and Bertauld
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explained how it is possible to correlate Barectf traces
and LTTng ones [34]. With these tools, it is possible to
efficiently trace most 10T devices.

Proposed solution

Architecture

To achieve the best intrusion detection, according to met-
rics that are specified later in the article, we propose
a whole infrastructure, whose architecture is shown in
Fig. 2. It is composed of several sensors and actuators
and an analysis system. The smart devices are running the
tracer, while the analysis device aggregates the collected
traces from devices, to detect anomalies and raise an
alert when an intrusion is found. In addition, the analysis
engine can be used to automatically correlate raised alerts
and take action to prevent the intrusion. According to the
definition of ZarpelAco et al. [5], this host-based intrusion
detection system has a hybrid placement strategy, which
enables us to use powerful analysis techniques to monitor
various devices, while introducing very little overhead on
each device. This architecture can be quickly integrated
into a home automation system, since it only requires the
use of a tracer on the monitored devices, and the use of
an analysis system that can run Python. The analysis sys-
tem can be another device or a server (inside the home
or in the cloud). The heart of the solution is the analysis
engine, which is composed of four main components: the
trace aggregation engine, the data processing engine, the
automated analysis engine, and the alert raising engine.

Trace collection
We rely on traces to detect intrusions. For more preci-
sion, we get multi-level information from the monitored
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systems, such as kernel-space and user-space data, hard-
ware information, and even network input. Furthermore,
our tracer imparts minimal overhead, which is a major
requirement for working in the IoT field. For a Linux-
based smart device, the kernel is already instrumented
(since version 2.6.32), and several powerful tracers are
available. However, for devices running custom firmware,
or for bare-metal systems, tracing can be done via barectf,
a minimal tracer that is easy to port to such environments
but that produces compatible traces in the Common Trace
Format (CTF). Consequently, since our HIDS only relies
on tracing information, it could detect intrusions in most
of the connected devices.

The LTTng tracer is known for its very low overhead
[26]. Moreover, it provides detailed information on the
systems, thanks to the huge number of tracepoints avail-
able in the Linux kernel. It can quickly send trace data
through the network in an optimized binary format called
CTFE. It is easy to enable or disable tracepoints. In recent
LT Tng releases, one can even apply filters to tracepoints,
in order to only trace some events in specific interesting
cases, optimizing the trace size. This enables the user to
have a precise control over data collected from the system.
In addition, LTTng is able to get multi-level information
on the system, such as syscalls, scheduler events, user-
space events, network events, and some hardware infor-
mation, which helps to detect intrusions by monitoring
the whole system.

Furthermore, LTTng can collect data through two
modes: live monitoring, where the tracer sends trace data
to a remote server while it is being collected, or snapshot
mode, where the tracer sends a snapshot of the current
content of the trace buffer. Our solution can work with
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either of those two modes, but many devices such as
sensors usually send information at regular intervals, not
continuously. For instance, this can be the case with a
light sensor, sending measurements of the room luminos-
ity twice a second. This explains why we decided to use
snapshot recording, since it is more suitable for sensors or
actuators that only open communications at a certain fre-
quency. Nonetheless, the proposed solution can be used
with the live mode as well.

To simplify trace collection, we developed a tool able to
generate an activation file from a configuration file. The
activation file collects the specified events on the traced
device and sends snapshots through an SSH tunnel to the
analysis system, based on a user-specified frequency. This
enables adapting for each device the information we want
to collect. This allows us to optimize the intrusion detec-
tion in that device, as we can avoid collecting irrelevant
information and thus reduce resource usage (bandwidth,
cpu). The flexibility of our tool, and of the LTTng tracer,
can easily accommodate every connected home device
that runs a Linux-based kernel. Our tool on the analy-
sis system can in parallel receive snapshots from devices
and perform the intrusion detection analysis, in order to
detect intrusions as quickly as possible.

Data processing
The next step is to be able to feed machine learning
algorithms, expecting vectors of metrics as input, with
our collected binary CTF traces. The process of extract-
ing numerical data for use in machine learning is known
as representation learning, as explained by Bengio et al.
[35]. For this purpose, we developed a complete toolchain
(shown in Fig. 3) that extracts features from CTF trace
events, merges some features and creates others, and
finally converts string values to numeric ones.

To be able to read CTF traces and extract the fea-
tures, we rely on the Babeltrace API, an open-source tool
developed by the same group that produced LT Tng. This
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software can convert binary CTF traces to Python dic-
tionaries containing the event fields. Those will become
features for the analysis algorithm, and other information
such as statistics about the consumption of the device
resources. Some information like the process identifiers
(PID) are already numerical, others like the filename in an
open syscall must be converted to a numerical identifier.
We then have to select the fields that are used to detect
intrusions and remove the others, to get a manageable
dimensionality for our arrays. This is mandatory for most
of the analysis algorithms. Indeed, the curse of dimension-
ality is a well-known machine learning issue that has to be
taken into account when training a model.

The next step is to process extracted data from sensors,
as explained by Chandola et al. [24]. To that extent, we
need to improve upon our raw events, so that they contain
relevant information, useful for the analysis engine. Con-
sequently, we created a layer of abstraction by merging
some events, such as entry_syscall_X and exit_syscall_X
with a finite state machine (FSM), as proposed by Ezatti-
Jivan et al. [36], that can synthesize the information of two
events into one and therefore enhance the detection. A
user can quickly create new synthetic events with other
FSMs, either by adding some short sections of code in
the processing source code or via a configuration file. In
addition, we also created new features in this step, like
the duration of the event, based on the beginning and
the end timestamps recorded by the tracer, or the cur-
rent process name associated with the event, which can
be retrieved by following the execution flow from the
scheduling events. As a result, we obtain many categor-
ical and non-categorical features that are used to detect
intrusions on the device.

Thereafter, a one-hot encoder is used to convert the
string values into numerical identifiers. One-hot encod-
ing is a well-used step in data processing, as shown in
Fig. 2 of Springenberg et al. [37]. For instance, since the
filename feature contained originally the filename string
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of the associated event, {filename : X}, we have to convert
that string into a binary value that the algorithm can pro-
cess, in this case, is_X. It will get the value 1 if the event is
associated with filename X and 0 otherwise. This has the
cost of significantly increasing the dimensionality of the
array representing the collected events, but this informa-
tion is crucial for the intrusion detection part. At the end
of this step, we have an array which only contains cate-
gorical values, which can then feed the machine learning
algorithm.
The resulting features are detailed in Table 1

Automated analysis
The final step is to use the collected trace data to automat-
ically detect intrusions on the device. For this, one must
know the normal behavior of the connected device to be
able to analyze a different behavior. While it might be easy
to know the standard behavior of a device, either from
the vendor or by manually checking the device behavior,
it can require a lot of time and a deep knowledge about
the device operation. Therefore, we propose an automated
solution that may be efficient with a wide range of devices.
This is possible with the use of machine learning tech-
niques, learning the difference between a benign behavior
and an Intrusion. Furthermore, it can be very complicated
to manually define the rules characterizing a standard
behavior, while machine learning will learn by itself the
boundary between good behavior and intrusions, even in
some sophisticated attacks where the attacker can mimic
the standard system behavior [38].

However, machine learning can require more work than
specifying some intrusion detection rules. Indeed, any
machine learning algorithm has to be fed with enough

Table 1 Post processing feature list

Feature Type  Description

filename string  Filename manipulated by the syscall
source_port int Port of the source network packet
dest_port int Port of the destination network packet
p_name string  Name of the process that created the event
protocol int Value representing the used network protocol
parent_comm  string  Parent’s process name

child_comm string  Children’s process name

pathname string  Pathname manipulated by the syscall

ret int Value of return of the syscall

saddr string  Address of the source network packet
daddr string  Address of the destination network packet
d_timestamp int Event duration

a_nomeEvent string Event name
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high-quality data to ensure accurate detection. The super-
vised learning algorithms also need the output classifica-
tion of the training data to be able to learn what behavior
is good or not. Consequently, we developed a tool able
to create a data-set and automatically label it. This is
done by tracing the device during two phases: first trac-
ing the device in normal activity, then tracing the device
under attack. The collected traces of the first step are
then processed as described in the last paragraph, and the
information about the events are stored in a database. This
includes the network addresses and the ports used, the
name of the process that generated the event, the filename
associated with an event, and more. The information
stored in the database is precise enough to perform the
detection at the event scale. Indeed, if the Home Assis-
tant software has to access file /etc/passwd as part of the
controller normal behavior, then the information will indi-
cate that the Home Assistant process has accessed this file,
with the return value of this operation and its duration.

In the second phase, we collected traces of the device
while subjected to attacks. To label the generated traces,
we process the recorded events and then check for each
event if its information is contained in the database of nor-
mal behavior. If so, we label the event as part of the good
behavior. If not, we label it as an intrusion. We then store
the processed event and the label in a CSV file, which will
be the input for our algorithm. Thus, if an attack during
this phase reads the /etc/passwd file from a bash script,
this will not be found in the database of good behavior,
since this file is not accessed in this way during normal
operation. As a conclusion, the collected information is
sufficiently large to distinguish between similar events in
the normal and the intrusion case.

Once the dataset is generated, we can use differ-
ent machine learning algorithms to find the boundary
between the normal behavior and an intrusion. With this
pre-processing, the events are suitable for feeding to many
machine learning algorithms, including those of the popu-
lar open-source libraries Scikit-learn and Keras. Once our
models have been trained with the dataset, we can trace
the device again and give the collected processed events
to the models. They can then detect attempted intrusions
on the device.

Alert raising
The final stage of the analysis engine is to raise an alert
whenever an anomaly is found, with information about
the suspicious event. This is achieved with the display of
an alert message on the analysis system. In operation, such
an alert would normally be fed to a monitoring system.
Although it has not yet been implemented, the alert
engine could correlate the events associated with an
intrusion to take actions to stop the intrusion. In the
Mirai botnet case, once the alert has been raised, the
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analysis system could shut down the infected device and
restart it, removing the injected piece of malware. It could
also recognize the Mirai infection pattern and alert the
user to change the device’s passwords to prevent another
infection.

Use case

Attacks

To train our model, we decided to use real threats that
IoT face today on our home assistant controller. As shown
by Homoliak et al. [39], Obfuscation of TCP communica-
tion can reduce the chance of detection significantly. It is
important that any security system is trained on a variety
of intrusion attempts that actively attempt to hide their
presence. We thus implemented a Mirai like infection, a
scan of the IoT network, a Hail Mary attempt with Metas-
ploit [40], a directory listing and a vulnerability scanning
on the controller web interface, a basic ransomware, and
a spying tool. Those attacks are described in the next
paragraphs.

First, we set up the Mirai botnet using its source code on
GitHub, and we studied the traces that have been gener-
ated by this infection. Infected Mirai devices try to brute
force other devices passwords with a list of default fac-
tory passwords. If it succeeds, it then downloads via the
busybox wget command a malware from the C&C server,
changes its name on the device, does a chmod, and then
runs it. For this reason, because we only wanted to trace
the infection part, to be detected by our IDS, we imple-
mented this attack with a modified malware that would
just echo “Infected” on the device, once the malware
process is created.

The second intrusion was a nmap scan to discover other
devices on the traditional TCP/IP network. Indeed, when-
ever an attacker wants to exploit a network, (s)he first has
to survey the network to find potential targets. This is usu-
ally done with a network scan via the nmap tool. To be
efficient against hacking attempts, our solution has to be
able to detect such network activity when it comes from a
monitored device.

Then, we used Metasploit [40] to launch several exploits
on our target. In a Hail Mary attack, the intruder attempts
a variety of common attacks that (s)he believes may suc-
ceed. This is not subtle, however it is often effective
against unprotected and un-patched systems. Since we
patched the system with the latest security fixes and used
up-to-date software, the Hail Mary process did not man-
age to exploit our controller. Nonetheless, the traces left
by this attempt can then be used with our models, which
will then be able to detect such attempts.

Then, we used two attacks against the web interface
of the device. As OWASP highlighted in its Top 10 IoT
Vulnerabilities [4], it was the major attack vector: a direc-
tory listing done with the DirBuster tool with its standard
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wordlist, and a vulnerability scanning with Nikto that did
not find any vulnerability.

A ransomware [41] attack is the act of encrypting files
on the target’s system in order to deny access until a
ransom is paid. In our case we used a ransomware that
encrypts all the files in a specified directory with AES
256 ECB mode. We only traced the exploitation phase, i.e.
the encryption phase. This mimics the behavior of other
ransomware such as Brickerbot [18] that heavily targeted
smart devices last year.

Finally, we developed a spying tool that records all
the information sent to the home assistant controller via
its API and resends that information to another server
through the Internet. It is a specific malware that targets
this device, and it does not change the device behavior
much, unlike to the other intrusions.

Resulting dataset

As described earlier, we first traced the system while only
issuing standard actions. We switched on a light via a
Z-Wave command, powered on a smart plug with the
controller web panel, activated a motion sensor so that
a notification was sent to a remote smartphone and lap-
top,... Our home automation system is only composed of
affordable devices that are described in the next section.

We traced the controller for one hour with a snapshot
sent every 30 seconds, except the specific test where we
took a snapshot of the controller every second. We then
processed the recorded snapshot as described earlier, and
created our events database. To reduce the risk of getting
an imbalanced dataset, we removed several instances of
events that were too frequent in our snapshots. Under-
sampling the dataset is a common practice in machine
learning when dealing with an imbalanced dataset, as
explained in Kotsiantis et al. [42], but several other meth-
ods exist, as highlighted in the article. As explained by
Pendelberry et al. [43], intrusion detection is naturally
imbalanced (benign events are far more common than
malign ones) and therefore undersampling can introduce
bias on naturally imbalanced data sets. However, it also
improves the performance of classifiers, as shown by Rani
et al. [44], thus resulting in overall greater accuracy.

The second tracing phase was with the device under
attack. We took a snapshot of the trace buffers at
every second to record every event associated with each
attack. To label those events, we compared each with
our database. Whenever the information of the event is
already in the database, we remove the event. The events
that do not match the database are labeled as intrusions.

For both tracing parts, we used several tracepoints,
including syscall, network queue event, scheduler event,
CPU events and kernel module events. An exhaustive
list of the tracepoints used is presented in Table 2.
We launched a new tracing session for each attack,
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Table 2 Enabled tracepoints list
Syscall Network Scheduler Kernel module CPU

access,chdirchmod ,chown
chroot,clone,close,connect,
copy_file_range,creat,delete_module
.execve,execveatexitexit_group

[faccessat fallocate fchdir,fchmod
fchmodat,fchown,fchownat finit_module
fork,getcpu,getcwd ,getdents,getdents64
,getegid,geteuid,getgid,getpgid,getpgrp
,getpid,getppid,gettid,getuid kexec_file_load
kexec_loadkill,Ichown,link linkat,listen
,migrate_pages,mkdir,mkdirat mount
,mq_unlink,open,openat,open_by_handle_at
,newstat,pipe,pipe2,pivot_root,read
readahead,readlink readlinkat,readv
reboot,remap_file_pages,rename net_dev_queue
renameat,renameat2,restart_syscall
,rmdir,sched_getparam,setdomainname
setfsgid,setfsuid,setgid,setgroups
,sethostname,setitimer,set_mempolicy
,setns,setpgid,setpriority,setregid
setresgid,setresuid,setreuid,setrlimit
,set_robust_list,setsid,setsockopt
,set_tid_address,settimeofday,setuid
setxattr,shutdown,socket,symlink
,symlinkat,sysctl,sysfs,sysinfo,syslog
Jtgkill,tkilLumount,unlink,unlinkat,unshare

vforkwrite

writev

sched_process_exit

sched_switch, module_load power_cpu_frequency
sched_process_fork

sched_process_exec

ensuring that there was no event from a previous attack
in a recorded snapshot. As a result, we have a dataset
composed of 58% of benign events and 42% of intrusion-
related events. The repartition of the various events is
highlighted in Fig. 4.

Learning methodology

To train our models while avoiding over-fitting, we split
our dataset between a training set and test set, with 66%
of the data used in the training set and 34% in the test set.
Splitting the dataset into training and test sets is a com-
mon practice in machine learning, as explained by Hsu et
al.[45]. There is, however, no consensus in the field about
the optimal repartition. We used a k-fold cross-validation,
which consists in splitting the dataset into k sets, and then
compute the model learning on k-1 sets and test on the
last set. The performance is measured by the average score

of some metrics on the computed loop. To optimize the
hyper-parameters of our various algorithms, we used a
grid search, which consists of testing all the combinations
of various hyper-parameters and keeping those yielding
the best score for their model. The metrics used to mea-
sure the efficiency of our algorithms are described later in
this paper.

Classification algorithm

To enhance our detection performance, we implemented
several algorithms that can be divided into different cate-
gories: supervised learning vs semi-supervised[46] learn-
ing or event-based detection vs sequence of events-based
detection. Table 3 provides a quick overview of those algo-
rithms. We decided to use both very recent deep neural
network techniques and more traditional machine learn-
ing algorithms to measure the benefits of using newer
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Fig. 4 Dataset event repartition

methods, that are often more resource hungry than older
ones. The algorithms we implemented use various meth-
ods to detect anomalies :

e Decision Trees (DT) use a graph like structure to
classify the dataset by creating nodes from previous
nodes that maximize the purity of each node. We use
Gini Impurity as a criterion to split the data in each
node and maximize the information gain.

e Random forest (RF) is a bagging ensemble method
where several decision trees are independently
created during training. Each tree is created in a
random sub-ensemble of the dataset with a random
number of features. Each tree will then vote for a
class, and the class with the maximum number of
voters will be associated with the input.

Table 3 Machine learning algorithm used

Event classification Sequence
classification

) ) Decision Tree
Supervised learning
Random Forest
GBT
SVYM
MLP

Semi-Supervised learning OneClass SYM LST™M

Gradient Boosted Trees (GBT) is a boosting
ensemble method where classifiers are built
sequentially to reduce the bias and the variance of the
global classifier. We use decision trees as the basics
estimators.

Support Vector Machines (SVM) is a set of
techniques that aim at finding the boundary between
the different classes by mapping the data into another
space. To predict new data, the same mapping is used.
MultiLayer Perceptron (MLP) is a feed-forward
artificial neural network where several layers of
neurons are connected that can separate even not
linearly separable data.

One Class SVM is a particular use-case of SVM
techniques where the classifier only learns the
boundary of one class, here the standard behavior of
the system. Then, whenever an event is outside of the
determined boundary, it is classified as an anomaly.
This technique is able to detect new intrusions since
we do not need to train this algorithm with attacks
samples. One class SVM is effective on imbalanced
data sets, as explored by Devi et al.[47]

Long Short-Term Memory (LSTM) is a recurrent
neural network, meaning that there are some
recurrent connections in the network. Thus,
recurrent networks have two sources of input:
present data and data that has already been through
the network. Therefore, the prediction of an entry
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event will affect the prediction of the later. Each unit
of an LSTM network is composed of an LSTM cell,
which has the ability to store, write or read a piece of
information, according to the input it receives. Thus,
LSTM networks are able to classify a sequence of data.

Evaluation

Setup

To implement our solution, we used several devices that
would typically be used in a home automation system. Our
home automation controller, the device responsible for
the action of actuators according to data received from the
sensors, is a Raspberry Pi 3, an ARM based embedded sys-
tem running Linux. This device has the exact same hard-
ware characteristics as the HomeSeer HomeTroller Zee
S2, another home automation controller. Our Raspberry
Pi 3 runs Home Assistant, a modified Rasberry Pi Debian
distribution with one of the most popular open-source
home automation platforms. Home Assistant is compat-
ible with many smart devices and IoT protocols. To get
a representative home automation network, we plugged a
Z-Wave USB stick, the Z-Stick Gen5 from AEOTEC. Our
controller can then manage z-wave sensors and actuators.

We used several sensors to be able to get data from
the environment, with the Multisensor 6 from AEOTEC,
a z-wave device that can monitor motion, temperature,
light, humidity, and vibration. As an actuator for our home
automation system, we used the smart switch 6 from
Aeotec. It can be turned on or off via a z-wave command
and can monitor the energy consumption of its electrical
outlet.

In order to provide a realistic networked IoT system,
we set up some rules on the home assistant controller.
For instance, whenever the light is above 166 Lumix, i.e.
the light is switched on, the controller will send a noti-
fication to a remote desktop and a smartphone through
the Pushbullet API, a service aiming at sending a mes-
sage to multiple platforms. Another example is a rule
that switched on the smart plug when the motion sensor
detects activity.

The analysis machine is a Debian based computer with
an Intel i7-3770 CPU clocked at 3.40GHz with 8 cores. It
has 16 GB RAM and is connected to the same VLAN as
the home controller.

Metrics
To evaluate the efficiency of our detection engine, we used
several metrics commonly employed in model evaluation.
Those metrics are defined in the next paragraphs in the
context of binary classification, since we want to predict
good or abnormal behavior.

In our binary classification problem, True Positive (TP)
is the number of correctly classified events as positive,
True Negative (TN) is the number of correctly classified
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events as negative, False Positive (FP) is the number of
falsely classified events as positive and False Negative (FN)
is the number of falsely classified events as negative.

The common information to get from a model is its
accuracy, which is the ratio between the number of good
predictions and the total number of predictions. It can be
defined by Eq. 1.

TP+ TN

Accuracy = N (1)
evenits

However, accuracy is not enough to determine a model
efficiency. Indeed, a high accuracy cannot assure that the
model will have a great detection power, especially if the
dataset is imbalanced. Even if our dataset is balanced, it
can still be useful to consider the Precision and Recall
metrics, which can help to select among the different
algorithms.

When it comes to classifying an input, the precision tells
how many of the predicted events of a class were correctly
predicted. This is the ratio between good predictions and
the total number of events from a class. Recall reports
how many of the classified events that should have been
selected were actually selected. Since both of those met-
rics are relevant regarding our detection problem, we also
introduced the F1-score, which is based on the precision
and recall of the system. Those metrics can be obtained
from Eq. 2

TP
Recall = ———
TP + FN
. TP
Precision = ———
TP + FP (2)

Precision * Recall
Fl1=2x

Precision + Recall

We want to maximize those metrics which reflect the
detection performance of our system. As described earlier,
we computed our metrics 5 times with 5-fold validation,
with a training dataset and a testing dataset.

Tracing overhead

To measure the tracing overhead with LTTng, we used
the sysbench benchmark first while tracing was enabled,
and second while it was not. We used the integrated CPU
benchmark with the following arguments. In this com-
putation, the system verifies prime numbers by dividing
the number with all values between 2 and the square root
of the number. The argument —cpu-max-prime sets the
highest number to verify during the benchmark.

$ sysbench —test=cpu —cpu—max—prime
=20000 run

We traced our device with the tracepoints described
in Table 2. This contains 108 syscalls (including open,
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Table 4 CPU overhead according to snapshot frequency

Snapshot frequency Total time Averagetime 95 percentile time

(per request) (per request)
No tracing 37151s 37.15ms 3723 ms
05s +1.52% +1.53% +7.49%
s +1.15% +1.15% +6.28%
2s +0.80% +0.81% +4.78%
3s +0.50% +0.51% +3.82%
4s +0.44% +0.45% +2.94%
5s +0.39% +0.39% +2.21%
10s +0.25% +0.25% +1.24%

close, access, write, fork, chmod, chown, mkdir), network
queue with net dev queue kernel event, scheduler events
(switch, process fork, process exit), kernel module (load
and free) and some CPU events (frequency). We analyzed
the system overhead while tracing and sending a snapshot
through the network by varying the duration between two
snapshots. The benchmark was repeated ten times, the
mean results are presented in Table 4.

Moreover, we used the sysbench memory benchmark,
which allocates a 1 kB buffer that will be read or writ-
ten, sequentially or randomly, until the memory-total-size
argument is reached. As before, we ran our benchmark ten
times and present in Table 5 the mean results. We used
this specific command :

$ sysbench —test=memory —memory
—total —size=20G run

These results highlight the low overhead of the LT Tng
tracer. Indeed, we traced a powerful device connected
to an electrical outlet. Moreover, because the overhead
introduced by tracing is low, our solution can be used
even on limited resources devices. The CPU overhead can
be reduced by decreasing the snapshot frequency. This
will not, however, reduce the memory overhead, which is
about 2.21% for this application.

Table 5 Memory overhead according to snapshot frequency

Snapshot frequency Memory overhead
No tracing 375s

05s +2.73%

1s +1.82%

2s +2.25%

3s +2.52%

4s +231%

55 +1.99%

10s +1.87%
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Training efficiency
While we focus on the previously defined metrics to mea-
sure the efficiency of our models, we also noticed that
some of our models needed significantly more computing
time than others during the training phase. Indeed, the
MLP took an 8 times longer training phase, while GBT
needed more than 6 000 times the duration. The testing
phase results are presented in the next table.

While those results are very good, we have to ensure that
our models did not overfit our training set and can predict
well future input events.

Analysis efficiency

Precision, recall, and f1 score

As explained earlier, we want to maximize the precision,
recall, and F1 score of our detection engine. The compu-
tation of those efficiency metrics has been done with the
scikit-learn built-in function score. The test set results are
the average of the five cross-validations and are presented
in Table 6.

Those results highlight two major points. First, the
choice of the algorithm has a great impact on the detec-
tion accuracy. While our results emphasize that some
algorithms could provide a top detection quality, some
others fail at detecting intrusions on our dataset. This
can be explained by the heterogeneity of the events
that make our dataset. Indeed, as explained earlier, each
field of a processed event is a feature for the machine
learning algorithms. However, events have very differ-
ent fields, as explained in Fig. 5. Some algorithms such
as Decision Trees (DT), Random Forest (FT) or Gradi-
ent Boosted Trees (GBT) are very robust to that kind
of data issues, while others like MultiLayer Perceptron
(MLP) and Support Vector Machines (SVM) are not. We
could apply some data transformations, like removing
some fields or putting some default values, even normal-
izing some fields like the source IP address, but then
we would have lost some relevant knowledge from the
event. Indeed, it is essential to know the origin of the
intrusion to have an adapted response to the security
event.

Secondly, we can achieve very high detection rates with
our solution. Indeed, because a smart device has been
designed to have a specific behavior, it is easier than

Table 6 Anomaly detection efficiency of various algorithm

Accuracy F1 Precision Recall
DT 99.97% 99.96% 99.98% 99.93%
RF 99.99% 99.99% 99.99% 99.99%
GBT 100% 99.99% 99.99% 99.99%
MLP 57.85% 23.07% 46.78% 27.25%
SVM 5332% 99.99% 47.33% 99.99%
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p_name: “sudoTracing.sh”)

Syscall_readlinkat:
“system-journal”)

(pathname:

1322077235, dadr: 1322077219)

Fig. 5 Heterogeneous Events

Syscall_open: (filename: “sudoTracing.sh”, d_timestamp: 1780004334, pathname: “/etc/login.defs”,

Syscall_read: (filename: “sudoTracing.sh”, d_timestamp: 1780004334, p_name: “sudoTracing.sh”)
“/proc/sudoTracing.sh/exe”, d_timestamp: 1780004334, p_name:

Net_dev_queue: (p_name: “sshd”, d_timestamp: 890024167, source_port: 22, dst_port: 41640, Saddr:

for traditional computers to learn this behavior, thus to
detect any anomaly. Furthermore, it prevents an intruder
from breaking our system using mimicry attacks that
have been described by Sabahi et al.[20]. Our frame-
work can precisely detect various kinds of intrusions
while avoiding too many false alarms or failing to detect
intrusions.

Analysis latency

To measure the analysis latency, we generated new snap-
shots containing a basic attack that every classifier studied
was able to detect. This attack only run a freshly down-
loaded bash script which echoes “Infected” every 0.5
seconds. The created events have not been used in the
training dataset or in the testing dataset; this is novel
data for the classifiers. We defined the analysis latency as
the mean time required for each classifier to predict the
class of one event, making our measure independent of
the network latency or the snapshot frequency. However,
the more often snapshots are recorded, the quicker the
intrusion alert will be raised, but the snapshot frequency
should not be higher than the time needed to classify each
event of the previously received snapshot. In most cases,
we want to reduce the analysis latency to detect a security
event as soon as possible. However, some users may want
to run many analysis engines at the same time to do alert
correlation when the priority is to reduce the number of
false alarms.

The total detection latency can be defined as follows,
if the analysis engine has been previously loaded, where
the network latency and the intrusion event raised (and its
time) can vary :

Latency gotocrion = Latency,epyorct+ 3)

Tlmeintrusion_event - Tlmefirst_event

The results are exposed in Table 7.

These results highlight the need to carefully select the
anomaly detection model. Indeed, GBT provides better
results than the DT algorithm, but the time needed to pre-
dict the class of an event is nearly 7.5 times more than the
former algorithm.

Discussion

Our results showed that some algorithms can provide bet-
ter detection performance than others, but may require
more time for learning or for classification.

Indeed, Decision Trees, Random Forest, and Gradient
Boosted Trees can provide really great intrusion detection
capabilities, based on tracing events, but those algorithms
cannot detect intrusions that have not been previously
learned. This is unlike OneClass SVM, which is much
slower than other algorithms to predict the class of the
incoming events.

Furthermore, only LSTM focuses on sequences of
events, which can help detect some complicated intru-
sions. For instance, the attacker may attempt a mimicry
attack, even if this is more complicated on smart devices
than on traditional systems.

Moreover, our results, with our enabled set of trace-
points, show that DT based algorithms (including GBT of
RF) provide very efficient intrusion detection capabilities,
because they are very robust with input events that have
different features. However, if the monitored events have
nearly the same structure, for instance when only syscall
events are being monitored, some algorithms may pro-
vide better results, especially deep-neural network based
algorithms.

Finally, tracing the home controller is very useful to
detect attacks on the system. For instance, it can detect
attempts to eavesdrop information with a malware simi-
lar to the one tested. This attack can be very difficult to
detect when only relying on the network information, if
the covert channel is efficient enough. However, tracing
the other devices could really improve the performance of
our solution since it could prevent more threats, such as

Table 7 Analysis latency

Avg. time per event

DT 123 ms
RF 1.68 ms
GBT 9.28 ms
OneClass SYM 6.79 ms
MLP 216 ms
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ransomware on a smart TV or a Brickerbot attack on an
alarm system.

Limitation

Our solution can be quickly integrated into home automa-
tion systems since it only requires having a tracer sending
traces in CTF format, such as LTTng or BareCTF. How-
ever, those tools rely on the TPC/IP stack, which is a lim-
itation for some devices. Indeed, some connected devices
lack such connections and instead rely on Z-Wave, Zigbee
or Insteon to send data in smart homes. Those proto-
cols work in mesh networks where each device can send
and forward information, and where the network topology
can vary with time. This is very different from traditional
TCP/IP networks.

Most of the algorithm that worked well with our exper-
iments are supervised learning techniques, implying that
they can only detect attacks similar to what they have
learned. As a consequence, another limitation of our work
is the number of attacks that have been learned, and the
lack of real malware being used. Indeed, since most IoT
threats are not open-source, we could only create attacks
that mimic the behavior of real-world threats, like we
did with our ransomware and spying tools. As noted by
Pendlebury et al.[43], cross validation can introduce pos-
itive bias due to similarities between malware attacks. As
intrusion detection is naturally biased, collecting malware
samples targeting our monitored device could have been
achieved with a honeypot emulating ARM hardware and
the same OS, for instance by running Home Assistant on
a QEMU virtual host.

In addition, to enhance our detection capabilities, we
could have tried to develop a misuse detection engine to
combine with our anomaly detection engine. This would
require more powerful hardware for the analysis system,
and could threaten the detection speed.

Finally, it should be noted that the proposed framework
exists as a single point of failure, excluding other security
measures taken. When installing security systems on IoT
networks, measures should be taken to avoid unnecessary
exposure to threats and malware, and to regularly patch
and update software.

Conclusion and future work

In this paper, we presented a complete novel and flexi-
ble framework to detect intrusions on smart devices. It
combines several machine learning algorithms and trac-
ing techniques on the monitored devices. Our solution
has shown very accurate intrusion detection results. We
explained how it could be tuned to adapt to different
devices, and explained why this solution performs well,
benefiting from its host-based approach. Our tool could
also have been adapted to work with the LTTng live
tracing mode, to detect intrusions in real time.
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Although we achieved great intrusion detection preci-
sion with our solution, some work can be done to improve
our system usability. One future work would be adapting
the open-source code of LTTng to support IoT protocols
such as Z-Wave, ZigBee, and Insteon, and studying the
traffic created with this tool in such a mesh network.

It would also be interesting to study the scalability of
the analysis engine. Indeed, since the recorded snapshots
can be analyzed independently from each other, our solu-
tion can be parallelized and scale to numerous devices, in
small or bigger networks. However, the resources neces-
sary to scale the monitored networks should be studied.
The solution presented obtained excellent results and was
optimized for quick detection. Further study could focus
on the learning step processing time, since the learn-
ing phase has to be updated frequently to account for
always evolving new threats. Another interesting area
for further study is to select different models accord-
ing to the targeted device, and even to combine more
than one algorithm to improve further the detection
accuracy.
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