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Abstract

This paper proposes a collaborative scheduling strategy for computing resources of the Internet of vehicles
considering location privacy protection in the mobile edge computing environment. Firstly, a multi area multi-user
multi MEC server system is designed, in which a MEC server is deployed in each area, and multiple vehicle user
equipment in an area can offload computing tasks to MEC servers in different areas by a wireless channel. Then,
considering the mobility of users in Internet of vehicles, a vehicle distance prediction based on Kalman filter is
proposed to improve the accuracy of vehicle-to-vehicle distance. However, when the vehicle performs the task, it
needs to submit the real location, which causes the problem of the location privacy disclosure of vehicle users.
Finally, the total cost of communication delay, location privacy of vehicles and energy consumption of all users is
formulated as the optimization goal, which take into account the system state, action strategy, reward and
punishment function and other factors. Moreover, Double DQN algorithm is used to solve the optimal scheduling
strategy for minimizing the total consumption cost of system. Simulation results show that proposed algorithm has
the highest computing task completion rate and converges to about 80% after 8000 iterations, and its performance
is more ideal compared with other algorithms in terms of system energy cost and task completion rate, which
demonstrates the effectiveness of our proposed scheduling strategy.

Keywords: Mobile edge computing, Privacy of vehicle location, Computational collaborative scheduling strategy,
Kalman filter, Double DQN algorithm

Introduction
According to relevant statistics, the number of connected
vehicles on the road will reach 2.5 billion. This enables
many new in-vehicle services, such as autonomous driving
capabilities, to be realized. Connected cars have become a
reality, and the function of connected cars is rapidly
expanding from luxury cars and high-end brands to large-
scale mid-size cars [1]. The increase and creation of digital

content in automobiles will drive the demand for more
complex infotainment systems, which creates opportun-
ities for the development of application processors, graph-
ics accelerators, displays and human-machine interface
technologies [2]. As a typical application of Internet of
Things in the automotive industry, Internet of Vehicles
(IoV) is regarded as a next-generation intelligent transpor-
tation system with great potential by equipping vehicles
with various sensors and communication modules [3, 4].
In recent years, the automotive industry is undergoing
critical and tremendous changes, many new in-vehicle
applications, services and concepts have been proposed .
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In addition to data processing requirements, future in-
vehicle applications have strict requirements on network
bandwidth and task delay. Although the configuration of
mobile devices such as computing power and running
memory is becoming more and more powerful, it is still
insufficient for computationally intensive tasks [5]. This
inspired the development of Mobile Cloud Computing
(MCC) concept. In MCC, mobile devices upload tasks to
the Internet cloud by mobile operators’ core networks
and use the Internet cloud’s powerful computing and
storage resources to perform these tasks [6]. In the IoV
application scenario, the future demand for delays and
other service qualities of in-vehicle applications makes
MCC technology not the best choice for IoV scenarios.
According to the characteristics of IoV, Mobile Edge
Computing (MEC) currently faces many challenges and
difficulties in the implementation of IoV technologies
[7], which is manifested in the following three aspects:

(1) Complexity of architecture: Due to different
communication standards adopted in different
regions, multiple communication modes such as
DSRC and LTE-V coexist under the existing
research architecture. Besides, the complexity of
application-driven network architecture
construction is increasing with the innovation of
various applications. In VANET, Road Side Unit
(RSU) serves as a wireless access point in IoV,
upload information such as vehicles and traffic
conditions to the Internet and publish relevant
traffic information. This cooperative communication
model of vehicles and infrastructures requires the
participation of a large number of roadside nodes,
which increases construction cost and energy
consumption [1].

(2) Uncertainty of the communication environment:
The alarm communication under IoV is extremely
susceptible to the impact of surrounding
environments, such as the surrounding buildings,
the interference of surrounding channels, and the
poor network coverage of roadside units [8, 9].

(3) Strict Quality of Service (QoS) requirements: Due
to the suddenness of road traffic accidents,
information transmission between vehicles needs to
have strong timeliness and reliability requirements.

With the continuous improvement of relevant standards
and continuous increase of intelligent vehicles, it is fore-
seeable that more and more vehicles will realize network
interconnection by relevant protocols in the future. With
the increasing number of vehicles, road hazards have
become a problem that must be faced in the development
of IoV [10]. Besides, the communication transmission of
vehicle safety business has higher timeliness and reliability

requirements. In some application scenarios of IoV, such
as automatic driving, the delay requirement even needs to
be lower than 10ms. This makes the research on the
transmission strategy of IoV security services more and
more important [11, 12]. In the vehicle communication
process based on IEEE 802.11P and LTE-V protocols,
channel congestion, channel interference, shadow fading
and intelligent computing processing are main factors that
affect the communication performance of vehicles. How
to schedule computing resources and communication
resources in IoV to improve the communication perform-
ance of vehicle safety business has important research
value. Besides, the proposed scheduling strategy is based
on an IoV system of multi-area multi-user multi-MEC
server. A vehicle distance prediction method based on
Kalman filtering is proposed combined with the mobility
of IoV users in this paper. Furthermore, the total cost of
communication delay and energy consumption of all users
is formulated as the optimization goal, the Double DQN
algorithm is used to solve the optimal scheduling strategy
for minimizing the total consumption cost of system.

Related work
In IoV, the low-latency and highly reliable broadcast
transmission of alarm communication is fundamental
guarantee for traffic safety, and communication proto-
cols are the basis for alarm transmission. Among them,
IEEE 802.11p is a communication protocol expanded by
IEEE 802.11 standard. It is mainly used for information
transmission between vehicles and vehicles, and between
vehicles and roadside nodes in a vehicle-mounted self-
organizing network [13]. LTE-V is based on LTE-D2D
technology, it is designed and modified according to the
characteristics of IoV application scenarios to realize
wireless communication technology that supports IoV
communication.
MEC evolved from MCC to provide IT service envir-

onment and cloud computing capability on the wireless
access network side close to mobile users. In the MEC
environment, users are closer to edge servers, and the
transmission delay caused by task offloading is greatly
reduced. Moreover, service requesting can be responded
at the edge, which can effectively relieve the burden on
core networks [14]. In the past 2 years, due to MEC’s
close range, ultra-low latency, high bandwidth and other
characteristics, the research on MEC has become in-
creasingly fierce. In terms of task offloading decision and
resource allocation, people have proposed different
solutions according to different needs and application
scenarios [15]. Since there are too many factors to be
considered for task offloading and resource allocation, it
is difficult to take all factors into account during model-
ing. Therefore, existing work simplified the modeling of
task offloading. Part of them only studied task offloading
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to edge servers, and two types of task offloading models
were obtained, namely, two-state task offloading and
partial task offloading models. Reference [16] aimed to
save energy while also considering the allocation of
wireless resources, assuming that the computing power
of servers is a fixed constant. They performed offloading
by classifying different tasks, gave priority to them based
on task delay and wireless resource requirements and
the weighted sum of energy consumption. The purpose
of reference [17] was to minimize the weighted sum of
energy consumption and delay. Each user had multiple
tasks and they were considered more comprehensively.
Reference [18] used game theory to solve the optimization
problem and proved the existence of Nash equilibrium.
Reference [19] calculated the theoretical upper limit of
server-side task processing, and proved that their algorithm
can be close to the theoretical value. It transformed non-
convex quadratic functions into separable semi-definite
programming problems by relaxation techniques under
quadratic constraints. Reference [20] proposed a com-
promise solution where tasks can be processed locally and
then offloaded to cloud to execute the remaining part.
However, task delay is only used as a reference condi-

tion, it cannot guarantee that the delay of each task can
be guaranteed in schemes proposed in the above paper.
Reference [21] also considered task offloading and
allocation of computing resources. They assumed that
wireless bandwidth is a fixed constant, task execution
cost is minimized when the strict time constraints of
tasks are satisfied. Reference [22] used game theory tech-
niques to allocate the computing power of MEC servers
under the premise for the best decision of each user
(users’ own maximum revenue), which maximizes the
operator’s revenue. Reference [23] proposed the
allocation scheme of wireless channels and computing
resources under the condition of satisfying time delay,
so as to minimize the energy consumption of users.
Reference [2] used Markov decision model to allocate
resources, which can ultimately reduce the delay, but
cannot guarantee it. Reference [24] minimized energy
consumption under the constraints of latency and lim-
ited cloud computing resources. However, the guarantee
of collaborative reliability for computing resources and
the efficiency of task execution is not considered in the
heterogeneous wireless network environment. Thus,
energy consumption becomes a secondary factor, im-
proving system reliability and task execution efficiency
are the most important issues in the IoV scenario.
In order to integrate with actual LTE network, there

are also a few work to study the MEC system of hetero-
geneous wireless networks. Reference [25] proposed a
wireless resource allocation scheme under the environ-
ment of heterogeneous infinite network, which made the
successful execution probability of tasks with strict delay

requirements increased by 40%. In reference [26], the
interference between macro base stations and micro
base stations was reduced, and the wireless rate of
multiple users was maximized by periodically suspend-
ing macro base stations to transmit signals. Reference
[27] proposed a random self-organizing algorithm to
solve the problem of wireless resource allocation based
on Markov chain and game theory methods. Its purpose
was to minimize operating costs. However, when user
requesting peak, wireless communication and computing
resources cannot avoid the shortage. Reference [28] allo-
cated time slots or sub-channels of wireless channels by
time division multiple access and orthogonal frequency
division multiple access techniques. Under the condition
of satisfying task delay, the energy consumption of
mobile users was minimized.
Based on the existing LTE network architecture, a lay-

ered MEC network architecture needs to be considered
in order to be closer to the actual situation. Taking
advantage of the short distance between edge servers
and vehicles, a reasonable task offloading decision is
made to improve the efficiency of system’s task execution
according to the amount of data uploaded by computing
tasks and computing resources required to perform the
task [29, 30]. In this system, vehicles can choose to access
either micro base stations or macro base stations. In
addition, data centers with different computing capabil-
ities are deployed near two base stations and the Interne,
and they consist of servers that provide various functions.
Therefore, from a global perspective, under the premise

of strictly meeting application requirements (high reliabil-
ity), a collaborative scheduling strategy for IoV computing
resources based on MEC is proposed to minimize the
average task completion time. The main innovations are
summarized as follows:

(1) Aiming at the problem of large amount of data and
limited local computing capacity of vehicles, a multi
region, multi-user and multi MEC server system is
designed in this paper, in which one MEC server is
deployed in each area, and multiple vehicle user
devices in the region can unload the computing
tasks to MEC servers in different regions through
wireless channel.

(2) The existing scheduling strategies have the
problems of high energy consumption and low task
completion rate. The proposed scheduling strategy
takes the communication delay of all users, the
location privacy of vehicles and the total cost of
energy consumption as the optimization objectives,
which takes into account the system state, action
strategy, reward and punishment function, and uses
Double DQN algorithm solves the optimal
scheduling strategy to minimize the total
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consumption cost of the system and complete more
computing tasks in the shortest time.

System model and problem modeling
System model
In the system, macro base stations are connected to
Internet by the core network in cellular communication
system. MEC servers are deployed at macro base stations
and micro base stations [30]. It is assumed that micro
base stations are connected to macro base stations in a
wired manner in this system. Since the interference
between macro base stations is small, it is assumed that
there is a network architecture of n micro base stations
within the coverage of one macro base station, and
n = {1, 2,⋯,N} represents a collection of micro base
stations. There are i vehicles under the micro base
station n, i = {1, 2,⋯, I} represents a collection of
vehicles. Only single-antenna vehicles and micro base
stations are considered in this system. The system
model for multiple base stations and multiple MEC
servers is shown in Fig. 1.
It is assumed that each vehicle has a computationally in-

tensive and demanding task that needs to be completed in
unit time. Each vehicle can offload the calculation to MEC

servers by the micro base station or macro base station
connected to it. Each vehicle will upload a task, the tasks
uploaded by vehicle i are:

Ti ¼ Di;Ci;T
max
i

� � ð1Þ

where Di is the amount of data uploaded by tasks, Ci

is the number of CPU cycles required by the server to
process tasks, and Tmax

i is the maximum time allowed
for the task to complete.
During the task offloading process, the vehicle is con-

stantly moving, and the access base station may be
switched. This system mainly considers task-intensive
and ultra-low-latency task offloading, Tmax

i is less than
tens of milliseconds. Therefore, it is assumed that no
base station handover occurs during task offloading.

Vehicle distance prediction based on Kalman filtering
There are three key random vectors in the whole process
of Kalman filtering: the predicted value Xp

t of system state,
the measured value Xm

t and the estimated value Xc
t . X

p
t

represents the final estimation of t cycle system state by
Kalman filtering, which is obtained by data fusion between
Xm

t and Xc
t [31]. The prediction process is:

Fig. 1 System model of multi-area multi MEC server
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xpt ¼ Ftx
c
t − 1 þ Btut − 1

Pp
t ¼ FtP

c
t − 1F

T
t þ Qt − 1

ð2Þ

where xpt is the mean of Xp
t and Pp

t is the covariance
matrix of Xp

t . x
c
t is the mean of Xc

t and Pc
t is the covari-

ance matrix of Xc
t . Ft represents the transition matrix of

the impact for t − 1 cycle system state on t cycle system
state, and ut − 1 is the control input matrix. Bt represents
the matrix that transforms the influence of the control
input to system state, and Qt − 1 represents the covari-
ance matrix of predicted noise. Here, the prediction
noise is assumed to be a Gaussian distribution with zero
mean, so it only affects the covariance matrix of this
predicted value. Moreover, the prediction noise indicates
the accuracy of the prediction model. If the prediction
model is more accurate, the prediction noise is smaller.
In an actual system, the object of measurement may

not be system states, but some measurement parameters
related to it. The measured value of system states can be
obtained indirectly by these measurement parameters.
Let these measurement parameters be Zt, and their
relationship with the measured values is:

Zt ¼ Htx
m
t þ st ð3Þ

where Zt represents the matrix that maps system states
to the measurement parameters. st represents measure-
ment noise, subjects to a Gaussian distribution with
mean zero and covariance matrix Rt.
The process of Kalman filtering is shown in Fig. 2.

The left half of this figure indicates that when the system
is in period t, the system state of period t + 1 is
predicted. The right half of this figure shows that after
the t + 1 period, the measured value of t + 1 period is
obtained. Thus, the estimated value of t + 1 period is
calculated as the input for the next round of prediction.
It is applied to vehicle distance prediction.

The system state is the location information of vehicle
i (vehicle i, vi). Since the width of road is negligible rela-
tive to the length, the vehicle position is modeled as a
one-dimensional coordinate. In order to make the pre-
diction model more accurate, speed is also added to the
system state. Thus, the mean value Xc

i;t of the estimated
value xci;t of vi in t period is shown in Eq. 3–7, and the
predicted and measured values are the same.

xci;t ¼
locci;t
velocityci;t

� �
ð4Þ

Use uniformly accelerated linear motion to predict this
system, and set the period interval to T. The acceleration
of vi is ai, t, then:

Ft
1 Δt
0 1

� �
;Bt ¼

Δtð Þ2
2
Δt

2
4

3
5;ut ¼ ai;t ð5Þ

When directly measuring the position and speed,
Xm

i;t ¼ Zi;t , that is:

Ht ¼ 1 0
0 1

� �
;Zi;t ¼ Xm

i;t;Ri;t ¼ Pm
i;t ð6Þ

where Zi, t is the measurement parameter, Ht represents
the matrix that maps system states to measurement
parameters, and Ri, t is the covariance matrix of measure-
ment noises.
Substituting eqs. (4)–(6) into eqs. (2) (3), Kalman

filtering can be applied to vehicle position prediction.
Since system states are a two-dimensional Gaussian
distribution composed of position and velocity, it is easy
to obtain a one-dimensional Gaussian distribution in
various dimensions. Let LOCc

i;t be the estimated value of

position for vi in t period. Similarly, LOCp
i;t is the

Fig. 2 Kalman filtering process
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predicted value and LOCm
i;t is the measured value. They

all obey one-dimensional Gaussian distribution, namely:

LOCe
i;t � N μei;t ; μei;t

� �2� 	
; LOCp

i;t � N μpi;t ; μpi;t
� �2� 	

;

LOCc
i;t � N μci;t ; μci;t

� �2� 	
ð7Þ

For two vehicles vi and vj, at the t cycle, random vari-
able Di, j, t between them can be obtained by subtracting
the position random variables LOCi, t and LOCj, t:

Di; j;t ¼ LOCi;t − LOC j;t ð8Þ

A random variable representing the distance between
two vehicles can be obtained by the above formula. At
the same time, Di, j, t follows a one-dimensional Gaussian
distribution, such as:

Di; j;t ¼ N μi;t − μ j;t ; σ i;t

 �2 þ σ j;t


 �2� �
ð9Þ

Compared to random variables, Vehicle to Vehicle
(V2V) computing offloading and V2V communication
resource algorithms hope to obtain an exact value
directly representing the distance between two vehicles.
In this way, V2V computing offloading and V2V communi-
cation resource allocation algorithms can completely ignore
the mobility and focus on the problem itself to achieve
decoupling of complex problems [32].

Participation in vehicle location privacy protection
mechanism
Note that the probability of disturbance from real
position lri to position loj of the participant is pðloj jlri Þ, so
for all positions of the participant, the probability matrix
of disturbance can be obtained as P and P = {pi, j}L ×m,
which is expressed as follows

P¼
p lo1 lr1

��
 �
p lo1 lr2

��
 �
⋯ p lo1 lrm

��
 �
p lo2 lr1

��
 �
p lo2 lr2

��
 �
⋯ p lo2 lrm

��
 �
⋮ ⋮ ⋮ ⋮

p loL lr1
��
 �

p loL lr2
��
 �

⋯ p loL lrm
��
 �

2
664

3
775
L�m

ð10Þ

Therefore, pi; j ¼ pðloj jlri Þ can also be understood as the

conditional probability of lri disturbance to loj in the real

position. Next, based on the differential privacy, the
location indistinguishability disturbance mechanism is
proposed.
The probability perturbation mechanism P satisfies the

position indistinguishability if and only if it satisfies the
following inequality

p loj l
r
i1

��� �
≤eed lri1 ;l

r
i2ð Þp loj l

r
i2

��� �
ð11Þ

Where lri1 and lri1 belong to set lR. As the differential
privacy budget e represents the degree of privacy protec-
tion, generally speaking, the smaller e is, the higher the
degree of privacy protection is, the more difficult it is for
lri1 and lri1 to distinguish; on the contrary, it means the
degree of privacy protection is low, and the distinction
between the two real locations is high. The function dð
lri1 ; l

r
i2Þ represents the distance between position lri1 and

position lri2 , which can be Euclidean distance or
Hamming distance. The distance function adopted in
this chapter is Euclidean distance. In fact, it can be seen
from formula (11) that when the appropriate differential
privacy budget e is selected, if two positions are selected.
The smaller the distance between lri1 and lri2 , that is, the
closer the two positions are, the smaller the probability
of generating disturbance position loj from these two

positions is. In other words, in this case, the attacker
can’t exactly distinguish the real location of the partici-
pant or the location near the participant.
Because the participant only publishes the disturbed

location, the attacker can observe the disturbed location
of the participant, but can’t get its real location directly.
In this chapter, we consider that the attacker has
background knowledge, that is, the attacker can obtain
disturbance mechanism P and probability pðlri Þ, then the
attacker can use Bayesian theorem to deduce the
observed disturbance location to get its real location.
Probability pðlri jlojÞ represents the probability that the

real location of the participant is in lri under the premise
of disturbance location. From Bayes theorem and total
probability formula, we can get:

p lri l
o
j

���� �
¼

p lri

 �

p loj l
r
i

��� �
p loj
� � ¼

p lri

 �

p loj l
r
i

��� �
Pm

i¼1p loj l
r
i

��� �
p lri

 � ð12Þ

From the above formula, it can be seen that since the
disturbance mechanism P (i.e. the probability from the
real location pri to the disturbed location poj ) can be

obtained by the attacker, and the probability pðlri Þ of the
real location can also be obtained (the attacker can get the
posterior probability pðlri jlojÞ by using the Markov model

through the public data set). And pðlri jlojÞ is bounded.

Therefore, the disturbance probability matrix satisfying
formula (11) can realize the indistinguishability of partici-
pants’ location, overcome the attackers with prior know-
ledge, and protect the participants’ location privacy.
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System model analysis
In the analysis of vehicle edge computing, it is assumed
that the edge network node base station serves as the
dispatch control center. The vehicle user equipment is
the computing task generator, and vehicles and base
stations are the computing task offloading processors, as
shown in Fig. 3. When a computing task is generated on
the vehicle equipment side, scheduling requesting will
first reach the edge network node base station. The task
will be scheduled by base stations, and the scheduling al-
gorithm decides to schedule computing tasks to a service
queue on the base station node side or a service queue
for vehicles [33]. Once the computing task enters a
queue, it will queue up at the end of this queue. At the
same time, it is assumed that vehicle users have a total
of M different computing tasks. For each computing task
m, there is a fixed communication workload fm, a fixed
computing workload dm and a fixed task time constraint
Tm. The computing task volume can be expressed by the
number of revolutions of the CPU.
Vehicles perform periodic state interactions, and infor-

mation such as location, driving direction, speed and idle
computing power of neighboring vehicles can be ob-
tained by the communication network. When the vehicle
equipment generates a computing task, it initiates the
computing offloading request information to edge nodes.
The request information includes explanation information
about computing tasks. The explanation information
includes: the communication task size fm of computing
tasks, the computing task size dm, the delay requirement
Tm, and the idle computing capacity of the neighboring
vehicle.
It is also assumed that vehicles on the road are travel-

ing at a constant speed at a fixed speed. In the analysis
of vehicle communication mechanism in the previous
two chapters, it can be seen that there is a communica-
tion link between edge node base stations and vehicles.
Information such as the vehicle’s computing power,

location, driving direction and speed can be periodically
interacted with base stations by CAM messages. The
system scheduling decision is btk∈ðb1; b2;⋯; bm; bmþ1Þ ,
where btk indicates that the computing task that arrives
at time t is placed in the corresponding computing
processing queue k [9]. Therefore, when the computing
request of vehicle users arrives, how to allocate comput-
ing tasks to the corresponding calculation service queue,
and thus ensure the delay requirement of the long
message security service, which allows the system to
have the greatest alarm revenue.
In the analysis of our designed computing task schedul-

ing model, the scheduling process is regarded as a Markov
decision process [34]. When the base station receives
computing offloading requests sent by the user equipment
of vehicles, base stations calculate queue status according
to the calculation. The state of the available computing
processing queue of vehicles and the information of the
computing task combined with Markov decision model
determine a certain computing processing queue as the
offloading queue of computing tasks. The definition of
system states at time t is as follows:

St ¼ qt1; q
t
2;⋯; qtm; q

t
mþ1; v

t
mþ1; d

t ; f t

 � ð13Þ

where qt1; q
t
2;⋯; qtm is the queue length (computing

task size) of m computing processing queues at edge
nodes at time t. qtmþ1 is the length of vehicles’ calcula-
tion processing queue, and dt is the amount of comput-
ing task generated by users at time t. ft is the size of
communication task generated by users at time t. The
value of vtmþ1 is the idle computing capacity of vehicles
generating the emerging alarm service and its neighbor-
ing auxiliary vehicles.
The system state at time t is ðqt1; qt2;⋯; qtm; q

t
mþ1; v

t
mþ1;

dt ; f tÞ , and the scheduling decision is btk∈ðb1; b2;⋯; bm;
bmþ1Þ. The actual processing capacity of each computing

Fig. 3 Analysis of vehicle edge computing
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processing queue within time interval τ is shown in the
following formula:

Ŝ
t
k ¼ min qtk þ Pt

k � dt ; vk � τ

 � ð14Þ

In the formula, when the scheduling probability Pt
k is

1, it means that computing task dt that arrives at time t
is scheduled to the computing task processing queue k.
When Pt

k is 0, it means that the computing task that ar-
rives at time t is not scheduled to the computing task
processing queue k. Therefore, the system state at t + 1
can be derived as shown in the following formula:

Stþ1 ¼ ðqt1 þ Pt
1 � dt − Ŝ

t
1;⋯; qtm þ Pt

m � dt − Ŝ
t
m;

qtmþ1 þ Pt
mþ1 � dt − Ŝ

t
mþ1; v

tþ1
mþ1; d

tþ1; f tþ1Þ
ð15Þ

In addition, the impact of communication resource al-
location on computing resource scheduling needs to be
considered. If the scheduling behavior btk schedules the
computing task of the vehicle safety application to
vehicle nodes, then tasks will be coordinated by neigh-
boring vehicles to participate in the calculation process,
and the processing delay is as follows:

Tt
b ¼

dt
m þ qtmþ1

vmþ1
ð16Þ

If the scheduling behavior btk schedules computing
tasks of the vehicle safety application to base stations,
then the completion delay Tt

b of task m due to schedul-
ing is:

Tt
b ¼

dt
m þ qtk
vk

þ f tm
C

ð17Þ

where the uplink communication rate between user
equipment of vehicle C and the edge node base station.
At this point, the return rt from the state transition

from St to St + 1 caused by behavior decision btk can be
analyzed as:

rt ¼ r st; bt ; stþ1

 � ¼Xmþ1

k¼0

Ŝ
t
k

V k
� ζk

 !
− α qtþ1

k


 �2
− βF2 Tt

b − Tm

 �

ð18Þ
The first item about rt is the total alarm revenue from

computing resources provided by each service queue
within a time interval. The second term is to punish the
square of queue length in order to avoid a serious imbal-
ance in the length of service queue. The last item is the
punishment of whether tasks are completed within time
delay requirement to improve the alarm performance. In
order to obtain better performance in the long term,
computing resource providers must consider not only

the return at the current moment, but also the future
return to be obtained. The ultimate goal is to learn an
optimal scheduling strategy to maximize the cumulative
discount reward, as shown in the following formula:

π� ¼ arg maxE
π

X∞
t¼0

ηt � rtð Þ
" #

ð19Þ

where η(0 ≤ η ≤ 1) is the discount factor. When t is
large enough, ηt tends to 0, which means that rt has a
small effect on the total return. The ultimate goal is to
learn an optimal scheduling strategy π∗ to maximize
system revenue.

Resource allocation based on deep reinforcement
learning
Deep reinforcement learning theory
Reinforcement learning is a major branch of machine learn-
ing, and its essence is the problem of choosing the optimal
decision to obtain decision rewards. Reinforcement learning
is mainly composed of four units: Agent, Environment, ac-
tion and reward. The goal of reinforcement learning is how
to act based on the environment to maximize the expected
return. As shown in Fig. 4, Agent is an intelligent learning
unit. It interacts with the environment, obtains state from
this environment, trains by neural network and decides the
behavior strategy it wants to make. Every behavior decision
will bring a certain logical return according to the corre-
sponding logic. Similarly, each action may update system
state at the previous moment.
Markov decision is an important mathematical appli-

cation model in reinforcement learning. The Markov
property is satisfied between state transitions, that is,
each state transition depends only on the previous finite
state. And give a certain reward for the state transition
brought by each step of action. It is mainly used in the
mathematical analysis of learning strategies, emphasizing
the intelligent learning unit according to a specific state
s. Choose the corresponding behavior strategy action to
get the desired return r. At the same time, an optimal
strategy problem in the Markov decision process is a
reinforcement learning problem [35]. In the mathemat-
ical analysis, first introduce Rt to represent the overall
discounted return from a certain moment t to the future
and:

Rt ¼ rtþ1 þ ηrtþ2 þ⋯ ¼
X∞
k¼0

ηkrtþkþ1 ð20Þ

The value function is defined as the expected return,
and the mathematical formula can be expressed by
Bellman equation:
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v sð Þ ¼ E Rt St ¼ sj½ � ¼ E rtþ1 þ ηv stþ1ð Þ St ¼ sj½ � ð21Þ
The Bellman equation shows that the value function

can be calculated by iteration. The traditional iterative
algorithm of Markov decision process is divided into
two types: value iteration method and strategy iteration
method. Both of these methods are algorithms updated
using Bellman equation. The convergence of value
iteration is because Bellman optimal equation has the
nature of contraction mapping. We can know iterative
convergence of values by Banach Fixed Point Theory.
The reason for policy iteration convergence is Monotone
Boundary Convergence Theory. After updating this
strategy, the cumulative return becomes larger and the
monotonic sequence formed will always converge.
In order to better characterize the maximum value of

current reward including the future, we use the action
value function Qπ(s, a) to describe this iterative process:

Qπ s; bð Þ ¼ E rtþ1 þ ηrtþ2 þ η2rtþ3 þ⋯ s; bj
 �
¼ Es r þ ηQπ s

0
; b

0� �
s; bj

h i ð22Þ

where s and b represent state and action behavior
respectively, rt represents the return value at time t.
DQN uses ε-greedy strategy, that is, with a certain

probability ε, it randomly selects behaviors to explore
changes in the environment to avoid local optimization.
The behavior selected at the other moments is based on
the following formula.

bt ¼ arg max
b

Q st ; b; θð Þ ð23Þ

Since Q-table is applicable to the space with limited
state, DQN uses neural network to predict Q value by
continuous learning and training to update the parame-
ters of neural network. In DQN, the approximation of

neural network, which is a nonlinear value function, is
expressed as follows:

Q s; b;ωð Þ ≈ Q� s; bð Þ ð24Þ

where ω is the weight of neural network, and parameter
ω needs to be updated to make Q function approximate
the optimal Q value.

Resource allocation based on double DQN
To solve the problem of limited capacity and high latency
of a single MEC server, we consider the IoV scenario of
multiple MEC servers in multiple cells. Compared with
traditional static user scenario, this dynamic scenario
makes the problem more complicated. Thus, the problem
is mixed integer nonlinear programming. Traditional
optimization methods or heuristic algorithms can only
obtain suboptimal solutions to problems [36]. Considering
users’ mobility, dynamic scenarios and models with more
complex problems, this paper proposes deep reinforcement
learning to solve this problem. This method adopts a cen-
tralized control distribution method, using the controller
of multiple MEC servers located in core network as an
agent, and coordinating the MEC servers of all cells by
controller. Since reinforcement learning is model-free, we
first need to model this problem based on three factors
other than state transition probabilities.

(1) State: The state of each time slot is set to the
computing power that each MEC server has at the
beginning of this time slot, that is, the remaining
computing power of MEC servers. Since the sizes of
tasks performed by MEC servers are different, the
computing power allocated to each task is also
different. This results in the remaining computing
power of MEC servers being different after a time

Fig. 4 Interaction block diagram of reinforcement learning
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slot ends. In addition, the computing power of each
time slot for MEC servers is only related to the
remaining computing power of the previous time
slot and the computing power for the completion
calculation of the last time slot. This state change
satisfies Markov property, and state space S is
defined as follows:

S tð Þ ¼ s1 tð Þ;⋯si tð Þ⋯sM tð Þf g ð25Þ

where S(t) represents state space of the t time slot. si(t)
represents computing power of the i MEC server at the
beginning of the t time slot.

(2) Action: Since the core of Double DQN is still Q
learning algorithm, the action is discretized in order
to avoid the continuous action causing action space
to be too large. According to modeling problem,
the variables to be optimized mainly include the
offloading decision of user task in IoV, user’s
transmission power and the computing power
allocated by MEC to users [37]. It should be noted
that the multi-cell scenario. For IoV user tasks,
there are three calculation modes: local calculation,
offload calculation to MEC server of cells, and
offload calculation to MEC server of other cells in
the vicinity. In order to show the distribution
scheme of agent more intuitively, define the motion
vector as Ψ:

Ψ ¼ X; f 1;⋯; f i;⋯; f N ; p1;⋯; pNf g ð26Þ

where X is offloading decision vector of user tasks,
which describes the offloading decision of user tasks.
fi represents the computing power allocated by MEC
server for the i user. pi represents the transmission
power of the i IoV user.

(3) Reward: The agent expresses its satisfaction with
the action by expected value of reward in a
period of time. Combining objective function
Csum of this problem, the objective of original
problem is to minimize the cost function. The
goal of reinforcement learning is to maximize
immediate rewards. Considering that the
immediate reward and cost function appear to
be negatively correlated, the immediate reward
function is defined as follows:

R s; bð Þ ¼ Clocal − Csum s; bð Þ
Clocal

ð27Þ

where R(s, b) represents the immediate reward of
selecting action b in state s. Clocal represents the cost of

all tasks calculated locally, which can be understood as
the upper limit of cost function. Csum(s, b) represents the
cost consumption of performing action b when the
current time slot is in state s.
By the immediate reward function, the long-term cu-

mulative discount reward value Qπ(s, b) of original prob-
lem can be expressed as follows:

Qπ s; bð Þ ¼ Eπ

XT
t¼1

βt − 1R tð Þ
" #

¼ Eπ

XT
t¼1

βt − 1 Clocal − Csum s; bð Þ
Clocal

" #

ð28Þ

For MEC controllers, the purpose of learning is to find
strategies to maximize long-term cumulative rewards:

π� arg maxb∈BQπ s; bð Þ ð29Þ

Although the action has been discretized, the action
strategy assigned by centralized controller covers all
action possibilities. This may include a variety of non-
existent situations, for example: the computing power
allocated by a certain MEC server in this time slot is
greater than its remaining computing power in this time
slot. This paper screens the action space after the action
space is constructed, screen out the impossible situations
and eliminate them, further reducing action space,
speeding up the training speed, and reducing training
delay. In addition, due to the mobility of IoV users, it
may cause changes in cells where the user is located.
And with the increase of users, the action space will in-
crease exponentially. Therefore, a certain pre-processing
is performed on this situation, that is, if the delay is
calculated locally, then the local computing task will be
preferred for IoV users. Otherwise, it will choose to
offload to MEC servers for calculation. The increase of
action space can be well controlled by a series of prepro-
cessing of data. The process of task offloading and
resource allocation algorithm based on Double DQN is
shown in Fig. 5.

Experimental results and analysis
Generally speaking, the density of vehicles in cities is
1000–3000 vehicles/km2; the density of suburban vehi-
cles is 500–1000 vehicles/km2; the density of highway
vehicles is 100–500 vehicles/km2. In different scenarios,
the coverage of base stations will be different. Taking
the urban environment as an example for simulation
and selecting a square area of 500 m × 500m, the num-
ber of vehicles in this area is probably between 250 and
750.
The centralized controller can schedule all base

stations and MEC servers, and the proposed IoV com-
puting cooperative scheduling strategy is deployed in the
centralized controller. The actual scenario uses offline
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training and online resource scheduling. The specific
simulation parameters are shown in Table 1.

Iterative analysis
In order to demonstrate the convergence of proposed
method, it is compared with the algorithms in reference
[20], reference [25] and reference [27]. The results are
shown in Fig. 6.
It can be seen from this figure above that after 500

iterations, the cost function of proposed algorithm
gradually converges to about 1.5. And there is a certain
fluctuation in image convergence, the main reason is
that the amount of task data for each user is different.
The remaining computing power of MEC servers is
different for each time slot, so there will be some fluctu-
ations in the calculation cost function. In addition, the
cost functions of reference [20], reference [25] and refer-
ence [27] converge to approximately 3.8. It can be seen
from this that the cost function of proposed algorithm is
superior to other algorithms. This is mainly due to

Double DQN algorithm solves the problem of overesti-
mation by improving the loss function.

Parameter discussion
Impact of greedy factors on the performance of proposed
strategy
Under different vehicle densities, the influence of greedy
factors on the performance of this algorithm is evaluated
in terms of average calculation queue length and com-
puting task completion.
As can be seen from the above figure, as the queue

length greedy factor value increases, the average queue
length value will decrease under different vehicle dens-
ities. As the vehicle density value increases, the average
calculation queue length will tend to stabilize. And when
ε value becomes larger, the computing task completion
rate will increase slightly under different vehicle dens-
ities. Especially when vehicle density is below 70, the
computing task completion rate increases with vehicle
density is not obvious. The reason is that vehicle density

Fig. 5 Collaborative scheduling strategy flow of computing resources based on Double DQN

Table 1 Simulation parameters

System simulation parameter Setting value System simulation parameter Setting value

local computing power 1GHz reward discount 0.09

Maximum capacity of MEC server 5GHz task packet size [500,800] kbits

ε greedy factor 0.99 time interval 10 ms

Optimizer Adam activation function ReLu
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only affects the calculation processing capacity in vehicle
calculation queue. When the size of vehicle computing
power grows to a certain extent, the upper limit of
system’s revenue and the completion rate of computing
tasks is limited by the processing rate of base station’s
computing processing queue (Fig. 7).

Impact of MEC capacity on the performance of proposed
strategy
For comparison and description, three offloading schemes
are introduced, namely, user tasks are only calculated
locally, user tasks are only offloaded within the base
station (local and local base station MEC server), and user
tasks are randomly offloaded (local, local base station
MEC server and nearby base station MEC server). In
order to simplify description, all local, local base station
offloading and random offloading are used. Among them,
the impact of the maximum computing capacity of MEC
servers on the cost function is shown in Fig. 8.
It can be seen from the figure that this solution where

all tasks are calculated locally does not involve MEC
servers. Therefore, the cost function remains unchanged.
Random offloading schemes have large fluctuations in
costs due to random resource allocation. The cost of
proposed resource allocation scheme and tasks based on
Double DQN is only offloaded within base stations, and
the cost of scheme gradually decreases as MEC server
capacity increases. When the computing power of MEC
servers is 4GHz/s, the resource allocation scheme based
on Double DQN is about 15% lower than the cost of
offloading scheme at this base station only. However, as

the capacity of MEC serves increases, the gap between
proposed solutions and tasks only offloaded within base
stations gradually decreases. The main reason is that the
resources of MEC servers are sufficient to meet the task
requirements of current base station.

Comparison of algorithm revenue results
In order to demonstrate the results of our proposed
algorithm for computing resource collaborative scheduling,
this paper compares it with the algorithms in reference
[20], reference [25] and reference [27] for revenue. The
results are shown in Fig. 9.
It can be drawn from the figure above that the

performance of proposed algorithm at the beginning of
initial iteration is relatively close to that of reference
[27]. But the performance of these two decisions is
better than the scheduling strategy in reference [25] and
reference [20]. The proposed algorithm and reference
[25], reference [27] system revenue are gradually in-
creased. But the increase rate of proposed algorithm is
greater than other algorithms. As proposed scheduling
strategy uses Double DQN algorithm, it can find the
optimal scheduling scheme in a short time, which can
reduce system energy overhead and increase system
revenue. Reference [20] can be drawn from this figure,
the system revenue may decrease with the increase for
number of iterations. This is because the actions taken
by random decision may prevent computing tasks from
being completed in a timely manner, so that the length
of waiting for computing tasks in each calculation queue
is long. And it can be seen that after 1000 iterations, the

Fig. 6 Convergence of different algorithms
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overall performance of proposed algorithm is better than
other algorithms. After 8000 iterations of training, the
performance of proposed algorithm tends to converge
and stabilize.
As the number of iterations of different algorithms in-

creases, the comparison of their computing task comple-
tion rates is shown in Fig. 10.
In the previous analysis, it was specified that IoV user

equipment randomly generates computing tasks, and
each computing task has a delay requirement. If the

computing task is completed within prescribed time, the
task is successfully completed. Otherwise, the task is not
completed in time and system revenue will be punished
accordingly. It can be seen from the figure that proposed
algorithm has the highest computing task completion
rate and converges to about 80% after 8000 iterations.
The performance of reference [27] is second, converging
to about 60% after 8000 iterations. Reference [20] has
the worst performance using a random strategy and
eventually converges to around 50%.

Fig. 7 Comparison of the results for the proposed scheduling strategy under different greedy factors
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Under different vehicle densities, the system benefits
of different algorithms are shown in Fig. 11.
It can be seen from the figure that as vehicle density

increases, the system revenue under different algorithms
will increase. This is because the calculation processing
capacity in vehicle calculation queue will increase as
vehicle density increases, thereby improving system
revenue. But system revenue will not increase with the

increase of vehicle density. Since when the computing
power of vehicle calculation processing queue increases
to a certain degree, it will always complete the assigned
computing tasks in time. There will be no more obvious
improvement in system revenue. The proposed algo-
rithm will not have a more obvious increase in revenue
after vehicle density is around 75. In reference [27], the
vehicle density will not increase significantly around 62.

Fig. 8 Impact of MEC capacity on the performance of proposed strategy

Fig. 9 Comparison for the revenue results of different algorithms
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From the performance of system revenue as vehicle
density changes, the performance of our proposed algo-
rithm is superior to other comparison algorithms.

Conclusion
The application scenarios of IoV in the future are
high-bandwidth, low-latency and high-reliability, MEC
technologies can well meet the needs of such scenar-
ios. Therefore, the proposed collaborative scheduling
strategy of computing resources for IoV based on MEC

can solve the problems of user task offloading decision
and wireless and computing resource allocation, so that
all tasks are completed as soon as possible, which
improves the task execution efficiency of system. Besides,
the proposed scheduling strategy is based on an IoV
system of multi-area multi-user multi-MEC server. Simu-
lation experiments show the convergence of our proposed
algorithm, our proposed algorithm has the smallest system
energy overhead compared with other algorithms. It com-
pletes tasks with the least number of iterations, which

Fig. 10 Comparison of task completion rate of different algorithms

Fig. 11 Comparison for the revenue results of different algorithms under different vehicle densities
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demonstrates the effectiveness of our proposed scheduling
strategy.
When task offloading is performed in the proposed

scheduling strategy, only wireless resources related to
task transmission and computing resource allocation re-
lated to task calculation are considered. More resources
are involved in offloading actual tasks, such as the back-
haul network cable channel, data center memory and
cache resources.
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