Lim et al. Journal of Cloud Computing: Advances, Systems and Applications

(2017) 6:21
DOI 10.1186/513677-017-0091-2

Journal of Cloud Computing:
Advances, Systems and Applications

RESEARCH Open Access

A resource management technique for

@ CrossMark

processing deadline-constrained multi-

stage workflows

Norman Lim" @, Shikharesh Majumdar' and Peter Ashwood-Smith?

Abstract

with deadlines

The use of cloud computing that provides resources on demand to various types of users, including enterprises

as well as engineering and scientific institutions, is growing rapidly. An effective resource management middleware
is necessary to harness the power of the underlying distributed hardware in a cloud. Two of the key operations
provided by a resource manager are resource allocation (matchmaking) and scheduling. This paper concerns the
problem of matchmaking and scheduling an open stream of multi-stage jobs (or workflows) with Service Level
Agreements (SLAs) on a cloud or cluster. Multi-stage jobs require service from multiple system resources and are
characterized by multiple phases of execution. This paper presents a resource allocation and scheduling technique
called RM-DCWF: Resource Management Technique for Deadline-constrained Workflows that can efficiently
matchmake and schedule an open stream of multi-stage jobs with SLAs, where each SLA is characterized by

an earliest start time, an execution time, and a deadline. A rigorous simulation-based performance evaluation of
RM-DCWEF is conducted using synthetic workloads derived from real scientific workflows. In addition, the impact

of various system and workload parameters on system performance is investigated. The results of this performance
evaluation demonstrate the effectiveness of RM-DCWF as captured in a low number of jobs missing their deadlines.

Keywords: Resource allocation and scheduling on clouds, Multi-stage jobs with SLAs, Workflows with SLAs, Jobs

Introduction

Over the past few years, distributed computing para-
digms such as cluster computing and cloud computing
have been generating a lot of interest among consumers
and service providers as well as researchers and system
builders. For example, a number of reputable financial
institutions and market research organizations have
predicted a multi-billion-dollar market for the cloud
computing industry [1, 2]. An important feature of cloud
computing is that it allows users to acquire resources on
demand and pay only for the time the resources are used.
Investigating and devising effective resource management
techniques for clouds and clusters is necessary to harness
the power of the underlying distributed hardware and to
achieve the performance objectives of a system [3], which

* Correspondence: nlim@sce.carleton.ca

'Department of Systems and Computer Engineering, Carleton University,
Ottawa, ON, Canada

Full list of author information is available at the end of the article

@ Springer Open

can include generating high job throughput and low job
response times, meeting the quality of service (QoS) re-
quirements of jobs that are often captured by a service
level agreement (SLA), and maintaining a high resource
utilization to generate adequate revenue for the cloud
service provider. As in the case of grids, a predecessor of
cloud computing that also supported resources on de-
mand, QoS and satisfying SLAs remain an important issue
for cloud computing [3, 4]. Handling of jobs with a SLA
often leads to an advance reservation request [5] that is
characterized by an earliest start time, a required execu-
tion time, and a deadline for completion. This is of critical
importance for latency-sensitive business and scientific
applications that can include live business intelligence and
sensor-based applications which rely on a timely process-
ing of the collected data. Two of the key operations that a
resource manager needs to provide are resource allocation
(matchmaking) and scheduling. Note that the matchmak-
ing and scheduling operations are jointly referred to as

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made.


http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-017-0091-2&domain=pdf
http://orcid.org/0000-0003-2467-0685
mailto:nlim@sce.carleton.ca
http://creativecommons.org/licenses/by/4.0/

Lim et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:21

mapping operation [6]. Given a pool of resources, the
matchmaking algorithm chooses the resource(s) to be
allocated to an incoming job. Once a number of jobs are
allocated to a specific resource, a scheduling algorithm
determines the order in which jobs allocated to the re-
source should be executed for achieving the desired
system objectives. Performing effective matchmaking
and scheduling is difficult because the SLA of the jobs
need to be satisfied, while also considering system ob-
jectives, which can include minimizing the number of
jobs that miss their deadlines as well as generating ad-
equate revenue for the service provider.

Due to cloud computing becoming more prevalent, a
variety of applications are being run on clouds, includ-
ing those that are characterized by multiple phases of
execution and require processing from multiple system
resources (referred to as multi-stage jobs). Scientific ap-
plications and workflows that are used in various fields
of study, such as physics and biology, are examples of
multi-stage jobs that are run on clouds. Moreover, an-
other example of a popular multi-stage application that
is typically run on clouds is MapReduce [7], which is a
programming model (proposed by Google) for simplifying
the processing of very large and complex data sets in a
parallel manner. MapReduce is used by many companies
and institutions, typically in conjunction with cloud or
cluster computing, for facilitating Big Data analytics
[8-10]. The focus of this paper is to devise an efficient
matchmaking and scheduling technique for processing
an open stream of multi-stage jobs (workflows) with
SLAs on a distributed computing environment with a
fixed number of resources (e.g. a private cluster or a set
of resources acquired a priori from a public cloud).
Most existing research focuses on meeting the SLA for
jobs that require processing from only a single resource
or handling of a fixed number of multi-stage jobs exe-
cuting on the system. There is comparatively less work
available in the literature focusing on resource manage-
ment for a workload comprising and open stream of
multi-stage jobs with SLAs. Handling of an open
stream of multi-stage jobs increases the complexity of
the resource allocation and scheduling problem due to
a continuous stream of jobs arriving on the system.
Thus, the novel matchmaking and scheduling tech-
niques described in this paper are expected to make a
significant contribution to the state of the art.

This paper presents a novel resource allocation and
scheduling technique, referred to as RM-DCWF: Resource
Management Technique for Deadline-constrained Work-
flows, that can effectively perform matchmaking and sched-
uling for an open stream of multi-stage jobs with SLAs,
where each SLA comprises an earliest start time, an execu-
tion time, and an end-to-end deadline. RM-DCWF decom-
poses the end-to-end deadline of a job into components

Page 2 of 24

(i.e. sub-deadlines), each of which is associated with a task
in the job. The individual tasks of the job are then
mapped on to the resources where the objective is to
satisfy the job’s SLA and minimize the number of jobs
that miss their deadlines. In our preliminary work [11],
a resource allocation and scheduling technique for pro-
cessing deadline-constrained MapReduce [7] jobs (com-
prising of only two phases of execution) is described.
The algorithm described in [11] can only handle
MapReduce jobs. The algorithm presented in this paper
is new as it focuses on a more complex resource man-
agement problem that considers jobs and workflows
characterized by multiple (two or more) phases of exe-
cution as present in scientific workflows, for example.
Furthermore, the jobs handled by the algorithm intro-
duced in this paper can have various structures charac-
terized by different precedence relationships among the
respective constituent tasks that are not considered in
[11]. To the best of our knowledge, none of the existing
work focuses on all aspects of the resource manage-
ment problem that this paper focuses on: devising a re-
source allocation and scheduling algorithm for multi-
stage jobs with SLAs on a system subjected to an open
stream of job arrivals. The main contributions of this
paper include:

e A novel resource allocation and scheduling technique,
RM-DCWE, for handling an open stream of multi-
stage jobs with SLAs. Two task scheduling policies
are devised.

e Two algorithms devised to decompose the end-to-
end deadline of a multi-stage job to assign each task
of the job a sub-deadline.

o Insights gained into system behavior and performance
from a rigorous simulation-based performance
evaluation of RM-DCWF using a variety of system
and workload parameters. The synthetic workloads
used in the experiments are based on real scientific
workflows described in the literature.

e A comparison of the performance of the proposed
technique with that of a conventional first-in-first-
out (FIFO) scheduler as well as a technique from
the literature [29] that has objectives similar to
RM-DCWTF is presented.

The rest of the paper is organized as follows. Section
"Related work" summarizes related work, and Section
"Problem description and resource management model"
provides a description of how the resource allocation and
scheduling problem is modelled. The algorithms devised to
decompose the end-to-end deadline for multi-stage jobs
are described in Section "Deadline budgeting algorithm for
workflows". In Section "RM-DCWF’s matchmaking and
scheduling algorithm", RM-DCWF and its matchmaking



Lim et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:21

and scheduling algorithms are presented. The results of the
performance evaluation of RM-DCWF and the insights
gained into system behavior are discussed in Section "Per-
formance Evaluation of RM-DCWF". Lastly, Section "Con-
clusions and Future Work" presents the conclusions and
offers directions for future work.

Related work

The use of distributed computing environments for pro-
cessing multi-stage jobs (workflows) has received signifi-
cant attention from researchers in the past few years. A
representative set of existing work related to resource
management on distributed systems for processing multi-
stage jobs, including workflows (see Section "Resource
management on distributed systems for processing work-
flows") and MapReduce jobs (see Section "Resource man-
agement techniques on distributed systems for processing
MapReduce jobs"), is presented next.

Resource management on distributed systems for
processing workflows
A representative set of existing work related to resource
management on clouds for processing workflows is pre-
sented next. A workflow is usually modelled using a
directed acyclic graph (DAG) where each node in the graph
represents a task in the workflow and the edges of the graph
represent the precedence relationships among the tasks.
The focus of [12, 13] is on describing workflow schedul-
ing algorithms for grids. More specifically, in [12], the au-
thors propose a workflow scheduling algorithm using a
Markov decision process based approach that aims to op-
timally schedule the tasks of the workflows such that the
number of workflows that miss their deadlines is mini-
mized. The authors of [13] present a heuristic-based work-
flow scheduling algorithm, called Partial Critical Paths
(PCP), whose objective is to generate a schedule that satis-
fies a workflow’s deadline, while minimizing the financial
cost of executing the workflow on a service-oriented grid.
The following papers present various techniques to
schedule workflows on a cloud environment. In [14], a
heuristic scheduling algorithm for clouds to process work-
flows where users can specify QoS requirements, such as a
deadline or financial budget constraint, is presented. The
objective is to ensure that the workflow meets its deadline,
while the financial budget constraint is not violated. The
technique described in [15] uses a particle swarm
optimization (PSO) methodology to develop a heuristic-
based scheduling algorithm to minimize the total financial
cost of executing a workflow in the cloud. PSO is a stochas-
tic optimization technique that is frequently used in com-
putational intelligence. The authors of [16] also present a
PSO-based technique (set-based PSO) for scheduling work-
flows with QoS requirements, including deadlines, on
clouds. In [17], a Cat Swarm Optimization (CSO)-based

Page 3 of 24

workflow scheduling algorithm for a cloud computing en-
vironment is presented. The proposed algorithm considers
both data transmission cost and execution cost of the
workflow, and its objective is to minimize the total
cost for executing the workflow.

The research described in [18] devises a resource manage-
ment technique for workflows with deadlines executing on
hybrid clouds. Initially, the algorithm attempts to only use
the resources of the private cloud to execute the workflow.
However, if the deadline of the workflow cannot be met, the
algorithm decides the type and number of resources to allo-
cate from a public cloud so as to satisfy the deadline of the
workflow. The framework presented in [19] focuses on the
virtual machine (VM) provisioning problem. It uses an ex-
tensible cost model and heuristic algorithms to determine
the number of VMs that should be provisioned in order to
execute a workflow, while considering requirements such as
the completion time of the workflow. The framework uses
both single and multi-objective evolutionary algorithms to
perform resource allocation and scheduling for the work-
flows. In [20], the authors present an evolutionary multi-
objective optimization-based workflow scheduling algo-
rithm, specifically designed for an infrastructure-as-a-service
platform, that optimizes both the workflow completion time
and cost of executing the workflow.

In [21], the authors present a resource allocation
technique based on force-directed search for processing
multi-tier Web applications where each tier provides a
service to the next tier and uses services from the pre-
vious tier. The focus of [22] is on scheduling multiple
workflows, each one with their own QoS requirements.
The authors present a scheduling strategy that con-
siders the overall performance of the system and not
just the completion time of a single workflow. In [23],
the authors describe a workflow scheduling technique for
clouds that considers workflows with deadlines and the
availability of cloud resources at various time intervals
(time slots). The motivation is that public cloud service
providers do not have unlimited resources and their re-
sources must be shared among multiple users. Thus, the
scheduling algorithm has to consider the available time
slots for executing the user’s requests and not assume that
resources are unlimited and can be used at any time.

Resource management techniques on distributed systems
for processing MapReduce jobs
This section presents a representative set of work that
focuses on describing resource management techniques
for platforms processing MapReduce jobs with deadlines,
which have become important for latency-sensitive
business or scientific applications, such as live business
intelligence and real-time analysis of event logs [24].

In [24], the authors present a technique called Minimum
Resource Quota Earliest Deadline First with Work-



Lim et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:21

Conserving Scheduling (MIinEDF-WC) for processing
MapReduce jobs characterized by deadlines. MinEDF-WC
allocates the minimum number of task slots required for
completing a job before its deadline and has the ability to
dynamically allocate and deallocate resources (task slots)
from active jobs when required.

A policy for dynamic provisioning of public cloud re-
sources to schedule MapReduce jobs with deadlines is
described in [25]. Initially, jobs are executed on a local
cluster and if required, resources from a public cloud are
dynamically provisioned to meet the job’s deadline. The
authors of [26] devise algorithms for minimizing the cost
of allocating virtual machines to execute MapReduce
jobs with deadlines. For example, the authors present a
Deadline-aware Tasks Packing (DTP) approach where
the idea is to assign the map tasks and reduce tasks of
jobs to execute on existing VMs as much as possible
until a job cannot meet its deadline, in which case a new
VM is provisioned to execute the job.

In [27], the authors focus on the joint considerations of
workload balancing and meeting deadlines for MapReduce
jobs. Scheduling algorithms are proposed that are based on
integer linear programming and solved with a linear
programming solver using a rounding approach. A new
MapReduce scheduler for processing MapReduce jobs with
deadlines based on bipartite graph modelling, called the Bi-
partite Graph Modeling MapReduce Scheduler (BGMRS),
is presented in [28]. BGMRS considers nodes with varying
performance (e.g., those present in a heterogeneous cloud
computing environment) and is able to obtain the optimal
solution of the scheduling problem for a batch workload
by transforming the problem into a well-known graph
problem: minimum weighted bipartite matching.

In [29], a MapReduce Constraint Programming based
Resource Management technique (MRCP-RM) is pre-
sented for processing an open stream of MapReduce jobs
with SLAs, where each SLA comprises an earliest start
time, an execution time, and a deadline. The objective of
MRCP-RM is to minimize the number of jobs that miss
their deadlines. Furthermore in [30], the authors adapt the
MRCP-RM algorithm and implement it on Hadoop [31],
which is a popular open-source framework that imple-
ments the MapReduce programming model. Experiments
are conducted on a Hadoop cluster deployed on Amazon
EC2 that demonstrate the effectiveness of the resource
management technique.

Comparison with related work

The related works described in this section consider
multi-stage jobs (workflows) with deadlines; however,
most of the works focus on scheduling a single workflow
or a fixed number of workflows (i.e. a batch workload on a
closed system). To the best of our knowledge, none of the
existing work focuses on all aspects of the resource

Page 4 of 24

management problem that this paper focuses on: match-
making and scheduling an open stream of multi-stage jobs
(that includes both scientific workflows and MapReduce
jobs) with SLAs, where each SLA is characterized by an
earliest start time, an execution time and an end-to-end
deadline, on a distributed computing environment, such
as a set of resources acquired a priori from a public cloud.

Problem description and resource management
model

This section describes how the problem of matchmaking
and scheduling an open stream of multi-stage jobs with
SLAs on a distributed computing environment is mod-
elled (see Fig. 1). Such an environment can correspond
to a private cluster or a set of nodes acquired a priori
from a cloud (e.g., Amazon EC2) for processing the jobs.
The distributed environment is modelled as a set of
resources, R={ry,ry,...,7,,} where m is the number of
resources in the system. Each resource r in R has a
capacity (c,), which specifies the number of tasks that re-
source r can execute in parallel at any point in time.
Note that other researchers have modelled resources in
a similar manner (see [12, 14, 16, 18], for example).

The system is subject to an open stream of multi-stage
jobs. Each multi-stage job j that arrives on the system is
characterized by an earliest start time (s;) and an end-to-
end deadline (d;) by which the job j should complete exe-
cuting. In addition, each job j also comprises a set of tasks,
where each task ¢ has an execution time (e;) and can have
one or more precedence relationships. The multi-stage
job and the precedence relationships between its tasks can
be modelled using a directed acyclic graph (DAG) (see
Fig. 2, for example). The nodes (vertices) of the DAG rep-
resent the tasks of the job, and the edges of the DAG show
the precedence relationships between the tasks of the job.

The example multi-stage job shown in Fig. 2 is charac-
terized by two phases of execution where the number i
in the small circle indicates the i”* execution phase. An
execution phase in a multi-stage job is a collection of
tasks that perform a specific function in the job. Note
that the execution phase that a constituent task belongs
to is specified by the user when the job is submitted to
the system. In the sample job shown in Fig. 2, the first
phase of execution comprises three tasks: t1, t2, and t3,
and the function of these three tasks is to read and parse
the input data. These three tasks do not have any direct
preceding tasks (referred to as parent tasks) that need to
be completed before they start executing. This implies
that these tasks can start executing at the job’s earliest
start time specified by the user. The tasks t4 and t5,
which analyze and perform computation on the parsed
data, are part of the second phase of execution. Each of
these tasks has a parent task t0, as well as indirect pre-
ceding tasks tl, t2, and t3. The tasks t4 and t5 cannot



Lim et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:21

Page 5 of 24

m

S5 0

Resource Manager

| sob3 | job2 [ Job1 | RM-DCWF
Job Queue
ﬁ Resource 1 Resource m
Users i i i i
CPU1 CPU2 CPU1 CPU2

Fig. 1 Example of a system deploying RM-DCWF

NS

start executing until task tO finishes, which in turn
cannot start executing until tasks t1, t2, and t3 finish
executing. Note that some workflows are modelled using
a DAG with special tasks, referred to as dummy tasks,
whose only purpose is to enforce precedence relation-
ships between tasks in the DAG, and thus, dummy tasks
have an execution time equal to 0. For example, in Fig. 2,
task t0 is a dummy task that ensures tasks in the second
phase of execution start to execute only after all the tasks
in the first phase have completed.

As shown in Fig. 1, jobs that arrive on the system are
placed in a job queue, where jobs are sorted by non-
decreasing order of their deadlines (i.e., jobs that have
earlier deadlines are placed in front of jobs with later
deadlines). The resource manager uses RM-DCWE, pre-
sented in this paper, to perform matchmaking and sched-
uling. More specifically, when the resource manager is
available (i.e., not busy mapping another job) and the job
queue is not empty, it removes the first job in the job
queue to map onto the resources of the system, R. The re-
quirements for mapping the jobs on to R are described

C
0}

O = Execution Phase

Read and parse data @

Analyze parsed data @

Fig. 2 DAG of a sample multi-stage job

next. The tasks of each job j can only execute after s; and
after their parent tasks have completed executing. In
addition, each task of job j should complete its execution
before the deadline of the job (d)); otherwise, job j will
miss its deadline. Note that 4} is a soft deadline, meaning
that although jobs are permitted to miss their deadlines,
the desired system objective is to minimize the number of
late jobs. At any point in time, the number of tasks that a
resource r in R can execute in parallel must be less than
or equal to its capacity, ¢, A resource will execute the
tasks it has been assigned in the order generated by
RM-DCWE. However, a task that has been scheduled
but has not started executing can be rescheduled or
assigned to another resource, if required.

Deadline budgeting algorithm for workflows
Algorithm 1 presents the Deadline Budgeting Algorithm
for Workflows (DBW algorithm), which is used by RM-
DCWE to decompose the end-to-end deadline of a multi-
stage job into components and to assign each task of the
job a sub-deadline. The input required by the DBW algo-
rithm is a multi-stage job j and two integer arguments:
setOpt to indicate the approach used to calculate the sam-
ple execution time of the job j (SET;) and laxDistOpt to
specify how the laxity (or slack time) of the job j (L)) is to
be distributed among its constituent tasks. SET; is an esti-
mate of the execution time of job j that is calculated by
the DBW algorithm and L; is the extra time that job j has
for meeting its deadline, if it starts executing at its earliest
start time. L; is calculated as follows:

L]‘ = dj—Sj—SET/ (1)

The first step of the DBW algorithm is to calculate
SET; (line 1). SET; is calculated using the user-estimated



Lim et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:21

task execution times of the job and can be calculated
in one of two ways, depending on the supplied
setOpt argument. The first approach (setOpt = 1)
is to calculate the execution time of job j when it ex-
ecutes at its maximum degree of parallelism on the
set of resources R with m resources, while not con-
sidering any contention for resources (denoted SETY).
Recall from the previous section, the definition of R,
which is a set of resources that models the distrib-
uted system job j will execute on. The approach used
by the algorithm for matchmaking and scheduling the
tasks of job j onto the m resources and computing
SET/I'e is briefly described. The tasks of job j are allo-
cated in non-increasing order of their execution
times: the ready task with the highest required task
execution time is allocated first; the task with the
next highest execution time is considered next and so
on. Tasks are considered ready when all of their par-
ent tasks, as captured in the precedence graph that
characterizes the workflow, have completed executing.
A best-fit technique is used for allocating the tasks of
the job to the resources. Each task of the job is allo-
cated on that resource that can execute the task at its
earliest possible time. Thus, the algorithm attempts to
complete each task and the job at its earliest possible
finish time. The second approach (setOpt = 2) is to
calculate the execution time of the job when it exe-
cutes on R, while considering the current processing
load of the resources (i.e., considering the other jobs
already executing or scheduled on R) (denoted
SET/R*P L), This is accomplished by scheduling the job
on the system’s resources to retrieve its expected
completion time and then removing the job from the
system. Next, the algorithm calculates the laxity of
the job (L;) using Eq. 1 (line 2). Note that when L; is
calculated using SET; equal to SET,R, the laxity of the
job is referred to as the sample laxity (SL) because
the job execution time is calculated on R without
considering the current processing load of the re-
sources in R. When L; is calculated using SET; equal
to SE T,{LP ~, the laxity of the job is referred to as the true
laxity (TL) because the job execution time is calculated
on R while considering the current processing load of the
resources in R. The final steps of the algorithm are to dis-
tribute the laxity of the job to each of its constituent tasks
and to calculate a sub-deadline for each of the tasks (line
3) by invoking one of two algorithms devised: (1) the Pro-
portional Distribution of Job Laxity (PD) Algorithm, which
is described in Section "Proportional Distribution of Job
Laxity Algorithm", and (2) the Even Distribution of Job
Laxity (ED) Algorithm, which is discussed in Section "Even
Distribution of Job Laxity Algorithm". The algorithm that
is used depends on the supplied laxDistOpt input
argument.

Page 6 of 24

Algorithm 1: Deadline Budgeting Algorithm for Workflows

Input: job j, integer setOpt, integer laxDistOpt

Output: none

1: Depending on setOpt, calculate the sample execution time of job j (SET}).
2: jobLaxity < d;— sj— SET;

3: According to laxDistOpt, invoke the PD algorithm or the ED algorithm.

Proportional distribution of job laxity algorithm
The PD algorithm (shown in Algorithm 2) distributes the
laxity of the job to its constituent tasks according to the
length of the task’s execution time. This means that a task
with a longer execution time is assigned a larger portion
of the job’s laxity, resulting in the task having a higher
sub-deadline. The input required by the algorithm in-
cludes a job j to process and an integer argument,
setOpt, to indicate how SET; is calculated. Recall from
the discussion earlier that SET; can be calculated in one of
two ways: setOpt = 1 corresponds to SET}R and
setOpt = 2 corresponds to SET;-"". A walkthrough of
the algorithm is provided next.

The first step of Algorithm 2 is to calculate the sample
completion time of job j (denoted SCT)) as:

SCT; = 5; + SET;

where s; is the earliest start time of job j (line 1). The
second and third steps involve retrieving s; and Lj, respect-
ively, of the supplied job j and saving them in local
variables (lines 2—3). Next, the PD algorithm performs the
following operations on each task ¢ in the job j (line 4).
The first operation is to calculate the cumulative laxity of
the task ¢ (denoted CL,) (line 5) as:

o SCTt—Sj L

CL, =
‘T SCTs

where SCT; is the sample completion time of task ¢.
Note that the sample completion time of each task is
determined during the calculation of SET; (line 1 in
Algorithm 1) as follows:

SCTt =8+ e

where s, is the scheduled start time of task ¢ (determined by
the scheduling algorithm) and e, is the execution time of
task z. The cumulative laxity of a task ¢ is the maximum
laxity that task ¢ can have (i.e. the laxity that task ¢ has given
that none of ¢’s preceding tasks, direct or indirect, use any
of their laxities). After calculating CL,, the sub-deadline of
the task ¢ (sd,) is then calculated (line 6) as follows:

sd, = SCT, + CL, (2)

The sub-deadline of the task ¢ is then set as shown in
line 7. If the task ¢ does not have more than one parent
task, the processing of task ¢ is complete and the algo-
rithm moves on to process the next task; otherwise, the
algorithm invokes the task’s setParentTasksSubDeadlines()



Lim et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:21

method (lines 8-10). The objective of this method is to
set the sub-deadline of all of s parent tasks to the sub-
deadline of the task among all of #’s parent tasks that has
the highest sub-deadline. The reason for performing this
operation is that a task ¢ cannot start executing until all of
its parent tasks finish executing, and thus, all the parent
tasks of task ¢ should have the same sub-deadline. Note
that after adjusting the sub-deadlines of the parents of task
t, the sub-deadlines of the grandparents of task ¢ are not
altered as they do not need to be adjusted. The PD algo-
rithm ends after processing all the tasks in the job j.

Algorithm 2: Proportional Distribution of Job Laxity Algorithm
Input: job j, integer setOpt

Output: none

1: Depending on setOpt, calculate SCT; and store the value in sct.

2: est € j.getEarliestStartTime()

3: jobLaxity € j.getLaxity()

4: for each task t in jobj do

5: cumulativeLaxity < [(t.getSCT() - est) / (sct— est)] * jobLaxity
6: subdeadline € t.getSCT() + cumulativeLaxity
7

8

9

10:

t.setSubDeadline(subdeadline)
if t has more than one parent task then
call setParentTasksSubDeadline(t)
end if
11: end for

Even distribution of job laxity algorithm

The ED algorithm (see Algorithm 3) does not consider
the length of the task’s execution time and instead distrib-
utes the laxity of the job evenly among the execution
phases of the job. Recall from Section "Problem Descrip-
tion and Resource Management Model" that an execution
phase in a multi-stage job is a collection of tasks that
perform a specific function in the job. The ED algorithm
requires each task in a job to have an execution phase
attribute, which is an integer (1, 2, 3, ...) that indicates the
phase of execution that the task belongs to. A walk-
through of the ED algorithm is provided next.

Algorithm 3: Even Distribution of Job Laxity Algorithm
Input: job j
Output: none
JjobLaxity € j.getLaxity()
:  executionPhases € Get the number of execution phases in job j.
:  laxPerEP € jobLaxity / executionPhases
: Create an empty map, cumulativeLaxities <execution phase, cumulative laxity>.
for i = 1to executionPhases do
cl € i*laxPerEP
cumulativeLaxitites.put(i, cl)
: end for
: for each task t in job j do
ep € t.getExecutionPhase()
cumulativeLaxity € cumulativeLaxities.get(ep)
subDL € t.getSCT() + cumulativeLaxity
t.setSubDeadline(subDL)
if t has more than one parent task then
call setParentTasksSubDeadline ()
end if
17: end for

Bom R R e "
shiGpREse®IARe R

The input required by the algorithm is a job j to process.
The first step is to retrieve the laxity of the job and save the
value in a local variable (line 1). Next, the algorithm

Page 7 of 24

retrieves the number of execution phases in job j and stores
the value in a variable named executionPhases (line 2). This
is accomplished by checking the execution phase attribute
of each task ¢ in job j. The laxity that each execution phase
should be assigned is then calculated as follows:

L? = Lj/n”

where 7 is the number of execution phases in job j
(line 3). The cumulative laxity for each execution phase,
which is the maximum amount of laxity that an execution
phase can have, is then calculated as shown in lines 4-8.
More specifically, the cumulative laxity of each execution
phase ph for a job j is calculated as:

ph _ ep
CL;" =ph x L;

where ph is an integer in the set {1, 2, 3, ..., #’} that rep-
resents the execution phase. A map data structure named
cumulativeLaxities is used to store the cumulative
laxity for each execution phase, where the key is the exe-
cution phase and the value is the cumulative laxity. The
last phase of the algorithm (lines 9-17) uses the cumula-
tive laxity values to calculate and assign a sub-deadline for
each of job j’s tasks. The following operations are per-
formed on each task ¢ of job j. First, the execution phase
of the task ¢ is retrieved as shown in line 10. The cumula-
tive laxity of the task is then retrieved from the cumulati-
velaxities map using the value of the execution phase as
the key (line 11). Next, the sub-deadline of the task is cal-
culated using Eq. 2 and assigned to the task (lines 12-13).
Similar to the PD algorithm, the ED algorithm invokes
setParentTasksSubDeadlines () if the task ¢ has
more than 1 parent task. After all the tasks of job j are
processed the algorithm ends.

RM-DCWF’s matchmaking and scheduling algorithm
This section describes RM-DCWPF’s matchmaking and
scheduling algorithm (also referred to as the mapping al-
gorithm), which is composed of two sub-algorithms: (1)
the Job Mapping algorithm (discussed in Section "Job
Mapping Algorithm") and (2) the Job Remapping algo-
rithm (described in Section "Job Remapping Algorithm").
When there is a job j available to be mapped, the Job
Mapping algorithm is invoked. If the Job Mapping algo-
rithm is unable to schedule job j to meet its deadline, the
Job Remapping algorithm is invoked to remap job j and a
set of jobs that may have caused job j to miss its deadline.

Job mapping algorithm

The Job Mapping algorithm is comprised of two methods:
(1) mapJob () presented in Algorithm 4 and (2) mapJob-
Helper () described in Algorithm 5. Note that the vari-
ables shown in the algorithms that are underlined indicate
that the variables are fields belonging to RM-DCWEF



Lim et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:21

instead of being local variables. A walkthrough of map-
Job () is provided first, followed by a description of map-
JobHelper (). The input required by maplob() comprises
the following: a job to map j, an integer setOpt, an integer
laxDistOpt, and an integer tsp. Note that except for the
argument tsp, which specifies the task scheduling policy,
these are the same input arguments used by the DBW algo-
rithm. The method returns true if the job j is scheduled to
meet its deadline; otherwise, false is returned.

The first step of mapJob () is to invoke the DBW algo-
rithm to decompose the end-to-end deadline of the job j
and assign each of job js tasks a sub-deadline (line 1). Next,
RM-DCWF’s rootJob field is set to j (line 2). The root-
Job field stores the current job that is being mapped by
RM-DCWE. The third step is to clear RM-DCWFs pre-
vRemapAttempts list (line 3), which stores the various
sets of jobs that a job remapping attempt has previously
processed. RM-DCWF’s jobComparator field, which
specifies how jobs that need to be remapped are sorted, is
then set to the Job Deadline Comparator (line 4) to sort
jobs by non-decreasing order of their respective deadlines.
A more detailed discussion of the purpose of these fields,
which are used by the Job Remapping algorithm, is pro-
vided in the next section. In line 5 RM-DCWTF’s
taskSchedulingPolicy field, which specifies how
tasks are scheduled, is initialized. Two task scheduling pol-
icies are devised. TSPI schedules tasks to execute at their
earliest possible times, and TSP2 schedules tasks to execute
at their latest possible times such that the tasks meet their
respective sub-deadlines. The last step is to invoke Al-
gorithm 5: mapJobHelper () (line 6).

Algorithm 4: RM-DCWF algorithm’s mapJob()

Input: job j, integer setOpt, integer laxDistOpt, integer tsp

Output: a Boolean: true if the job j is scheduled to meet its deadline; false,
otherwise.

call DBW(j, setOpt, laxDistOpt)

rootJob € j

Clear the prevRemapAttempts list.

Set jobComparator to the Job Deadline Comparator.

Set taskSchedulingPolicy < tsp

return mapJobHelper(j, true, true)

easwnn

A walkthrough of mapJobHelper (), which performs
the allocation and scheduling of job j onto the set of re-
sources in the system, is provided next. The input re-
quired by mapJobHelper () includes the following: a
job j to map, a Boolean isRootJob, which is set to true
if this is the first time job j is being mapped; otherwise,
it is set to false, and a Boolean checkDeadline, which
is set to true if the method should try to map job j to
meet its deadline; otherwise, it is set to false and the
method has to map job j on the system, but it does not
have to schedule job j to meet its deadline. The map-
JobHelper () method starts by initializing the local
variable isJobMapped to true (line 1). Next, all of job
J’s tasks that need to be mapped are sorted in non-

Page 8 of 24

increasing order of their respective execution times
(line 2), where ties are broken in favour of the task with
the earlier sub-deadline. If the tasks also have the same
sub-deadline, the task with the smaller task id (a unique
value) is placed ahead of the task with the larger id. The
method then attempts to map each of job j’s tasks (lines 3—
4) by performing the following operations for each task ¢ in
job j. First, the startTime variable is initialized by invoking
the task #'s getEarliestStartTime () method (line 5),
which returns the time that task ¢ can start to execute while
considering any precedence relationships that ¢ has. If
getEarliestStartTime() returns -1, it means that
an earliest start time for task ¢ cannot be determined as yet
because not all of task #s parent tasks have been scheduled.
In this case, napJobHelper () stops processing task ¢ for
the moment and attempts to map the next task in job j
(line 6). On the other hand, if startTime is not —1, the pro-
cessing of task ¢ continues. If RM-DCWF’s taskSchedu-
lingPolicy field is set to TSP2 (line 7), the expected
start time of the task is updated and set as shown in line 8.
The expected completion time of the task is then calculated
using the expected start time of the task (line 9).

After calculating the expected start time and completion
time of task ¢, the method checks whether ¢ has an execu-
tion time equal to O (i.e., checks if task ¢ is a dummy task,
defined in Section "Problem Description and Resource
Management Model") (line 10). If task ¢ is a dummy task, it
does not need to be scheduled on a resource because it has
an execution time equal to 0 and only the task’s scheduled
start time and completion time need to be set (line 11).
The task ¢ is also added to the RM-DCWF’s mapped-
Tasks list (line 12), which stores all the tasks that have
been successfully mapped for job j. On the other hand, if
task ¢ has an execution time greater than 0 (line 13), the
method attempts to find a resource  in R that can execute
¢ at its expected start time. If ¢ cannot be scheduled to exe-
cute at its expected start time, the task is scheduled at the
next best time depending on the value of the taskSche-
dulingPolicy field (line 14). If taskScheduling-
Policy is set to TSP1, the method schedules task ¢ at its
next earliest possible time. On the other hand, if
taskSchedulingPolicy is set to TSP2, the method
schedules the task at its next latest possible time, while en-
suring the task’s sub-deadline is satisfied.

If a resource r cannot be found to complete executing task
¢ before job j’s deadline, it means job j cannot be mapped to
meet its deadline in the current iteration. Thus, if the sup-
plied input argument checkDeadline is set to true (line
15), mapJobHelper () attempts to remap job j and a set
of jobs that may have caused j to miss its deadline by per-
forming the following operations (lines 16—18). First, the
removePartiallyMappedJob () method is invoked to
remove each of the tasks stored in the mappedTasks list
from the system (line 16). Algorithm 7: remapJob()



Lim et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:21

(described in more detail in the next section) is then invoked
and the return value is saved in a variable called isJob-
Mapped (line 17). The next step (line 18) is then to go to
line 27 to check the value of isJobMapped. If isJob-
Mapped is set to true, meaning the job has been successfully
scheduled to meet its deadline, the mappedTasks list is
cleared, job j is added to RM-DCWF’s mappedJobs list
(line 28), and true is returned (line 29). Otherwise, isJob-
Mapped is set to false, meaning job j cannot be scheduled to
meet its deadline (line 30). This leads to mapJobHelper ()
being re-invoked, but this time with the checkDeadline
argument set to false, which will map job j even if it misses
its deadline (line 31). False is then returned (line 32) to indi-
cate job j will not meet its deadline.

Page 9 of 24

Job remapping algorithm

The Job Remapping algorithm is comprised of two
methods: (1) remapJob () presented in Algorithm 6 and
(2) remapJobHelper () outlined in Algorithm 7. A dis-
cussion of remapJob () is provided first, followed by a
discussion on remapJobHelper(). The input argu-
ments required by remapJob () include a job j to remap
and a Boolean isRootJob. The isRootJob argument
is set to true if it is the first invocation of remapJob ()
for attempting to remap job j in this iteration; otherwise,
isRootJob is set to false. If job j and the set of jobs that
may have prevented job j from meeting its deadline are re-
mapped and scheduled to meet their deadlines, the
method returns true; otherwise, false is returned.

Algorithm 5: RM-DCWEF algorithm’s mapJobHelper()

Algorithm 6: RM-DCWF algorithm’s remapJob()

Input: job j, Boolean isRootJob, Boolean checkDeadline
Output: a Boolean: true if the job j is scheduled to meet its deadline; false,
otherwise.

Input: job j, Boolean isRoot.Job
Output: a Boolean: true if job j and the set of jobs to remap all are scheduled to
meet their deadlines; otherwise, false.

1: isJobMapped € true
2: Sort job j’s tasksToMap list in non-increasing order of the execution time of the
task.

3: while the tasksToMap list is not empty do

4: for each task t in job j’s tasksToMap list do

5: startTime < t.getEarliestStartTime()

6: if startTime = -1 then continue

7: if taskSchedulingPolicy = TSP2 then

8: startTime € t.getSubDeadline() — t.getExecutionTime()

9: endTime € startTime + t.getExecTime()

10: if startTime = endTime then

11: t.setScheduledTime(startTime, endTime)

12: mappedTasks.add(t)

13: else

14: Find a resource r in R that can execute t at its requested time or the

next

best time depending on taskSchedulingPolicy.

15: if t cannot be mapped to meet j’s deadline and checkDeadline = true
then

16: call removePartiallyMappedJob()

17: isJobMapped<¢remapJob(job, isRootJob)

18: goto line 27

19: else

20: Maptonr.

21: mappedTasks.add(t)

22: end if

23: end if

24: end for

25: tasksToMap.removeAll(mappedTasks)
26: end while

27: if isJobMapped = true then

28: mappedTasks.clear(); mappedJobs.add(j)
29: return true

30: else

31: call mapJobHelper(job, true, false)

32: return false

33: end if

If either of the conditions shown in line 15 are not true
(ie., a resource is found that can complete executing task ¢
before job j's deadline or the input argument checkDead-
line is false), it means that task ¢ can be scheduled to exe-
cute on resource r (line 20) and ¢ is then added to the
mappedTasks list (line 21). The next task of job j is then
processed by repeating lines 3—26. This sequence of opera-
tions continues until all of job s tasks are mapped on the
system. After all of job j’s tasks have been mapped, lines
27-29 are executed (as described earlier), and then the
method returns.

taskSchedulingPolicy < TSP1

if calling remapJobHelper(j, isRootJob) returns true then
return true

else
if isRootJob = false then return false
Change jobComparator to the Job Laxity Comparator.
return remapJobHelper(j, isRootJob)

end if

A

The first step of remapJob() is to set RM-DCWF’s
taskSchedulingPolicy field to TSP1 so the tasks that
are remapped are scheduled to execute at their earliest pos-
sible times (line 1). The second step is to invoke Algo-
rithm 7: remapJobHelper () (line 2). Recall from line 4
of Algorithm 4 ((mapJob()) that the jobComparator
field, which specifies how the jobs that need to be re-
mapped are sorted, is initially set to the Job Deadline Com-
parator. The Job Deadline Comparator sorts jobs in non-
decreasing order of their respective deadlines with ties
broken in favour of the job with the smaller laxity (ie.,
tighter deadline). If remapJobHelper () returns true,
remapJob() also returns true (line 3). On the other
hand, if remapJobHelper () returns false, remap-
Job () continues by checking the supplied isRootJob
argument (line 4). If isRootJob is false (line 5), meaning
that this invocation of remapJob() is not for the ori-
ginal attempt for mapping job j, the method returns false
to stop this particular remapping attempt from continuing
(line 5). Otherwise, the method continues and RM-
DCWF’s jobComparator field is changed to the Jjob
Laxity Comparator (line 6) and remapJobHelper () is
invoked again to check if remapping the jobs in a different
order can generate a schedule in which all the jobs to re-
map can meet their deadlines (line 7).

The Job Laxity Comparator sorts jobs by non-
decreasing order of their respective normalized laxity
with ties going in favour of the job with an earlier dead-
line. If the jobs have the same deadline, the job with the
earlier arrival time (which is unique for each job) is



Lim et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:21

given priority. The normalized laxity of a job j (denoted
NL)) is calculated as follows:

L:

. — 7

where L; is the laxity of job j and SET; is the sample execu-
tion time of job j (recall Section "Deadline Budgeting Al-
gorithm for Workflows"). The reason for using NIL;
instead of L; for sorting the jobs is because L; is not always
a good indicator of how stringent the deadline of a job is.
A job can have a large laxity value, but still have a very
tight deadline if the job has a high execution time. For ex-
ample, given two jobs: (1) job jI has s;; equal to 0, dj;
equal to 6000, and SET;; equal to 5000, and (2) job j2 has
sj2 equal to 5500, dj, equal to 6000, and SET}, equal to
100. Using this information along with Eq. 1 and Eq. 3,
the following values can be calculated: L;; is equal to 1000,
Lj, is equal to 400, NL;; is equal to 0.2, and NL;, is equal
to 4. As can be observed, job jI has a higher laxity com-
pared to job ;2 (ie., L;; > L;»); however, jI's normalized laxity
is much smaller compared to j2s normalized laxity
(NLj; < NL;5), meaning job jI has a more stringent deadline.

A walkthrough of remapJobHelper () (shown in Al-
gorithm 7) is provided next. The input arguments and out-
put value returned by remapJobHelper () are the same
as those described for remapJob (). The first step of the
method is to retrieve a subset of the jobs already scheduled
on the system that may have caused job j to miss its dead-
line and store these jobs in the jobsToRemap list (line 1).
This includes all the jobs in RM-DCWF’s mappedJobs list
that execute within the interval [s;, d]. Next, the supplied
job j is added to the jobsToRemap list (line 2) and
then the jobsToRemap list is sorted using RM-DCWF’s
jobComparator (line 3). Since it is possible to have mul-
tiple (nested) invocations of remapJobHelper (), lines 4—
6 determine when an invocation of remapJobHelper ()
(referred to as a remapping attempt) should be rejected.
More specifically, before a remapping attempt is started, the
method checks if RM-DCWFs prevRemapAttempts list,
which stores the various sets of jobs that previous invoca-
tions of remapJobHelper () have processed, contains the
same jobs (in the same order) as the jobsToRemap list (line
4). If this is true, the method returns false to stop the remap-
ping attempt (line 5). On the other hand, if the remapping at-
tempt is allowed to continue, the jobsToRemap list is
added to RM-DCWFs prevRemapAttempts list (line
7). Next, the method checks if the supplied argument
isRootJob is true (line 8), and if so, the current state of
the system is saved to a set of variables (line 9). This in-
volves saving the scheduled tasks of each resource in the
system and making a copy of RM-DCWF’s mappedJobs
list. Furthermore, the scheduled start time and assigned
resource for each task currently mapped on the system is

Page 10 of 24

saved. The reason for saving this information is because it
may be changed during the job remapping attempt, and if
the remapping attempt is not successful, the original state
of the system has to be restored.

The next step is to remove all the jobs in jobsToRemap
from the system (line 11), which involves removing the jobs
from RM-DCWF’s mappedJobs list and removing each
task of each job from its assigned resource’s scheduled-
Tasks list. This needs to be done so that the jobs in job-
sToRemap can be remapped on the system. All the jobs in
jobsToRemap that have already missed their deadlines
are then moved to a new list called 1ateJobs (line 12) so
that the jobs that have not missed their deadlines can be re-
mapped first. The jobs in jobsToRemap (line 13) are then
remapped in the specific order as determined by the job-
Comparator (recall line 3). This is accomplished by in-
voking Algorithm 5: mapJobHelper () as shown in line
14. If mapJobHelper() returns true, the method maps the
next job in jobsToRemap. If at any point mapJobHel-
per () returns false (line 14), it means that one of the jobs
in jobsToRemap cannot be scheduled to meet its deadline
and the job remapping attempt has failed. The method then
checks if isRootJob is true (line 15), and if so, the state
of the system that is saved in line 9 is restored (line 16).
False is then returned to indicate that the remapping at-
tempt has failed (line 18). On the other hand, if all the jobs
in jobsToRemap are successfully remapped to meet their
deadlines, the next step is to perform mapping for the jobs
in lateJobs (ie, the jobs that have missed their dead-
lines). This is accomplished by invoking mapJobHel-
per() (Algorithm 5) with the checkDeadline input
argument set to false for each of the jobs in lateJobs
(line 21). Lastly, a value of true is returned by the method
to indicate the remapping attempt is successful (line 22).

Algorithm 7: RM-DCWEF algorithm’s remapJobHelper()
Input: job j, Boolean isRootJob
Output: a Boolean: true if job j and the set of jobs to remap all are scheduled to
meet their deadlines; otherwise, false.
1: jobsToRemap € Get subset of mapped jobs that can cause j to miss its
deadline.
2: jobsToRemap.add(j)
: Sort jobsToRemap using the jobComparator.
:  if prevRemapAttempts list contains the same jobs in the same order as the
jobsToRemap list then
return false
end if
1 Add jobsToRemap to prevRemapAttempts list.
¢ ifisRootJob = true then
Save current state of the system.
10: end if
11: Remove jobs in jobsToRemap from the system.
12: Move jobs in jobsToRemap that have missed their deadlines to the lateJobs list.
13: for each job j1 in jobsToRemap do

w3 ou Hw

°

14: if calling mapJobHelper(jz, false, true) returns false then
15: if isRootJob = true then

16: Restore state of the system saved in line 9.

17: end if

18: return false

19: end if

20: end for
21: Remap each job j2 in lateJobs by calling mapJobHelper(j2, false, false).
22: return true




Lim et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:21

Time complexity analysis of the RM-DCWF matchmaking
and scheduling algorithm

As discussed in this section, the worst-case time com-
plexity of the RM-DCWF matchmaking and scheduling
algorithm is O(#°) where n is the number of jobs (or
workflows) that arrive on the system. In the worst-case
scenario, the algorithm will have to reschedule all the
jobs in the system each time a new job arrives. For ex-
ample, given n = 100, we have the following scenario.
First, a job jI arrives on the system and is scheduled.
Sometime later, a new job j2 (with a deadline that is earl-
ier than jI's deadline) arrives before job jI is completed
and the algorithm schedules j2 and reschedules jI. Be-
fore jobs jI and j2 complete, a new job j3 with a deadline
that is earlier than the deadlines of j1 and ;2 arrives. The
algorithm schedules j3 and then reschedules jI and ;2.
This process continues for the remaining 97 jobs that ar-
rive on the system. The total number of jobs that the al-
gorithm schedules in this worst case is then equal to:

* 1 2
142434 +n=" (”; ) _" ;”

Thus, the worst-case time complexity of the algorithm is
O(1°). Note that in practice, the time complexity of the al-
gorithm will be lower because not all jobs will need to be
rescheduled when a new job arrives on the system. For ex-
ample, some jobs will have completed executing and other
jobs will not need to be rescheduled because they do not
contend with the same time slots as the newly arriving job.
Moreover, if scheduling a job is deemed to take too long be-
cause of the large number of jobs that need to be resched-
uled, it is possible to limit the number of jobs to reschedule.
For example, this can be accomplished by modifying line 1
of Algorithm 7 to restrict the size of the jobsToRemap
list. Such a modification will limit the number of jobs that
can be added to the list, thus limiting the number of jobs
that can be rescheduled at a given point in time.

Furthermore, an in-depth and rigorous empirical per-
formance evaluation of the algorithms using various
workloads and workload and system parameters is pre-
sented in Section "Performance Evaluation of RM-
DCWEF". The results of the performance evaluation (dis-
cussed in more detail in Section "Results of the Factor-
at-a-Time Experiments") demonstrate that the algorithm
leads to a reasonably small system overhead. For ex-
ample, in experiments with a very high contention for
resources, leading to an average resource utilization of
0.9, the average matchmaking and scheduling time of
the algorithm was measured to be less than 0.05 s.

Performance evaluation of RM-DCWF
This section describes the two types of simulation
experiments conducted to evaluate the performance of

Page 11 of 24

RM-DCWE. The first type of experiments (presented in
Section "Results of the Factor-at-a-Time Experiments" and
Section "Investigation of Using a Small Number of Re-
sources”) investigate the effect of various system and
workload parameters on the performance of RM-DCWF.
More specifically, factor-at-a-time experiments are con-
ducted where one parameter is varied and the other pa-
rameters are kept at their default values. The second type
of experiments (presented in Section "Comparison with a
First-in-first-out (FIFO) Scheduler" and Section "Compari-
son with MCRP-RM") compare the performance of RM-
DCWEF with that of a FIFO Scheduler and the MapReduce
Constraint Programming based Resource Management
technique (MRCP-RM) described in [29], respectively.
MRCP-RM has objectives that are similar to that of RM-
DCWE: perform matchmaking and scheduling for an
open stream of multi-stage jobs with SLAs, where each
job’s SLA is characterized by an earliest start time, an exe-
cution time, and an end-to-end deadline.

The rest of this section is organized as follows. The ex-
perimental setup and the metrics used in the performance
evaluation are described in Section "Experimental Setup".
Following this, a description of the system and workload
parameters used in the factor-at-a-time experiments is pro-
vided in Section "System and Workload Parameters for the
Factor-at-a-Time Experiments". The results of the experi-
ments are then presented and discussed.

Experimental setup

The experiments are executed on a PC running Windows
10 (64-bit) with an Intel Core i5-4670 CPU (3.40 GHz)
and 16 GB of RAM. Note that in the experiments, only
the execution of the workload on the system is simulated.
RM-DCWEF and its associated algorithms are executed on
the PC that was described at the beginning of this section.
RM-DCWEF is evaluated in terms of the following per-
formance metrics in each simulation run:

e Proportion of Late Jobs (P) = N/n where N is the
number of late jobs in a simulation run and # is the
total number of jobs processed during the simulation.

o Average Job Turnaround Time (T). The turnaround
time of a job j (fat;) is CT;—s; where CTj is job j’s
completion time and s; is /s earliest start time,
respectively. Thus, T= ¥;  /(tat))/n.

o Average Job Matchmaking and Scheduling Time (O)
is the average processing time required by RM-DCWF
to partition a job’s deadline among its tasks and
matchmake and schedule a job. O = ¥; & /0; )/n where
0; is the processing time required for mapping job j on
the system.

Note that O is a value that is measured using Java’s Sys-
tem.nanoTime() [32] method, whereas P and T are values



Lim et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:21

produced as outputs of the simulation. The O-by-T ratio
(denoted O/T) is used as an indicator of the processing
overhead of RM-DCWE. This is an appropriate indication
of the processing overhead because it puts the measured
values of the algorithm runtimes (O) into context by con-
sidering the value of O relative to the mean job turn-
around time (7).

System and workload parameters for the factor-at-a-time
experiments

The workloads used in the factor-at-a-time experiments
are based on real scientific applications (workflows)
that have been described in the literature. More specif-
ically, the three scientific applications that are used in
the experiments are named CyberShake, LIGO, and
Epigenomics. A brief discussion of each application that
includes presenting the DAG of the workflow is pro-
vided next. A more detailed description of all three
applications can be found in [33].

CyberShake is a seismology application that is created by
the Southern California Earthquake Center to predict earth-
quake hazards in a region. The DAG of a sample Cyber-
Shake workflow is presented in Fig. 3. As shown, the
workflow has five phases of execution. Recall from Section
"Problem Description and Resource Management Model"
that the number i in the small circle indicates the i/ execu-
tion phase. The first, second, and fourth execution phases
each contain multiple tasks to execute whereas the third and
fifth execution phase each only have one task to execute.

The Laser Interferometer Gravitational Wave Observatory
(LIGO) Inspiral Analysis workflow is used to search for
and analyze gravitational waveforms in data collected
by large-scale interferometers. The input data is parti-
tioned into multiple blocks so that the data can be ana-
lyzed in parallel. Fig. 4 shows the DAG of a sample LIGO
workflow, which has 6 phases of execution. In this

Page 12 of 24

sample LIGO workflow there are two blocks of data be-
ing processed in parallel, where each block of data has
multiple waveform data (i.e. TmptlBank tasks) to
process.

The Epigenomics (Genome) workflow is used for auto-
mating several commonly used operations in genome se-
quence processing. Fig. 5 shows a DAG of a sample
Genome workflow, which is characterized by one or
more lanes, each of which starts with the execution of a
fastQSplit task. If there is more than one lane in the
workflow, as shown in the example in Fig. 5, there are
two mapMerge stages. The first mapMerge stage is for
merging the results within a particular lane (execution
phase 6), and the second mapMerge stage (referred to as
the global mapMerge stage) is for merging the results of
all the lanes in the workflow (execution phase 7).

Table 1 outlines the system and workload parameters
used in the factor-at-a-time experiments. These experi-
ments investigate the effect of the following parameters
on system performance: job arrival rate, earliest start
time of jobs, job deadlines, and the number of resources.
A walkthrough of Table 1 is provided next. Note that the
distributions used to generate the parameters of the work-
load, including the job arrival rate, earliest start time of
jobs, and job deadlines are adopted from [11, 29]. The first
component of the table describes the workload. For a
given workflow type (CyberShake, LIGO, or Genome),
there are three job sizes, each of which has an equal prob-
ability of being submitted to the system: small, medium,
and large, comprising 30 tasks, 50 tasks, and 100 tasks, re-
spectively. The distributions used for generating the exe-
cution times of the tasks for each workload are described
in [33]. The open stream of job arrivals is generated using
a Poisson process. The arrival rates used in the experi-
ments of a given workload type are different since each of
the workloads is characterized by jobs with different exe-
cution times. The average execution time of a CyberShake

O = Execution Phase

Fig. 3 DAG of a sample CyberShake application (based on [33])

} ExtractSGT @
Seismogram
} Synthesis @

} ZipSeis (3)

} PeakValCalcOkaya (4)

Fors@




Lim et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:21

Block 1 Block 2
1 1

o

@

00.4 00
\\:Q

, } TmpltBank @

Inspiral
 Fedc

Thinca
Fire

} TrigBank@
Inspiral
} (lower) @

Thinca
(lower) @

O = Execution Phase

Fig. 4 DAG of a sample LIGO application (based on [33])

job, LIGO job, and Genome job on a single resource is
equal to 1551 s, 13,300 s, and 160,213 s, respectively. The
parameters Acs, A g, and Agy specify the job arrival rates
used for the CyberShake, LIGO, and Genome workloads,
respectively. The arrival rates for each workflow are
chosen such that resource utilization ranging from moder-
ate (~50%) to moderately-high (~70%) to high (~90%) is
generated on the system when using the default number

,_
@

>
@

—
@
3>
@
N

S S S e e

fastQSplit @

filterContams @

sol2anger @

fastq2bfq @

map @

mapMerge@

mapMerge (global) @

maqIndex

pileup @

O = Execution Phase

Fig. 5 DAG of a sample Genome application (based on [33])

Page 13 of 24

of resources (50 resources, where each resource has a cap-
acity equal to 2). The earliest start time of a job j (s;) can
be its arrival time (at;) or at a time in the future after at;.
A random variable x, which follows a Bernoulli distribu-
tion with parameter p, is defined. The parameter p is the
probability that a job j has s; greater than az;. If x is 0, s;
equals at; otherwise, s; equals the sum of at; and a value
generated from a discrete uniform (DU) distribution with
a lower-bound equal to 1 and an upper-bound equal to a
parameter s,,,,,. The deadlines of the jobs are generated by
multiplying SET}' (recall Section "Deadline Budgeting Al-
gorithm for Workflows") with an execution time multiplier
(erm) and adding the resulting value to s;. The parameter
em is used to determine the laxity (or slack time) of a job
and is generated using a uniform distribution () where 1
is the lower-bound and em,,,,, is the upper-bound of the
distribution.

The remaining components of Table 1 describe the sys-
tem used to execute the jobs and the configuration of
RM-DCWE. The number of resources (), which repre-
sents the number of nodes in the distributed system for
processing the jobs, is varied from 40 to 50 to 60, where
each resource has a capacity (c,) equal to 2. Recall from
Section "Problem Description and Resource Management
Model", ¢, specifies the number of tasks that a resource r
can execute in parallel at any given point in time. RM-
DCWF’s Job Mapping algorithm can handle resources
with different values of ¢, as the algorithm performs re-
source allocation and scheduling by considering the set of
all the resource slots provided by all the resources in R.
Note that how the capacity of the resources, as reflected
by their number of resource slots, is distributed among
the individual resources in the system does not affect
performance because matchmaking and scheduling are
performed on the resource slots, each of which has an
equal speed of execution. As a result, system performance
does not change if ¢, is different for the different resources
in R as long as the sum of the number of resource slots in
all the resources in R remains the same. Thus, the total
resource capacity of the system, the sum of the number of
resource slots for all the resources in R, is an important
parameter that can affect system performance. This par-
ameter is varied by varying the value of m in the experi-
ments described in Section "Effect of the Number of
Resources".

The configuration of RM-DCWF is defined as x-y-z
where x specifies the laxity distribution algorithm (i.e.,
PD or ED, described in Section "Deadline Budgeting Al-
gorithm for Workflows"), y specifies the approach to
calculate the laxity of the job (i.e., SL or TL, described
in Section "Deadline Budgeting Algorithm for Work-
flows"), and z specifies the task scheduling policy (i.e.,
TSP1 or TSP2, described in Section "Job Mapping Al-
gorithm"). In total, there are 8 different RM-DCWEF



Lim et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:21

Table 1 System and Workload Parameters for the Factor-at-a-Time Experiments

Page 14 of 24

Parameter Values Default Value
Workload
Type {CyberShake, LIGO, Genome} -

Job arrival rate (job/s)

Earliest start time of jobs, s; (sec)

Job Deadline, d; (sec)

Aes = {1/18,1/22, 1/30}
Mg = {1/150, 1/180, 1/265}
Aen ={1/1800, 1/2290, 1/3205}
at, x=0

atj + DU, Smax) x =1

Sp=

where at; is the arrival time of job j, x ~ Bernoulli(0.5),

and Spmay = {1, 5, 25} * 10*

dj = 5, + SET/xem where
em ~ U(1, eMpay) and empna, = {2, 5, 10}

Aes = 1/22
MG = 1/180
Aon = 1/2290
Smax = 50,000
€Mmax = 5

m =50

System
Number of Resources, m m = {40, 50,60}
Resource Capacity =2
Configuration of RM-DCWF
Laxity Distribution Algorithm {PD, ED}
Approach to calculate the job laxity {SL, TL}
Task Scheduling Policy {TSP1, TSP2}

configurations, and thus, for each workload type, the
factor-at-a-time experiments are conducted 8 times.
This is performed to determine which configuration
provides the best performance for a given workload.

Results of the factor-at-a-time experiments

The results of the factor-at-a-time experiments are pre-
sented in this section. Each simulation run was executed
long enough to ensure that the system was operating at
a steady state. Furthermore, each factor-at-a-time experi-
ment is repeated a sufficient number of times such that
the desired trade-off between simulation run length and
accuracy of results was achieved. The confidence inter-
vals for T and O at a confidence level of 95% are ob-
served to remain less than +5% of the respective average
values in most cases. For B the confidence intervals are
observed to be in most cases less than +10% of the aver-
age value. Such an accuracy of the simulation results is
deemed adequate for the nature of the investigation: the
focus of which is investigating the trend in the variation
of a given performance metric in response to changes in
the system and workload parameters and to compare
the performance of the various RM-DCWF configura-
tions. The values averaged over the simulation runs and
the confidence intervals are shown in the figures and ta-
bles presented in this section. In the figures, the confi-
dence intervals are shown as bars originating from the
mean values; however, some of the bars are difficult to
see since the confidence intervals are small. Note that
the confidence intervals are considered while deriving a
conclusion regarding the relative performance of the re-
spective RM-DCWF configurations.

To conserve space and provide clarity of presentation,
only the results of the two RM-DCWF configurations,
one using PD and the other one using ED, that demon-
strated the best overall performance in terms of P are
presented in the following sub-sections. A more detailed
discussion of the results of the performance evaluation
can be found in [34]. More specifically, the two RM-
DCWE configurations that are compared for each work-
load type are summarized:

e PD-SL-TSP1 vs ED-SL-TSP2 for the CyberShake
workload

e PD-SL-TSP1 vs ED-SL-TSP1 for the LIGO workload

e PD-SL-TSP1 vs ED-SL-TSP1 for the Genome
workload

Note that in the following sub-sections, the results of
the experiments using the CyberShake workload are
shown in figures, where P is displayed in its own figure
and T and O are graphed in the same figure with T
being displayed as a bar graph that uses the scale on
the left Y-axis and O being displayed as a sequence of
points that uses the scale on the right Y-axis. To main-
tain a reasonable number of figures, the results of each
of the experiments using the LIGO and Genome work-
loads are shown in their own tables where the values of
P, T, and O can be presented concisely.

Effect of job arrival rate

The impact of the job arrival rate on system perform-
ance is discussed in this section. The results of the
experiments using the CyberShake workload are



Lim et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:21

presented in Fig. 6 and Fig. 7. The figures show that for
PD-SL-TSP1, P, T, and O increase with Acs. When Acg
is high, jobs arrive on the system at a faster rate, which
leads to more jobs being present in the system at a
given point in time and an increased contention for re-
sources. This in turn prevents some jobs from execut-
ing at their earliest start times, resulting in 7 increasing
and some jobs to miss their deadlines (which increases
P). The increased contention for resources also causes
O to increase because RM-DCWF takes more time to
find a resource to map the tasks of the job such that
the job does not miss its deadline. Furthermore, since
jobs are more prone to miss their deadlines at high
values of Acs, RM-DCWPF’s Job Remapping algorithm,
which is a source of overhead, is invoked more often,
contributing to the increase in O.

It is observed that for ED-SL-TSP2, P and O increase
with Acs, and T tends to remain relatively stable. In
addition, when Acs is 1/22 jobs per sec or lower, both
systems achieve comparable values of P; however, when
Acs is 1/18 jobs per sec, ED-SL-TSP2 is observed to
achieve a lower P. This can be attributed to ED-SL-TSP2
efficiently using the laxity of jobs to delay the execution
of jobs with a later deadline to execute jobs with an
earlier deadline, which in turn reduces the contention
for resources at certain points in time and leads to a
lower P. Although, as shown in Fig. 7, by delaying the
execution of jobs, ED-SL-TSP2 achieves a higher T
compared to PD-SL-TSP1. The O of ED-SL-TSP2 is
higher compared to that of PD-SL-TSP1 when Acs is 1/
22 jobs per sec or smaller. This is because more time is
required by TSP2 to search for a resource that can exe-
cute a task at its latest possible time such that its sub-
deadline is satisfied, compared to the time required by
TSP1 to find a resource to execute tasks at their earliest
possible times. However, when Acs is 1/18 jobs per sec,

25 E PD-SL-TSP1 [0 ED-SL-TSP2
2 &
__ 15 i
S i
Q 1 g
0.5 :

1/30 1/22 1/18

A (jobs per sec)
Fig. 6 Effect of Acs on P when using the CyberShake workload

Page 15 of 24

EPD-SL-TSP1: T [ ED-SL-TSP2: T
® PD-SL-TSP1: O A ED-SL-TSP2: O
600 0.05
500 0.04
400
= 0.03 T
8 300 2
~ 0.02 ©
200
100 0.01
0 0
1/30 1/22 1/18
A (jobs per sec)
Fig. 7 Effect of Acs on T and O when using the CyberShake workload

PD-SL-TSP1 has a higher O, which can be attributed to
the Job Remapping algorithm being invoked more often
when using PD-SL-TSP1 compared to when using ED-
SL-TSP2.

Table 2 and Table 3 present the results of the experi-
ments when using the LIGO workload and the Genome
workload, respectively. Unlike the CyberShake work-
load, when using the LIGO and Genome workloads,
configuring RM-DCWF to use ED with TSP2 did not
produce a better performance in comparison to using
ED with TSP1. This demonstrates that TSP2 is only ef-
fective for certain workflows and the average job execu-
tion time and the structure of the job (e.g., precedence
relationships between the tasks of the job) can affect
the performance of TSP2. As shown in the tables, the
trend in performance of P, 7, and O are identical to that
of the CyberShake workload when using PD-SL-TSP1.
Furthermore, the results also show that both PD-SL-
TSP1 and ED-SL-TSP1 achieve very similar results be-
cause TSP1 schedules tasks to start executing at their
earliest possible times, regardless of their respective
sub-deadlines. Over all the experiments performed to
investigate the effect of the job arrival rate, the results
demonstrate that RM-DCWF can achieve low values of
P (less than 2% even at high arrival rates) and has a low

Table 2 LIGO workload: effect of A, on P, T, and O

A\ (jobs/s) P (%) T (sec) O (sec)
PD-SL-  ED-SL-  PD-SL-  ED-SL-  PD-SL- ED-SL-
TSP1 TSP1 TSP1 TSP1 TSP1 TSP1
1/265 0.02 0.02 1346 1346 0.008 0.008
+0.01 +0.01 +0.6 +0.6 +0.00 +0.00
1/180 0.1 0.11 1466 1466 0.009 0.009
+0.01 +0.01 +46 +4.6 +0.00 +0.00
1/150 1.03 1.06 2005 2006 0.017 0.016
+0.12 +0.12 +29 +28 +0.001 +0.001




Lim et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:21

Table 3 Genome workload: effect of Ay on P, T, and O

Ao (jobs/s) P (%) T (sec) O (sec)
PD-SL- ED-SL- PD-SL- ED-SL- PD-SL-  ED-SL-
TSP1 TSP1 TSP1 TSP1 TSP1 TSP1
1/3205 0.01 0.01 17,544 17,544 0.008 0.008
+000  +£000  +927 +927 +0.000  +0.000
1/2290 0.07 0.07 17,963 17,963 0.008 0.008
+0.01 +0.01 +1007 +1007 +0.000  +0.000
1/1800 143 140 52312 52472 0.048 0.051
+045 +044 +12915  +£13,003 +0015 =+0.016

processing overhead as indicated by the small O (less
than 0.025 s) and small O/T (less than 0.005%).

Effect of earliest start time of jobs

The impact of the earliest start time of jobs on system
performance is described in this section. Fig. 8 and Fig. 9
present the results when using the CyberShake work-
load. It is observed that for PD-SL-TSP1, B 7, and O de-
crease with an increase in s,,,,. When s,,,, is large, jobs
have a wider range of earliest start times with some jobs
having an earliest start time near their arrival times,
while other jobs have their earliest start times further in
the future. This leads to less contention for resources
and allows more jobs to execute at or closer to their
earliest start times, resulting in a lower B 7, and O. Simi-
lar to PD-SL-TSP], it is observed that for ED-SL-TSP2,
P and O decrease as s,,,, increases. However, T is ob-
served to increase with s,,,,. This is due to ED-SL-TSP2
scheduling tasks to execute at their latest possible times,
while ensuring the respective sub-deadlines of the tasks
are met. When the contention for resources is low (e.g.,
when s,,,, is large), ED-SL-TSP2 can more readily
schedule tasks to start executing at their latest possible
start times since jobs are less prone to miss their dead-
lines and the Job Remapping algorithm does not need to

Page 16 of 24

E1PD-SL-TSP1: T
® PD-SL-TSP1: O

[0ED-SL-TSP2: T
A ED-SL-TSP2: O

700 N 0.025
()
600 A r 0.02
500 o
S 400 i 0015 g
8 A 2
~ 300 il 001 o
200 ol
100 i 0.005
0 sl o
10000 50000 250000
Smax(sec)

= PD-SL-TSP1 [0 ED-SL-TSP2
0.8
0.6
g

a 04
0.2

0 _ =

10000 50000 250000

Smax (5€€)
Fig. 8 Effect of s, on P when using the CyberShake workload

Fig. 9 Effect of 5,4, on T and O when using the CyberShake workload

be invoked as often. Overall, it is observed that similar
to the results presented in the previous section, ED-SL-
TSP2 tends to achieve a lower P (35% lower on average),
but this is accompanied by a higher 7' (75% higher on
average) and higher O (32% higher on average) com-
pared to PD-SL-TSP1.

The results of the experiments using the LIGO work-
load are presented in Table 4. It is observed that for both
systems, P, T, and O seem to be insensitive to $,,,,,, which
is different from the results of PD-SL-TSP1 shown in
Fig. 8 and Fig. 9, where P, T, and O are observed to
decrease as s,,,,, increases. The reason for this can be at-
tributed to the LIGO workload comprising jobs with
higher average execution times compared to those of the
CyberShake workload, as well as the values of s,,,, used
not significantly reducing the amount of jobs that have
overlapping execution times (i.e., not reducing the con-
tention for resources). The average job execution time
(on a single resource) of the CyberShake workload
(equal to 1551 s) is much smaller compared to that of
the LIGO workload (13,300 s).

Table 5 presents the results of the experiments using the
Genome workload. It is observed that P and T tend to
increase and O remains stable as s,,,, increases. The
increase in P could be attributed to the values of s,,,,
experimented with (e.g., 50,000 and 250,000 s) causing
more jobs to have overlapping execution times and thus
increasing the contention for resources. This did not hap-
pen when using the other two workloads because the
Genome workload comprises jobs with very high average
execution times (~160,213 s on a single resource), which
is significantly higher compared to those of the Cyber-
Shake and LIGO workloads. Increasing the values of s,,,,,
experimented with when using the Genome workload is
expected to generate a similar trend in performance to the
results of the CyberShake workload. This is because there
will be less chance for the execution of jobs to overlap
with one another.



Lim et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:21

Table 4 LIGO workload: effect of 5,4, on P, T, and O

Smax (5€C) P (%) T (sec) O (seq)
PD-SL-  ED-SL-  PD-SL-  ED-SL-  PD-SL-  ED-SL-
TSP1 TSP1 TSP1 TSP1 TSP1 TSP1
10,000 0.10 0.10 1450 1450 0.009 0.009
+0.01 +0.01 +33 +33 +0.000  +0.000
50,000 0.1 0.11 1466 1466 0.009 0.009
+0.01 +0.01 +4.6 +4.6 +0.000  +0.000
250,000 0.09 0.08 1441 1427 0.009 0.009
+0.01 +0.01 +4.7 +4.1 +0.000  +0.000

Effect of job deadlines

The impact of job deadlines on system performance is
presented in this section. The results of the experiments
using the CyberShake workload, as depicted in Fig. 10
and Fig. 11, show that for both systems, P decreases as
€M, 4, increases. This is because at a higher em,,,,, jobs
have more laxity and are thus less susceptible to miss
their deadlines. Moreover, for ED-SL-TSP2, T is ob-
served to increase as em,,,, increases. This can be attrib-
uted to jobs not having to execute at or close to their s;
to meet their deadlines when they have more slack time
and the Job Remapping algorithm having to be executed
less often. In addition, RM-DCWF may delay the execu-
tion of some jobs to allow a job with an earlier deadline
to execute first. On the other hand, when em,,,,, is small,
jobs need to execute closer to their earliest start times
and the Job Remapping algorithm is invoked when a job
cannot be scheduled to meet its deadline. O is thus ob-
served to increase for both systems, as em,,,,, decreases
because it leads to multiple invocations of the Job Remap-
ping algorithm.

When comparing PD-SL-TSP1 and ED-SL-TSP2, it is
observed that both systems perform comparably in
terms of P when em,,,, is 5 or 10. However, when em,,
is 2, it is observed that PD-SL-TSP1 achieves a smaller P
compared to ED-SL-TSP2. This is because when the
deadlines of the jobs are more stringent, jobs need to
execute closer to their earliest start times to meet their
deadlines, which agrees with the objective of TSP1 and
not with the objective of TSP2, which schedules jobs to

Table 5 Genome workload: effect of s,,,c on P, T, and O

Smax (5€C) P (%) T (sec) O (sec)
PD-SL-  ED-SL-  PD-SL-  ED-SL-  PD-SL-  ED-SL-
TSP1 TSP1 TSP1 TSP1 TSP1 TSP1
10,000 0.04 0.04 17,693 17693  0.008 0.008
+0.01 +0.01 +959 +959 +0.000  +0.000
50,000 0.07 0.07 17,963 17,963 0.008 0.008
+0.01 +0.01 +1007 #1007  +0.000  +0.000
250,000 0.08 0.08 18,171 18,171 0.008 0.008
+0.01 +0.02 +1049  £1049  +0.000  +0.000

Page 17 of 24

E PD-SL-TSP1 [0 ED-SL-TSP2
5
4
g 3
Q
2
1
0 =53 o= —
5 10
emmax

Fig. 10 Effect of em,,o, on P when using the CyberShake workload

execute at their latest possible times. Similar to the re-
sults described in the previous sections, PD-SL-TSP1
also achieves a lower T and a lower or similar O com-
pared to ED-SL-TSP2.

The results of the experiments using the LIGO work-
load and Genome workload are presented in Table 6 and
Table 7, respectively. It is observed that the trend in per-
formance observed for both systems when using the LIGO
and Genome workloads are identical to that of the Cyber-
Shake workload when using PD-SL-TSP1: P decreases, O
decreases, and T remains approximately at the same level
as em,,,, increases. Overall, it is observed that RM-
DCWTF can achieve a low P (less than 4.2%) even when
jobs have tight deadlines (i.e., em,,,,, is 2). In addition, O is
small (less than 0.03 s), and the processing overhead, as
indicated by O/, is less than 0.01% for all the experiments
described in this sub-section.

B PD-SL-TSP1: T 1 ED-SL-TSP2: T
® PD-SL-TSP1: O A ED-SL-TSP2: O
1000 0.035
300 P _ 0.03
::::: 0.025
'g 600 A Aiiisi 0.02 g
= 400 d .Eifif 0.015 §
i 0.01
200 I il 0.005
0 L )
2 5 10
em,,,.
Fig. 11 Effect of em,,, on T and O when using the CyberShake
workload

- J




Lim et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:21

Effect of the number of resources

In this section, the impact of m, the number of re-
sources, on system performance is discussed. From the
results of the experiments using the CyberShake work-
load (refer to Fig. 12 and Fig. 13), it is observed that for
PD-SL-TSP1, B T, and O decrease as m increases. This
is because as m increases, there are more resources in
the system to execute the jobs, leading to a lower con-
tention for resources. The reason for the higher O
when m is small can be attributed to the Job Mapping
algorithm requiring more time to find a resource to
map a task. When there are fewer resources in the sys-
tem (small 1), there are more tasks scheduled on each
resource, leading to more time being required to find
the ideal resource to execute a task. In addition, the
high contention for resources makes jobs susceptible to
miss their deadlines and leads to RM-DCWF’s Job
Remapping algorithm being invoked more often.

For ED-SL-TSP2, B T, and O follow a similar trend in
performance as observed for PD-TL-TSP1, except when
m is 60. When m is 60, T is slightly higher compared to
the case when m is 50. This can be attributed to the
availability of ten additional resources, resulting in a
lower contention for resources and a smaller B and thus
leading to a lower number of invocations of the Job
Remapping Algorithm, which remaps jobs to start exe-
cuting at their earliest possible times. This in turn allows
TSP2 to schedule more tasks to execute at their latest
possible times, while satisfying their respective sub-
deadlines.

When comparing the performance of PD-SL-TSP1
and ED-SL-TSP2 for the CyberShake workload, it is ob-
served that ED-SL-TSP2 achieves a smaller P and the
most significant reduction in P is observed when m is
40 (refer to Fig. 12). Similar to the results presented in
the previous sections (see Fig. 6, for example), schedul-
ing tasks to execute at their latest possible time, while
satisfying their respective sub-deadlines (i.e., using
TSP2) tends to give rise to a lower P but a higher T
when processing the CyberShake workload. The lower
P can be attributed to ED-SL-TSP2 efficiently using the
laxity of jobs to delay the execution of jobs with a later

Table 6 LIGO workload: effect of em;,uc on P, T, and O

€Mmax P (%) T (sec) O (sec)
PD-S- ED-SL- PD-SL- ED-SL- PD-SL- ED-SL-
TSP1 TSP1 TSP1 TSP1 TSP1 TSP1
2 244 243 1458 1457 0.012 0.011
+0.14 +0.14 +44 +44 +0.000 +0.000
5 0.1 0.1 1466 1466 0.009 0.009
+0.01 +0.01 +4.6 +4.6 +0.000 +0.000
10 0.04 0.04 1458 1463 0.009 0.008
+0.01 +0.01 +6.2 +4.6 +0.000 +0.000

Page 18 of 24

Table 7 Genome workload: effect of em,,,,x on P, T, and O

eMmax P (%) T (sec) O (seq)
PD-SL- ED-SL- PD-SL- ED-SL- PD-SL- ED-SL-
TSP1 TSP1 TSP1 TSP1 TSP1 TSP1
2 049 049 17,933 17,933 0.009 0.009
+0.12 +0.12 +1001 +1001 +0.000 +0.000
5 0.07 0.07 17,963 17,963 0.008 0.008
+0.01 +0.01 +1007 +1007 +0.000 +0.000
10 0.03 0.03 17,963 17,963 0.007 0.007
+0.01 +0.01 +1007 +1007 +0.000 +0.000

deadline to execute those with an earlier deadline.
However, as shown in Fig. 13, it is observed that when
m is 40, PD-SL-TSP1 achieves a higher T compared to
ED-SL-TSP2. This can be attributed to PD-SL-TSP1
delaying the execution of multiple jobs that miss their
deadlines for a long period of time for executing jobs
that have not missed their deadlines. In the case of ED-
SL-TSP2, fewer jobs need to be delayed because when
m is 40, ED-SL-TSP2 achieves a smaller P compared to
PD-SL-TSP1 (refer to Fig. 12).

The results of the experiments using the LIGO work-
load (see Table 8) and the Genome workload (see
Table 9) follow a similar trend in system performance
to that of the CyberShake workload when using PD-SL-
TSP1: P decreases, T decreases, and O tends to decrease
as m increases. It is observed once again that both PD-SL-
TSP1 and ED-SL-TSP1 achieve similar results for both
workloads. When m is 60, O is observed to be slightly
higher compared to when m is 50. Even though, there is
less contention for resources when m is 60, the Job Map-
ping algorithm may need to search through more re-
sources to find the resource to schedule a task to start at
its earliest possible time. This in turn leads to a slight in-
crease in O.

E PD-SL-TSP1 [0 ED-SL-TSP2
4
3
§
& 2
1
0 el ] S
50 60
m
Fig. 12 Effect of m on P when using the CyberShake workload




Lim et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:21

EIPD-SL-TSP1: T [1ED-SL-TSP2: T
® PD-SL-TSP1: O A ED-SL-TSP2: O
800
600 0.08
I 0.06 T
8 400 2
~ 0.04 ©
200 0.02
0 0
Fig. 13 Effect of m on T and O when using the CyberShake workload

Investigation of using a small number of resources

In the experiments described in Section "Effect of the
Number of Resources", the number of resources, m, was
varied from 40 to 60. This section describes the results of
a set of experiments conducted to investigate the effect of
using a small number of resources (20 resources, each
with 2 resource slots). In this system, not all jobs will be
able to execute at their maximum degree of parallelism.
The fixed factors in this set of experiments include 1, the
workload, CyberShake, and all the other workload and
system parameters described in Table 1 that are held at
their default values. CyberShake is chosen because it is the
workload that produced the most interesting set of results
in the previous experiments in which the various configu-
rations of RM-DCWF (captured in the last three rows of
Table 1) exhibited different levels of performance. Since
the number of resources is small, the default arrival rates
for the CyberShake workload that are listed in Table 1
could not be used because it would lead to an unstable
system (that is characterized by a job arrival rate exceed-
ing the job service rate). Instead A is set to 1/45, 1/55,
and 1/75 jobs per sec., corresponding to a resource
utilization of approximately 0.9, 0.7, and 0.5. This is in line
with the system utilizations achieved in the experiments
described in Section "Results of the Factor-at-a-Time
Experiments".

Table 8 LIGO workload: effect of m on P, T, and O

m P (%) T (sec) O (sec)
PD-SL- ED-SL- PD-SL- ED-SL- PD-SL- ED-SL-
TSP1 TSP1 TSP1 TSP1 TSP1 TSP1
40 4.11 4.14 3210 3218 0.034 0.032
+0.27 +0.27 +125 +126 +0.003 +0.003
50 0.1 0.1 1466 1466 0.009 0.009
+0.01 +0.01 +4.6 +4.6 +0.000 +0.000
60 0.03 0.03 1360 1360 0.010 0.010
+0.01 +0.01 +1.1 +1.1 +0.000 +0.000

Page 19 of 24

Table 9 Genome workload: effect of m on P, T, and O

m P (%) T (sec) O (seq)
PD-SL- ED-SL- PD-SL- ED-SL- PD-SL- ED-SL-
TSP1 TSP1 TSP1 TSP1 TSP1 TSP1
40 1.29 1.30 52,320 52,106 0.032 0.035
+0.40 +042 +13,743 +13,597 +0.011 +0.012
50 0.07 0.07 17,963 17,963 0.008 0.008
+0.01 +0.01 +1007 +1007 +0.000 +0.000
60 0.02 0.02 17,583 17,583 0.009 0.009
+0.00 +0.00 +935 +935 +0.000 +0.000

Figures 14 and 15 show the effect of A\, on B, T, and O
when processing the CyberShake workload on a system
where m is 20. It is observed from Fig. 14 that PD-SL-
TSP1 outperforms ED-SL-TSP2 in terms of P. This
means that when the number of resources is small, it is
more effective to schedule tasks to start executing at
their earliest possible times (i.e., using TSP1) as opposed
to scheduling tasks to execute at their latest possible
times (using TSP2). In other words, when there are lim-
ited resources, the system should try to execute and
complete jobs as soon as possible to lower the conten-
tion for resources when other jobs arrive on the system.
Fig. 15 also shows that when A is 1/75 or 1/55 jobs per
sec, PD-SL-TSP1 achieves a lower T and similar O com-
pared to ED-SL-TSP2, once again demonstrating that for
a small number of resources and low to moderate job ar-
rival rates it is more effective to schedule tasks to exe-
cute at their earliest possible times. When A is 1/45
jobs per sec, PD-SL-TSP1 still achieves a lower P in
comparison to ED-SL-TSP2. However, it is interesting to
note that for this arrival rate that leads to a high conten-
tion for resources, PD-SL-TSP1 achieves a higher T and
O in comparison to ED-SL-TSP2.

14 E PD-SL-TSP1 [0 ED-SL-TSP2
12 Ean
10 R
-~ 8 =
2 o
a 6 e
4 e b
2 I e
0 E= = bl

1/75 1/55 1/45

A, (jobs per sec)
Fig. 14 Effect of As on P when using the CyberShake workload
with m = 20

- J




Lim et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:21

Page 20 of 24

-

& PD-SL-TSP1: T [ ED-SL-TSP2: T @ PD-SL-TSP1: O A ED-SL-TSP2: O

1400 0.07

1200 =i 0.06

1000 0.05
T 800 004 g
2 )
~ 600 0.03 o

400 0.02

200 0.01

0 0
1/55
A (jobs per sec)
Fig. 15 Effect of A, on T and O when using the CyberShake workload
with m =20

Comparison with a first-in-first-out (FIFO) scheduler

To the best of our knowledge there are no existing al-
gorithms in the literature for matchmaking and sched-
uling on a cloud/cluster subjected to an open stream of
workflows, each of which is characterized by general
precedence relationships among its constituent tasks
and a deadline for completion. In order to investigate
the effectiveness of the various optimization techniques
used in RM-DCWE, a comparison with a simple, conven-
tional technique that does not use such optimization tech-
niques is conducted. A first-in-first-out (FIFO) scheduling
algorithm that can handle multi-phase workflows with
general precedence relationships among its constituent
tasks is devised for the purpose.

In this section, the results of experiments conducted
to compare the performance of RM-DCWF with that of
the conventional FIFO technique are presented. The
FIFO technique devised is a simple scheduling strategy
that stores jobs that arrive on the system in a FIFO
queue. Thus, the jobs are scheduled in the same order in
which they arrive on the system. As in the case with
RM-DCWE, a best-fit strategy (as described in Section
"Deadline Budgeting Algorithm for Workflows") is used
allocate the tasks of a job to resources. For reasons simi-
lar to those discussed in Section "Investigation of Using
a Small Number of Resources”, the CyberShake work-
load is chosen as a fixed parameter and the job arrival
rate, A, is varied. The remaining system and workload
parameters (described in Section "System and Workload
Parameters for the Factor-at-a-Time Experiments") are
once again held at their default values. RM-DCWF is
configured to use ED-SL-TSP2, which as described in
Section "Effect of Job Arrival Rate", is observed to
achieve the best performance when processing the
CyberShake workload.

As shown in Fig. 16, RM-DCWF achieves a signifi-
cantly lower P (99% to 94% smaller as A varies from
1/30 to 1/18 jobs per sec) in comparison to FIFO. This

E1RM-DCWF 0 FIFO
20

& 10 i
Q oL
: i

1/30 1/22 1/18

A, (jobs per sec)
Fig. 16 RM-DCWF vs FIFO: effect of A.s on P when using the
CyberShake workload

can be attributed to RM-DCWF prioritizing the execu-
tion of jobs with earlier deadlines, and FIFO executing
jobs in the order they arrive on the system. Achieving a
low P is the main objective for resource management
performed by RM-DCWE. As far as the secondary per-
formance metric T is concerned, FIFO achieves a lower
T in comparison to RM-DCWTF (see Fig. 17). This is ex-
pected because FIFO prioritizes executing jobs that
have earlier arrival times and schedules each job to exe-
cute at its earliest possible time. This in turn allows
jobs to finish executing earlier and results in jobs hav-
ing a smaller turnaround time. Another reason for
FIFO achieving a lower T is because RM-DCWTF is con-
figured to use TSP2, which schedules tasks to complete
executing at their latest possible times, while not miss-
ing their sub-deadlines. Fig. 17 also displays that RM-
WCDF achieves a slightly smaller O compared to FIFO.
The higher O achieved by FIFO can be attributed to
FIFO attempting to schedule all the arriving jobs, which

5 RM-DCWF: T D FIFO: T ® RM-DCWF: O A FIFO: 0
600 0.06
500 0.05
400 0.04
™ ™
S 300 003 &
~ Q
200 0.02
100 0.01
0 0
A (jobs per sec)
Fig. 17 RM-DCWF vs FIFO: effect of As on T and O when using the
CyberShake workload
.




Lim et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:21

arrive relatively close to each other due to the high ar-
rival rate, to execute at their earliest start times causing
a high contention for resources. RM-WCDF makes use
of the slack time of jobs to delay their execution, which in
turn results in less contention for resources at certain
points in time. The experimental results demonstrate the
effectiveness of RM-DCWF that uses a number of
techniques for optimizing system performance. This is
demonstrated by the achieving of a lower P and O by RM-
DCWEF in comparison to a simple scheduling technique
such as FIFO.

Comparison with MCRP-RM

This section discusses the results of the experiments
conducted to compare the performance of RM-DCWF
with that of MRCP-RM [29] (described in Section "Related
Work"). Note that MRCP-RM is only applicable to jobs
with two phases of execution, such as MapReduce [7]
jobs, whereas in addition to MapReduce jobs, RM-DCWF
can also handle jobs with different structures and more
than two execution phases. Thus, the workload that is
used in this comparison is a synthetic MapReduce work-
load that is used and described in [29]. RM-DCWTF is con-
figured to use PD-SL-TSP1, which is observed to have the
best performance when processing this MapReduce
workload. Factor-at-a-time experiments are performed
to investigate the effect of various system and work-
load parameters on the performance of RM-DCWF
and MRCP-RM.

Figure 18 and Table 10 present the performance of
RM-DCWF and MRCP-RM in terms of B 7, and O as
the job arrival rate (\) is varied. As shown in Fig. 18,
when A is 0.0175 jobs per sec or smaller, the resource
contention levels are low-to-moderate (e.g., average
resource utilization is approximately less than 0.7), and
it is observed that both RM-DCWF and MRCP-RM
achieve comparable values of P. However, when \ is

5 RM-DCWF & MRCP-RM
10
9
: }
7 i
o 6 :
& 5 e
a 1 E:
3
2 . :E
: 3
- i
IR G R RN R I
S NS >N Q
S T O NGNS
A (jobs per sec)
Fig. 18 RM-DCWF vs MRCP-RM: effect of A on P

Page 21 of 24

Table 10 RM-DCWF vs MRCP-RM: effect of A on T and O

A (jobs/s) T (sec) O (sec)

RM-DCWF MRCP-RM RM-DCWF MRCP-RM
0.001 383+2 383+2 0010 +0 0018 +0
0.01 395+ 2 394 + 2 0010+ 0 0.043 £ 0
0.015 413 £2 417 £2 0010+ 0 0074+ 0
0.175 429+ 2 435+ 25 0012+ 0 0100
0.1875 444 + 3 450+ 3 00130 012+0
0.02 465 £ 4 471 £3 0012+0 0.18 £ 0.01
0.02125 502+ 6 508 £ 6 0016 £0 025+ 0.02
0.0225 564 + 12 566 + 10 0019+ 0 043 + 0.04
0.025 1332+ 76 1788 £ 118 0110+ 0 29 + 048

between 0.01875 to 0.0225 jobs per sec, generating a
moderate-to-high contention for resources (e.g., average
resource utilization is approximately between 0.7 and
0.85), MRCP-RM is observed to achieve up to a 22%
lower P (on average 11% lower) compared to that
achieved by RM-DCWE. At very high values of \ (e.g.,
0.025 jobs per sec or higher), it is observed that the
performance of MRCP-RM starts to deteriorate and
RM-DCWEF starts to outperform MRCP-RM (RM-
DCWTF has a 37% reduction in P). This can be attrib-
uted to the very high contention for resources (average
resource utilization is greater than 0.9) causing jobs to
queue up on the system and MRCP-RM having to solve
complex constraint programs comprising a large num-
ber of decision variables and constraints. MRCP-RM
requires more time to solve these complex constraint
programs, which results in O increasing. The high O
causes a delay in the execution of jobs and leads to jobs
missing their deadlines. For all the values of A experi-
mented with, it is observed that RM-DCWF achieves a
significantly lower O compared to MRCP-RM (on aver-
age 85% lower) (see Table 10). This can be attributed to
RM-DCWF using a heuristic-based matchmaking and
scheduling algorithm that is less computationally-
intensive compared to MRCP-RM’s matchmaking and
scheduling algorithm, which is based on constraint
programming.

The results of the other factor-at-a-time experiments
performed to compare RM-DCWF and MRCP-RM,
which can be found in [34], demonstrate a relative per-
formance achieved by RM-DCWF and MRCP-RM that
is similar to the results described in this section. When
the contention for resources is reasonable, MRCP-RM
and RM-DCWF achieve comparable values of P and T.
On the other hand, when the contention for resources is
high, such as when X is 0.025 job per sec, RM-DCWF is
observed to achieve a lower P compared to MRCP-RM.
At these higher system loads, RM-DCWF achieves a



Lim et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:21

superior performance and thus demonstrates a higher
scalability when system load is high.

Conclusions and future work

This paper describes a resource allocation and schedul-
ing technique called RM-DCWF that can efficiently
perform matchmaking and scheduling for an open
stream of multi-stage jobs (workflows) with SLAs on a
computing environment such as a private cluster or a
set of resources acquired a priori from a public cloud.
Each job arriving on the system is characterized by a
SLA comprising an earliest start time, an execution
time, and an end-to-end deadline. The RM-DCWF al-
gorithm decomposes the end-to-end deadline of a job
into sub-deadlines, each of which is associated with a
task in the job. The individual tasks of the job are then
mapped on to the resources where the objective is to
satisfy the job’s deadline and minimize the number of
late jobs in the system. An in-depth simulation-based
performance evaluation is conducted to investigate the
effectiveness of RM-DCWE. The workloads used in the
experiments are based on real scientific workflows from
various fields of study, including biology and physics. A
number of insights into system behaviour and perform-
ance are gained by analyzing the experimental results
and are summarized next.

e Effect of system and workload parameters: An
increase in the job arrival rate, A, or a decrease in
the earliest start time of jobs, s;, or a decrease in the
deadline of jobs, d;, or a decrease in the number of
resources, m, tends to lead to an increase in the
proportion of late jobs, B, due to the increased
contention for resources.

e RM-DCWEF configuration using the Proportional
Distribution of Job Laxity Algorithm (PD): Overall, it
is observed that using Task Scheduling Policy 1
(TSP1) generates lower or similar values for the
proportion of late jobs, P, average job turnaround
time, T, and average job matchmaking and
scheduling time, O, than those achieved with Task
Scheduling Policy 2 (TSP2). Furthermore, the two
approaches used to calculate the laxity of the job
(Sample Laxity, SL and True Laxity, TL) achieve
similar performance with the SL approach achieving
a slightly smaller P in most cases. When using PD,
the results of the experiments showed that the
highest performing RM-DCWF configuration (in
terms of P) for all three workloads experimented
with is PD-SL-TSPI.

e RM-DCWEF configuration using the Even Distribution
of Job Laxity Algorithm (ED): The results
demonstrate that for the CyberShake workload

Page 22 of 24

using ED-SL-TSP2 achieves the lowest P in most
cases. However, when using the LIGO and Genome
workloads, the best performance in terms of P is
achieved by ED-SL-TSP1. When using ED, the
results of the experiments showed that the two
approaches used to calculate the laxity of the jobs
(SL and TL) achieve comparable performance.

e PD-based configuration vs ED-based configuration:
For the CyberShake workload, it is observed that
overall ED-SL-TSP2 outperforms PD-SL-TSP1 in
terms of P but it has a slightly higher T because
TSP2 schedules tasks to execute at their latest possible
times while meeting their respective sub-deadlines. In
the case of the LIGO and Genome workloads, both
PD-SL-TSP1 and ED-SL-TSP1 achieve similar values of
B T, and O. This can be attributed to TSP1 scheduling
tasks to execute at their earliest possible times,
regardless of their
sub-deadlines.

o Effectiveness of RM-DCWF: For the system and
workload parameters experimented with in Section
"Results of the Factor-at-a-Time Experiments", it is
observed that RM-DCWTF can achieve low values of
P (on average 0.62%). Even when the contention for
resources is high and jobs are more susceptible to
miss their deadlines (e.g., when A is high, or 4; is
small, or m is small), P is less than 5% and on
average 2.2% for all the experiments conducted.

o Efficiency of RVM-DCWEF: Over all the experiments
described in Section "Results of the Factor-at-a-Time
Experiments", RM-DCWF achieved low values of O
(less than 0.05 s and on average 0.02 s). Furthermore,
O/T, an indication of the matchmaking and schedul-
ing overhead, is also very small (less than 0.01%) for
all the experiments conducted.

o [Effect of using a small number of resources: When
executing the CyberShake workload on a system with
m = 20, which prevented some jobs from executing at
their maximum degree of parallelism, it was observed
that PD-SL-TSP1 outperforms ED-SL-TSP2 in terms
of P When there are a limited number of resources,
better performance can be achieved if the system
schedules jobs to complete executing as soon as
possible to lower the contention for resources when
other jobs arrive later on the system.

o Comparison with the FIFO Scheduler: The results
of experiments comparing RM-DCWF with a FIFO
Scheduler demonstrated that RM-DCWTF achieves
a significantly lower P and a lower O compared to
the FIFO Scheduler. However, as expected the FIFO
Scheduler did achieve a lower T because it
prioritizes executing jobs that have earlier arrival
times and schedules each job to execute at its
earliest possible time.



Lim et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:21

e MapReduce Workload and Comparison with MRCP-
RM: A summary of observations resulting from the
performance evaluation to compare RM-DCWF
and MRCP-RM when using a MapReduce workload
is provided. At low-to-moderate contention for
resources (e.g., A < 0.0175 jobs per sec), RM-DCWF
and MRCP-RM achieve comparable performance in
terms of P When the contention for resources is
moderately high (e.g., average resource utilization is
approximately 0.8), for a A of 0.02 jobs per sec, for
example, MRCP-RM outperforms RM-DCWE. At
very high contention for resources (e.g., A = 0.025
jobs per sec), RM-DCWTF outperforms MRCP-RM.
For all the values of \ experimented with, RM-DCWF
achieves on average an O that is 85% lower compared
to that achieved by MRCP-RM.

e These observations indicate that MRCP-RM’s
constraint programming-based resource management
algorithm led to its superior performance over the
heuristic-based RM-DCWF at medium system load,
but because of its lower overhead RM-DCWF
demonstrated higher scalability and superior
performance at higher system loads.

Overall, the results of the experiments demonstrate that
the objective of the paper that concerns the devising of an
effective resource allocation and scheduling technique for
processing an open stream of multi-stage jobs with SLAs
on a cluster or a cloud with a fixed number of resources
has been realized. RM-DCWF demonstrated that it can
generate a schedule leading to a small P and T with a
small O and O/T over a wide range of workload and sys-
tem parameters experimented with. The choice of which
RM-DCWEF configuration (laxity distribution algorithm
and task scheduling policy) to use is dependent on the
workload to process; however, a good starting point is to
use PD-SL-TSP1. If the system does not exhibit satisfac-
tory performance, RM-DCWF can be reconfigured to use
ED-SL-TSP2 when the next job arrives on the system or
the next time this the same type of workload needs to be
processed. When using TSP1, the choice of whether to
use PD or ED, and SL or TL is not crucial as all the
configurations using TSP1 achieve similar performance.
However, if TSP2 is used, it is observed that using ED-SL-
TSP2 typically achieves better performance compared to
the other configurations that include TSP2.

A direction for future work is to adapt the resource
management techniques to work in a computing environ-
ment where the number of resources in the system can be
dynamically changed. Moreover, the resource manage-
ment techniques can also be adapted to distributed com-
puting environments with heterogeneous resources and
multi-datacentre environments. This can involve devising
more advanced techniques for supporting data locality

Page 23 of 24

when processing multi-stage jobs, which includes tech-
niques for estimating the data transmission time and pro-
cessing time for tasks based on the input data size and
networking/processing capacities of the resources. Sup-
porting data locality for multi-stage jobs that are charac-
terized by multiple phases of execution may need to
consider the possibility of one phase of execution sharing
data with another phase of execution. If data needs to be
shared among these two phases of execution, the tasks in
these two phases of execution should be assigned to exe-
cute on nodes that are as close to each other as possible
to minimize the data transmission overhead. Lastly, valid-
ating the results of the experiments for additional cases by
conducting experiments using different combinations of
workload and system parameters is also a part of the plan
for future research.

Abbreviations

DAG: Directed Acyclic Graph; DBW: Deadline Budgeting Algorithm for Workflows;
ED: Even Distribution of Job Laxity Algorithm; MRCP-RM: MapReduce Constraint
Programming based Resource Management technique; PD: Proportional
Distribution of Job Laxity Algorithm; RM-DCWF: Resource Management
Technique for Deadline-constrained Workflows; SL: Sample Laxity; SLA: Service
Level Agreement; TL: True Laxity; TSP1: Task Scheduling Policy 1; TSP2: Task
Scheduling Policy 2

Acknowledgments

We are grateful to Huawei Technologies Canada and the Natural Sciences
and Engineering Research Council of Canada (NSERC) for supporting this
research.

Authors’ contributions

The work presented in this paper is based on NL's Ph.D. research and thesis,
which is supervised by SM. PAS is a collaborator and industrial partner for
this research. NL devised and implemented the algorithms and conducted
the simulation experiments. SM and PAS provided guidance and participated
in system design. All the authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
'Department of Systems and Computer Engineering, Carleton University,
Ottawa, ON, Canada. “Huawei Technologies Canada, Kanata, ON, Canada.

Received: 27 January 2017 Accepted: 4 September 2017
Published online: 29 September 2017

References

1. Columbus L (2015) Roundup Of Cloud Computing Forecasts And Market
Estimates, 2015. http://www.forbes.com/sites/louiscolumbus/2015/01/24/
roundup-of-cloud-computing-forecasts-and-market-estimates-2015/.
Accessed 14 Nov 2016

2. Gartner (2015) Gartner Says Worldwide Cloud Infrastructure-as-a-Service
Spending to Grow 32.8 Percent in 2015. http://www.gartner.com/
newsroom/id/3055225. Accessed 14 Nov 2016

3. Manvi SS, Shyam GK (2013) Resource management for infrastructure as a
service (laaS) in cloud computing: a survey. Journal of Network and
Computing Applications 41:424-440

4. Buyya R, Garg SK, Calheiros RN (2011) SLA-oriented resource provisioning
for cloud computing: challenges, architecture, and solutions. In: proceedings


http://www.forbes.com/sites/louiscolumbus/2015/01/24/roundup-of-cloud-computing-forecasts-and-market-estimates-2015/
http://www.forbes.com/sites/louiscolumbus/2015/01/24/roundup-of-cloud-computing-forecasts-and-market-estimates-2015/
http://www.gartner.com/newsroom/id/3055225
http://www.gartner.com/newsroom/id/3055225

Lim et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:21

20.

21.

22.

23.

24.

of the international conference on cloud and service computing, Hong
Kong, China, 12-14 Dec 2011, p 1-10

Foster |, Kesselman C, Lee C, Lindell B, Nahrstedt K, Roy (1999) a distributed
resource management architecture that supports advance reservations and
co-allocation. In: Proceedings of the International Workshop on Quality of
Service, London, UK, 1-4 June 1999, p 27-36

Maheswaran M, Siegel HJ (1998) A dynamic matching and scheduling
algorithm for heterogeneous computing systems. In: proceedings of the
heterogeneous computing workshop, Orlando, USA, 30 march 1998, p 57-69
Dean J, Ghemawat S (2004) MapReduce: simplified data processing on large
clusters. In: proceedings of the international symposium on operating system
design and implementation, San Francisco, USA, 6-8 Dec 2004, p 137-150
Dittrich J, Quiane-Ruiz J-A (2012) Efficient Big Data Processing in
HadoopMapReduce. VLDB 2012/PVLDB, 5:12:2014-2015

Collins M (2011) Hadoop and MapReduce: big data analytics. Gartner. Available:
https//www.gartner.com/doc/1521016/hadoop-mapreduce-big-data-analytics.
Accessed 13 Jan 2017

Gift N (2010) Solve cloud-related big data problems with MapReduce. IBM.
Available: http://www.ibm.com/developerworks/cloud/library/cl-bigdata/.
Accessed 13 Jan 2017

Lim N, Majumdar S, Ashwood-Smith P (2014) Resource management
techniques for handling requests with service level agreements. In:
proceedings of the international symposium on performance evaluation of
computer and telecommunication systems, Monterey, USA, 6-10 July 2014,
p 618625

Yu J, Buyya R, Tham CK (2005) Cost-based scheduling of scientific workflow
applications on utility grids. In: proceedings of the international conference on
e-science and grid computing, Melbourne, Australia, 5-8 Dec 2005, p 140-147
Abrishami S, Naghibzadeh M, Epema DHJ (2012) Cost-driven scheduling of
grid workflows using partial critical paths. IEEE Transactions on Parallel
Distributed Systems 23(8):1400-1414

Wan C, Wang C, Pei J (2012) A QoS-awared scientific workflow scheduling
schema in cloud computing. In: proceedings of the international conference
on information science and technology, Wuhan, China, 23-25 march 2012, p
634-639

Pandey S, Wu L, Guru S, Buyya R (2010) A particle swarm optimization-
based heuristic for scheduling workflow applications in cloud computing
environments. In: proceedings of the international conference on advanced
information networking and applications, Perth, Australia, 20-23 April 2010,
p 400-407

Chen WN, Zhang J (2012) A set-based discrete PSO for cloud workflow
scheduling with user-defined QoS constraints. In: proceedings of the
international conference on systems, man, and cybernetics, Seoul, South
Korea, 14-17 Oct 2012, p 773-778

Bilgaiyan S, Sagnika S, Das M (2014) Workflow scheduling in cloud computing
environment using cat swarm optimization. In: proceedings of the international
advance computing conference, Gurgaon, India, 21-22 Feb 2014, p 680-685
Bittencourt LF, Senna CR, Madeira ERM (2010) Scheduling service workflows
for cost optimization in hybrid clouds. In: proceedings of the international
conference on network and service management, Niagara Falls, Canada,
25-29 Oct 2010, p 394-397

Szabo C, Kroeger T (2012) Evolving multi-objective strategies for task
allocation of scientific workflows on public clouds. In: proceedings of the
IEEE congress on evolutionary computation, Brisbane, Australia, 10-15 June
2012,p 1-8

Zhu Z, Zhang G, Li M, Liu X (2016) Evolutionary multi-objective workflow
scheduling in cloud. [EEE Transactions on Parallel and Distributed Systems
27(5):1344-1357

Goudarzi H, Pedram M (2011) Multi-dimensional SLA-based resource
allocation for multi-tier cloud computing systems. In: proceedings of the
international conference on cloud computing, Washington, USA, 4-9 July
2011, p 324-331

Meng X, Lizhen C, Haiyang W, Yanbing B (2009) A multiple QoS constrained
scheduling strategy of multiple workflows for cloud computing. In: proceedings
of the international symposium on parallel and distributed processing with
applications, Chengdu and Jiuzhai Valley, China, 10-12 Aug 2009, p 629-634

Li X, Qian L, Ruiz R (2016) Cloud workflow scheduling with deadlines and
time slot availability. [EEE Transactions on Services Computing, Preprint
available: http://ieeexplore.ieee.org/document/7383307/

Verma A, Cherkasova L, Kumar VS, Campbell RH (2012) Deadline-based
workload management for MapReduce environments: pieces of the

25.

26.

27.

28.

29.

30.

32.

33.

34.

Page 24 of 24

performance puzzle. In: proceedings of the network operations and
management symposium, Maui, Hawaii, USA, 16-20 April 2012, p 900-905
Mattess M, Calheiros RN, Buyya R (2013) Scaling MapReduce applications
across hybrid clouds to meet soft deadlines. In: proceedings of the
international conference on advanced information networking and
applications, Barcelona, Spain, 25-28 march 2013, p 629-636

Hwang E, Kim KH (2012) Minimizing cost of virtual Machines for Deadline-
Constrained MapReduce applications in the cloud. In: proceedings of the
international conference on grid computing, Beijing, China, 20-23 sept 2012,
p 130-138

Lai ZR, Chang CW, Liu X, Kuo TW, Hsiu PC (2014) Deadline-aware load
balancing for MapReduce. In: proceedings of the international conference
on embedded and real-time computing systems and applications,
Chongging, China, 20-22 Aug 2014, p 1-10

Chen C, Lin J, Kuo S (2015) MapReduce scheduling for deadline-constrained
jobs in heterogeneous cloud computing systems. IEEE Transactions on Cloud
Computing, Preprint available: http://ieeexplore.ieee.org/document/7229311/
Lim N, Majumdar S, Ashwood-Smith P (2014) A Constraint Programming-
Based Resource Management Technique for Processing MapReduce Jobs
with SLAs on Clouds,” In: Proceedings of the International Conference on
Parallel Processing, Minneapolis, USA, 9-12 Sept 2014, p 411-421

Lim N, Majumdar S, Ashwood-Smith P (2017) MRCP-RM: a technique for
resource allocation and scheduling of MapReduce jobs with deadlines. IEEE
Transactions on Parallel and Distributed Systems 28(5):1375-1389

The Apache Software Foundation. Hadoop. http://hadoop.apache.org.
Accessed 16 Jan 2016

Oracle Corporation. System.nanoTime(). https://docs.oracle.com/javase/7/
docs/api/java/lang/System.html#nanoTime(). Accessed 14 Nov 2016
Bharathi S, Chervenak A, Deelman E, Mehta G, Su MH, Vahi K (2008)
Characterization of scientific workflows. In: proceedings of the workshop on
workflows in support of large scale science, Austin, USA, 17 Nov 2008, p 1-10
Lim N (2016) Resource management techniques for multi-stage jobs with
deadlines running on clouds. Dissertation, Carleton University, Ottawa, ON,
Canada, Ph.D

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com



https://www.gartner.com/doc/1521016/hadoop-mapreduce-big-data-analytics
http://www.ibm.com/developerworks/cloud/library/cl-bigdata/
http://ieeexplore.ieee.org/document/7383307/
http://ieeexplore.ieee.org/document/7229311/
http://hadoop.apache.org
https://docs.oracle.com/javase/7/docs/api/java/lang/System.html#nanoTime()
https://docs.oracle.com/javase/7/docs/api/java/lang/System.html#nanoTime()

	Abstract
	Introduction
	Related work
	Resource management on distributed systems for processing workflows
	Resource management techniques on distributed systems for processing MapReduce jobs
	Comparison with related work


	Problem description and resource management model
	Deadline budgeting algorithm for workflows
	Proportional distribution of job laxity algorithm
	Even distribution of job laxity algorithm

	RM-DCWF’s matchmaking and scheduling algorithm
	Job mapping algorithm
	Job remapping algorithm
	Time complexity analysis of the RM-DCWF matchmaking and scheduling algorithm

	Performance evaluation of RM-DCWF
	Experimental setup
	System and workload parameters for the factor-at-a-time experiments
	Results of the factor-at-a-time experiments
	Effect of job arrival rate
	Effect of earliest start time of jobs
	Effect of job deadlines
	Effect of the number of resources

	Investigation of using a small number of resources
	Comparison with a first-in-first-out (FIFO) scheduler
	Comparison with MCRP-RM

	Conclusions and future work
	Abbreviations
	Authors’ contributions
	Competing interests
	Publisher’s Note
	Author details
	References

