
On construction of a cloud storage system
with heterogeneous software‑defined storage
technologies
Chao‑Tung Yang1, Shuo‑Tsung Chen2, Yu‑Wei Chan3*  and Yu‑Chuan Shen1

Introduction
In the last decade, cloud computing has attracted more and more attentions in both
industry and academia [1–8]. It deeply changed people’s lives due to its inherent advan-
tages, such as on-demand self-service, resource pooling and rapid resource elasticity,
etc.. With the services provided by cloud computing, users can upload their require-
ments via the Internet to a cloud environment and receive responses following post-
processing in the cloud environment. Among these services, cloud storage service is one
of the important and indispensable services [9–12]. Cloud storage makes data storage
a service in which data is outsourced to a cloud server maintained by a cloud provider.
With the service, data could be stored remotely into the cloud efficiently and safely. Thus,
this service attracts many people, especially enterprises, due to that it brings appealing
benefits, e.g., avoidance of capital expenditure on hardware and software, relief of the
burden for storage management, etc. [13–15].

Abstract 

With the rapid development of networks and Information technologies, cloud comput‑
ing is not only becoming popular, the types of cloud services available are also increas‑
ing. Through cloud services, users can upload their requirements via the Internet to
the cloud environment and receive responses following post-processing, for example,
with cloud storage services. Software-Defined Storage (SDS) is a virtualization technol‑
ogy for cloud storage services. SDS uses software to integrate storage resources and
to improve the accessibility and usability of storage services. Currently, there are many
different open source projects available for SDS development. This work aims to utilize
these open source projects to improve the efficiency of integration for hardware and
software resources. In other words, in this work, we propose a cloud storage system
that integrates various open source SDS software to make cloud storage services
more compatible and user friendly. The cloud service systems can also be managed
in a more convenient and flexible manner. The experimental results demonstrate the
benefits of the proposed system.

Keywords:  Cloud service, Storage service, Software-defined storage, Automatic
distribution

Open Access

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Yang et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:12
https://doi.org/10.1186/s13673-019-0173-x

*Correspondence:
ywchan@gm.pu.edu.tw
3 College of Computing
and Informatics, Providence
University, 200, Sec. 7, Taiwan
Boulevard, Shalu Dist.,
Taichung 43301, Taiwan
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0003-1455-7806
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13673-019-0173-x&domain=pdf

Page 2 of 17Yang et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:12

Nowadays, many large IT enterprises, such as Google, Microsoft, Amazon and Yahoo
provide the service. Although the services could be provided by these large IT enter-
prises and the services have many advantages, some issues have to be concerned to be
widely used by the government and users. For instance, in cloud storage, the data owner
does not posses data physically after data is outsourced into the cloud service providers
who are not fully trusted. Therefore, government and academic institutions choose to
build their clouds by themselves. However, building cloud servers is very expensive due
to the equipment cost and the corresponding maintenance cost. Thus, how to reduce the
system construction cost and enhance the system’s usability and accessibility is the main
problem we concern. In this work, we have implemented a cloud system, in which vari-
ous software-defined storage technologies and the cubic spline interpolation and distri-
bution mechanisms are used together to provide a more easy-to-use, efficient, reliable
and user-friendly cloud storage system. The main contributions of this work are sum-
marized as follows:

•	 We implemented a cloud storage system to integrate various SDS technologies using
cubic spline interpolation and distribution mechanisms. The proposed system con-
sisted of three main components, they were the storage service, the file distribution
mechanism and the user service, respectively. In addition, since the user’s file size
cannot be predicted and the received files were not the same with our measured
results, we successfully solve this problem by integrating the cubic spline interpola-
tion method.

•	 In the system architecture, we used open source software to make the system more
compatible. In addition, a file was assigned automatically to an appropriate storage
location after users uploaded files.

•	 We designed a user-friendly interface, users could easily upload their files and real-
ized the usage percentages of storage as well as the status of their uploading jobs.
Also, the parameters could be set freely to make the system more flexible by manag-
ers.

The rest of this paper was organized as follows. In the related work section, we intro-
duced the literature review and related works. In the section of system design and imple-
mentation, we presented the system architecture and the corresponding methods. The
experimental results were shown in the section of experimental results. Finally, conclud-
ing remarks were given.

Related work
During the early development of cloud services, the exact meaning of software-
defined service was inconclusive. The concept of “software-defined data center” was
first proposed by VMware as software became more important. By employing the con-
cept of virtualization in developing hardware resources as a resource pool, software
could be employed to control the arrangement of hardware resources. When using
programmable software to control the arrangement of hardware resources, there is
no need to think about how to manipulate servers and security or allocate resources.
In other words, all the resources function perfectly [16–18]. Cloud computing gave

Page 3 of 17Yang et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:12

rise to more possibilities, enabling software-defined services to be different concepts
in hardware and software architectures. These concepts have in turn enabled the
creation of custom functions and the automation of operations. Accordingly, many
research papers and commercial products related to software-defined storage have
been proposed.

Yang et al. [19] proposed an integrated storage service. They used the open source
software—OpenStack [20] to build and manage cloud services, and also used software
to integrate storage resources, including Hadoop HDFS, Ceph and Swift on Open Stack
to achieve an SDS design. Software users can integrate different storage devices to pro-
vide an integrated storage array and to build a virtual storage pool, such that the services
provided for users are not limited by the storage devices. Our work primarily follows the
concepts in [19], but we improve the system architecture and propose a mechanism to
store data efficiently. In addition, we provide a new and more friendly user interface.

The EMC Virtualization Platform Reinvented (ViPR) [21] is a logical storage system,
not a physical storage system. It can integrate EMC storage and third-party storage in
a storage pool, and manage them as a single system while retaining the value of the
original storage. ViPR can replicate data across different locations and data centers
with different storage products, and provides a unified block store, object store, file
system and other services. ViPR also provides a unified metadata service and self-
service deployment, as well as measurement and monitoring services.

A file system architecture that efficiently organizes data and metadata and enables
sharing in addition to exploiting the power of storage virtualization and maintaining
simplicity in such a highly complex and virtualized environment was proposed by Ankur
Agrrawal et al. [22]. Tahani Hussain assessed the performance of an existing enterprise
network before and after deploying distributed storage systems [23]. Additionally, simu-
lation of an enterprise network with 680 clients and 54 servers followed by redesigning
the system led to improvements in the storage system throughput by 13.9%, a reduction
in average response time by 24.4% and a reduction in packet loss rate by 38.3%.

Chengzhang et al. [24] proposed a solution for building a cloud storage service sys-
tem based on the open-source distributed database. Dejun Wang [25] proposed an
efficient cloud storage mode for heterogeneous cloud infrastructures, and validated
the model with numerical examples through extensive testing. He also highlighted
the differences in a cloud storage system using traditional storage. For example, the
demand from the performance point of view, data security, reliability, efficiency and
other indicators need to be taken into consideration for cloud storage services, which
are services in a wide range of complex network environments designed to meet the
demands of large-scale users.

System design and implementation
In this section, we introduce the system architecture and the implementation, which
adopts open-source software for better development and maintenance in the future. The
integrated heterogeneous storage technologies employed in the system are useful and
complete object storage systems. In addition, a graphical user interface is provided so
that an administrator can change the parameters to make the system more flexible.

Page 4 of 17Yang et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:12

System design

The proposed system architecture, as shown in Fig. 1, is divided into three layers. The
first layer is the hardware layer, which consists of many computer hardware and network
devices. The second layer is the virtualization layer designed with OpenStack, with sev-
eral components including the compute portion, the network portion and the storage
portion. Through the virtualization technology provided by the OpenStack platform, the
hardware resources, including the compute, network and storage resources can be fully
utilized by the integrated virtual machines (VMs) to constitute our services, including
the storage and control services. The storage service consists of many storage systems,
including Swift [26], Ceph [27] and other storage systems. In addition, Nova Compute is
a component within the OpenStack platform developed to provide on-demand, scalable
and self-service access to compute resources, such as VMs, containers and bare metal
servers. The architectures of the Swift and Ceph systems are presented in Figs. 2 and 3,
respectively.

Fig. 1  The system architecture

Fig. 2  The Swift architecture

Page 5 of 17Yang et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:12

Swift is a scalable redundant storage system, in which objects and files are written
to multiple disks spread throughout servers in the data center. As shown in Fig. 2, the
colored icons are the main components of the system, and are divided into four parts:

1.	 The cyan colored components are in charge of calculating hash in real time.
2.	 The pink colored components are in charge of indexing the hash of suffix and parti-

tion directories, receiving and sending requests to compare the hash of a partition or
suffix and generating jobs replicating suffix directories to the replication queue.

3.	 The gray colored component, which is called the partition-monitor, is in charge of
checking whether to move the partition at various intervals.

4.	 The green colored component, which is called the suffix-transporter, is in charge of
monitoring the replication-queue and invoking rsync to sync the suffix directories.

On the other hand, the control service, which is built into the controller node, is
responsible for managing the storage services, which are constructed using storage
functions. Through the control service and the storage functions, the controller can
control the storage devices and resources indirectly. In addition, the controller node
has its own distribution mechanism. The mechanism can automatically assign files to
the appropriate storage functions after users upload their files. The third layer of the
system provides a graphical user interface via a web browser to present our system
functions, such that users can easily access the proposed cloud system services. Fig-
ure 4 shows the design flow of our system based on the controller architecture.

System implementation

The implementation of the proposed system consists of three main components, the
storage service deployment, the file distribution mechanism and the user services. In
the following subsections, each component will be introduced in detail.

The deployment of storage services

In the first part, we introduce the storage services. We create VMs that form a storage
cluster. Then, we use the open source software OpenStack to build and manage the
cloud system.

Fig. 3  The Ceph architecture

Page 6 of 17Yang et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:12

The mechanism of file distribution

In the second part, we introduce the mechanism of file distribution. We first use the
Cloud he user’s status is summarizedObject Storage Benchmark (COSBench) [28] to
measure the file transfer speed. COSBench is a benchmark tool for measuring the
performance of cloud object storage services. The measured results of our testing
are marked on the coordinate diagram, as shown in Fig. 5. In this work, consider-
ing that the user’s file size cannot be predicted and the received files will not be the
same as our measured results, we need a mechanism to coordinate the interpolation
into a linear equation. Based on the promising features studied in the reference works

Fig. 4  The design flow of our system

Fig. 5  The measurement results of the transfer speed of one file

Page 7 of 17Yang et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:12

[29–31], we therefore choose to use the cubic spline interpolation method to solve
this problem.

Interpolations using cubic splines have been well studied in [29–31]. In [29], the basis
of cubic spline interpolation was introduced. Miao et al. [30] employed the cubic spline
method to predict the storage volume of a data center by interpolating the storage vol-
ume time series such that an entire time series with the same number as the former
series can be reconstructed. In addition, Mastorakis [31] showed that the cubic spline
method is well suited for application to the problem of anomaly detection in cloud envi-
ronments. A cubic spline is a spline constructed of piecewise third-order polynomials
that pass through a set of m control points. The second derivative of each polynomial
is commonly set to zero at the endpoints, since this provides a boundary condition that
completes the system of m-2 equations. This produces a so-called “natural” cubic spline
and leads to a simple tridiagonal system that can be solved easily to give the coefficients
of the polynomials.

By using the Cubic Spline, we obtain a new coordinates diagram and plot the inter-
polation figures for Swift and Ceph, as shown in Fig. 6. This can be used as the decision
criteria when processing files. Certainly, this will not be the only method in our mecha-
nism. We also consider the use of storage capacity for the environmental effect. Similar
to the previous method of measurement, we perform measurements for storage envi-
ronments with different capacities.

In addition, we propose Eq. (1) to obtain the transfer speed of the storage service,
which is used to determine which of the storage services is better.

•	 ft(S) represents the transfer speed obtained in the transfer speed experiment when
the file size is S.

•	 fc(S) represents the transfer speed obtained in the storage capacity experiment when
the file size is S.

•	 α and β are the weights, with default values of 0.5. The sum of these two weights
equals one.

(1)fK (S) = αft(S)+ βfc(S).

Fig. 6  The measurement results for all file transfer speeds obtained using the Cubic Spline method

Page 8 of 17Yang et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:12

•	 fK (S) represents the resulting transfer speed of the storage service, which is used to
compare the performance of the storage services.

For example, we perform an experiment to determine the transfer speed for Swift and
Ceph, and consequently obtain two functions, fts(S) and ftc(S) . Another experiment is
performed to test the storage capacity of Swift and Ceph to obtain two functions, fcs(S)
and fcc(S) . The resulting functions fSwift(S) and fCeph(S) are listed in Eqs. (2) and (3),
respectively.

After calculation, we obtain two values fSwift(S) and fCeph(S) . The following mechanism
compares these two values to determine which storage technology is better. If these two
values are equal, we add a condition that depends on storage usage. The mechanism will
choose the system with lower usage.

Our mechanism is scalable. We can add any condition that may affect the transfer speed.
For example, as shown in Eq. 4, the function fn(S) is another consideration for time con-
sumption with a weight of γ and the sum of the three weights α , β , and γ must be one.

The experimental results
In this section, we show the experimental results and the system implementation perfor-
mance. We first perform efficacy experiments to demonstrate the benefits of our system
infrastructure. Next, we measure the speed of each storage object. This measurement is
the basis of the file distribution mechanism. Finally, we show the user interface for our
system.

Setup of the experimental environment

In the setup for the experimental environment, we use OpenStack to build our cloud
platform, which is then used to create and manage the distributed storage system. In
the system, we adopt two heterogeneous storage technologies, namely Ceph and Swift.
We use Ceph to build a storage system that consists of four VMs with dual core CPUs, 4
GB of memory and a total of 160 GB of storage space. The VM named ceph01 is MON
and OSD, and the others are OSD . These VMs form a Ceph cluster. On the other hand,
we use Swift to build a storage system consisting of four VMs, which include one proxy
server and four storage nodes, with the same specifications of dual core CPUs, 4 GB of
memory, and a total of 160 GB of storage space. Tables 1, 2, and 3 sequentially present
the specifications for the software, hardware, and storage environments.

(2)fSwift(S) = αfts(S)+ βfcs(S).

(3)fCeph(S) = αftc(S)+ βfcc(S).

f =



























fSwift(S), (fSwift(S) > fCeph(S)) or

(fSwift(S) = fCeph(S) &
UsageSwift > UsageCeph)

fCeph(S), (fSwift(S) < fCeph(S)) or

(fSwift(S) = fCeph(S) &
UsageSwift < UsageCeph)

(4)fK (S) = αft(S)+ βfc(S)+ γ fn(S).

Page 9 of 17Yang et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:12

Performance evaluations of our system

To evaluate the performance of our system, two metrics are used, specifically network
throughput and disk writing speed. In this experiment, we first install four VMs as the
experimental nodes in the OpenStack environment. The four VMs are called swift01,
swift02, swift03 and swift04, respectively. Since network throughput is a key factor for
measuring cluster performance, we use a client-server connection to measure the TCP
and UDP bandwidths. The results are illustrated in Fig. 7. In the resulting histogram, the
horizontal axis represents the number of tests and the vertical axis represents the trans-
mission bandwidth. As depicted in Fig. 7, the VMs are divided into group A and group
B. Group A contains Swift01 and Swift03 VMs while group B consists of Swift02 and
Swift04 VMs. The experimental results show that the bandwidth for group A is almost
7000 Mbits/s, while the bandwidth for group B is only about 900 Mbits/s. The large dif-
ference in the achieved bandwidth between the two groups is because they are deployed
on different physical machines. The VMs in group A are used in the compute01 machine
while those in group B are used in the compute02 machine. The results indicate that
when the VMs communicate between the two physical machines, they communicate
through the physical network. On the contrary, when the VMs communicate with each
other in the same physical node, they communicate through the virtual network.

Table 1  Hardware specifications

Host name CPU Memory (GB) Disk (GB) OS

Controller 16 cores 48 100 Ubuntu 14.04

Compute01 24 cores 48 800 Ubuntu 14.04

Compute02 24 cores 48 800 Ubuntu 14.04

Table 2  Storage environment specifications

Host name CPU Memory (GB) Disk (GB) OS

Controller 4 cores 8 40 Ubuntu 14.04

Ceph01 2 cores 8 40 Ubuntu 14.04

Ceph02 2 cores 4 40 Ubuntu 14.04

Ceph03 2 cores 4 40 Ubuntu 14.04

Ceph04 2 cores 4 40 Ubuntu 14.04

Swift01 2 cores 4 40 Ubuntu 14.04

Swift02 2 cores 4 40 Ubuntu 14.04

Swift03 2 cores 4 40 Ubuntu 14.04

Swift04 2 cores 4 40 Ubuntu 14.04

Table 3  Software specifications

Software Version

OpenStack Juno

Ceph Hammer v0.94

Swift 2.1.0

Page 10 of 17Yang et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:12

Next, we will discuss the comparison results with respect to the metric of the disk
writing speed, which is a key factor for system performance. In this experiment, we
use the Linux command dd, which is mainly employed to convert and copy files and to
measure the disk writing speed. The results are illustrated in Figs. 8 and 9.

According to the previous results from measuring the network bandwidth, if VMs
are deployed on the same host, their bandwidths are almost the same. Thus, we select
swift01, swift02, OpenStack compute01 and OpenStack compute02 for comparison of

Fig. 7  The comparison results of network throughput for all virtual machines

Fig. 8  The comparison results of disk writing speed for all virtual machines

Page 11 of 17Yang et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:12

their disk writing and reading speeds. The results show that the VMs cannot take full
advantage of the reading and writing resources and therefore require deployment of the
storage system. These I/O tests can be used to debug and improve bottlenecks when
problems are encountered. In addition, the experimental results for disk reading and
writing speed help us decide on the number of VMs deployed on the physical machine
and understand how best to deploy the storage cluster.

Figure 10 shows the comparison results for the upload speed in the Ceph and Swift
storage clusters. In the figure, the blue hollow circle represents the upload measurements
in the Swift storage cluster while the red hollow circle represents the corresponding

Fig. 9  The comparison results of disk reading speed for all virtual machines

Fig. 10  The comparison results of uploading speed for all virtual machines

Page 12 of 17Yang et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:12

values in the Ceph storage cluster. In addition, we apply cubic spline to obtain contin-
uous curves with respect to the Ceph and Swift clusters. From the figure, we see that
the upload speed in the Swift cluster stabilizes at about 20-30 MB/s, with a significant
increase when the file size is larger than 800 MB. On the contrary, in the Ceph cluster,
the upload speed is almost 15 MB/s. These two curves intersect once when the file size
is about 50 MB. Thus, the upload speed for Ceph is faster than that of Swift when the file
size is less than 50 MB and is slower when the file size is larger than 50 MB.

Figure 11 shows the experimental results with respect to the download speed in the
Ceph and Swift storage clusters. The results show that the download speed for the Ceph
cluster is faster than that of the Swift cluster.

User interface design

In this subsection, we will introduce the design of the user interface in our system.
An overview of the website map is shown in Fig. 12. The user interface in our system
mainly consists of three parts: the system overview page (as shown in Fig. 13), the
my storage page (as shown in Fig. 14) and the account page (as shown in Fig. 16). In

Fig. 11  The comparison results of downloading speed for all virtual machines

Fig. 12  Overview of website map of our system

Page 13 of 17Yang et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:12

Fig. 13  Overview of system pages of the storage usage percentage and the account list

Page 14 of 17Yang et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:12

the system overview page, the user’s status is summarized, and users can review their
storage usage and account information. The my storage page is the main part of the
user interface in the system. It consists of basic operations, such as upload, download,
remove and modify operations. The account page shows the user information. Users
can modify their personal information via this page.

As shown in Fig. 13, there are two panels in the system overview page. The two pan-
els are used to show the storage usage percentages and the account list. We use three
small liquid fill gauges to display the percentages for the total usage, the Swift usage
and the Ceph usage. More detailed information is shown when the mouse moves over
the liquid fill gauge, as shown in Fig. 13. In addition, there is a table that shows infor-
mation for all the accounts when the user logs into the administrator mode.

The my storage page is the major operating part of our system. When the page is loaded,
a file list is shown in the middle of the page and a drop down menu pops up when the right
mouse button clicks a file name, as shown in Fig. 14. The drop down menu has four func-
tions: download, delete, rename and detailed information. All functions related to the stor-
age operations are displayed in this page.

We use AJAX, JQuery and the bootstrap framework to implement the uploading process.
The web page pops up a window upon left clicking the upload button, as shown in Fig. 15.
The figures show four files in the list. One file is ready to upload, two are uploading and
the last is being processed. The upload function allows multiple files to be uploaded at the

Fig. 14  The my storage page

Page 15 of 17Yang et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:12

same time. The files have individual upload progress bars and the total upload progress bar
is shown near the top of the page. The total progress bar shows detailed upload information
including the transfer speed, the remaining time and the completed percentage. The upload
functions have the following advantages:

•	 Friendly user interface: a visualization of the upload progress is provided. This makes it
easy for users to monitor and control their uploading jobs.

•	 Supports the upload of multiple files: users can upload multiple files at the same time.
•	 Background processing: users can upload their files in the background while accessing

other functions simultaneously in the my storage page.

The last part is the accounting page, as shown in Fig. 16. The accounting page has two
main functions, which are the viewing and the editing. Through these functions, detailed
accounting information can be viewed and edited. The design of all the pages in the system
follows the design concept of RWD. Whatever the device used, the bootstrap framework
displays the appropriate web layout according to the screen size.

Fig. 15  The file uploading page in our system

Page 16 of 17Yang et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:12

Conclusion
In this work, we implemented a cloud storage system by integrating the open source
storage software to provide a software-defined storage service. In the system, we used
the distributed cloud architecture to provide high reliable and scalable cloud services
which integrate several software storage technologies. In addition, we provided an
user interface with high usability to make the proposed system more user friendly. In
the future, we plan to build a larger system with more VMs and integrating more het-
erogeneous storage technologies.
Authors’ contributions
C-TY conceptualized the study and proposed the system design. S-TC implemented the system and wrote the manu‑
script. Y-WC wrote and revised the manuscript. Y-CS performed the experiments. All authors read and approved the final
manuscript.

Author details
1 Department of Computer Science, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, 40704 Tai‑
chung, Taiwan. 2 College of Future, Bachelor Program in Interdisciplinary Studies, National Yunlin University of Science
and Technology, 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan. 3 College of Computing and Informatics,
Providence University, 200, Sec. 7, Taiwan Boulevard, Shalu Dist., Taichung 43301, Taiwan.

Acknowledgements
This work was supported in part by the Ministry of Science and Technology, Taiwan ROC, under Grant Numbers
106-2622-E-029-002-CC3, 107-2221-E-029-008, and 107-2218-E-029-003.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Fig. 16  The account page in our system

Page 17 of 17Yang et al. Hum. Cent. Comput. Inf. Sci. (2019) 9:12

Received: 13 October 2018 Accepted: 19 March 2019

References
	1.	 Zhou Z, Ota K, Dong M, Xu C (2017) Energy-efficient matching for resource allocation in d2d enabled cellular net‑

works. IEEE Trans Vehicul Technol 66(6):5256–5268
	2.	 Xu C, Gao C, Zhou Z, Chang Z, Jia Y (2017) Social network-based content delivery in device-to-device underlay cel‑

lular networks using matching theory. IEEE Access 5:924–937
	3.	 Mo Y, Peng M, Xiang H, Sun Y, Ji X (2017) Resource allocation in cloud radio access networks with device-to-device

communications. IEEE Access 5:1250–1262
	4.	 Foster I, Zhao Y, Raicu I, Lu S (2008) Cloud computing and grid computing 360-degree compared. In: Proceedings of

the 2008 grid computing environments workshop: 2008; Austin, USA, pp 1–10
	5.	 Nurmi D, Wolski R, Grzegorczyk C, Obertelli G, Soman S, Youseff L, Zagorodnov D (2009) The eucalyptus open-source

cloud-computing system. In: Proceedings of the 2009 9th IEEE/ACM international symposium on cluster computing
and the grid: 2009; Shanghai, China, pp 124–131

	6.	 Satyanarayanan M, Bahl P, Caceres R, Davies N (2009) The case for vm-based cloudlets in mobile computing. IEEE
Pervasive Comput 8:14–23

	7.	 Buyya R, Yeo CS, Venugopal S (2008) Market-oriented cloud computing: Vision, hype, and reality for delivering it
services as computing utilities. In: Proceedings of the 10th IEEE international conference on high performance
computing and communications: 2008; Dalian, China, pp 5–13

	8.	 Kim H-W, Jeong Y-S (2018) Secure authentication-management human-centric scheme for trusting personal
resource information on mobile cloud computing with blockchain. Human-centric Comput Inform Sci 8(1):11

	9.	 Vernik G, Shulman-Peleg A, Dippl S, Formisano C, Jaeger MC, Kolodner EK, Villari M (2013) Data on-boarding in federated storage
clouds. In: Proceedings of the 2013 IEEE sixth international conference on cloud computing: 2013; Santa Clara, USA, pp 244–251

	10.	 Kolodner EK, Tal S, Kyriazis D, Naor D, Allalouf M, Bonelli L, Brand P, Eckert A, Elmroth E, Gogouvitis SV, Harnik D, Hernan‑
dez F, Jaeger MC, Lakew EB, Lopez JM, Lorenz M, Messina A, Shulman-Peleg A, Talyansky R, Voulodimos A, Wolfsthal
Y (2011) A cloud environment for data-intensive storage services. In: Proceedings of the 2011 IEEE third international
conference on cloud computing technology and science: 29 Nov.-1 Dec. 2011; Athens, Greece, pp 357–366

	11.	 Rhea S, Wells C, Eaton P, Geels D, Zhao B, Weatherspoon H, Kubiatowicz J (2001) Maintenance-free global data stor‑
age. IEEE Internet Comput 5:40–49

	12.	 Mesnier M, Ganger GR, Riedel E (2003) Object-based storage. IEEE Commun Mag 41:84–90
	13.	 Mesbahi MR, Rahmani AM, Hosseinzadeh M (2018) Reliability and high availability in cloud computing environ‑

ments: a reference roadmap. Human-centric Comput Inform Sci 8(1):20
	14.	 Zhang Y, Xu C, Liang X, Li H, Mu Y, Zhang X (2017) Efficient public verification of data integrity for cloud storage

systems from indistinguishability obfuscation. IEEE Trans Inform Forensic Sec 12(3):676–688
	15.	 Ren Z, Wang L, Wang Q, Xu M (2018) Dynamic proofs of retrievability for coded cloud storage systems. IEEE Trans

Serv Comput 11(4):685–698
	16.	 Li Y, Feng D, Shi Z (2013) An effective cache algorithm for heterogeneous storage systems. Sci World J 2013:693845
	17.	 Lin W, Wu W, Wang JZ (2016) A heuristic task scheduling algorithm for heterogeneous virtual clusters. Sci Program

2016:7040276
	18.	 Callegati F, Cerroni W, Contoli C (2016) Virtual networking performance in openstack platform for network function

virtualization. J Elec Comput Eng 2016:266–267
	19.	 Yang C-T, Lien W-H, Shen Y-C, Leu F-Y (2015) Implementation of a software-defined storage service with heteroge‑

neous storage technologies. In: Proceedings of the 2015 IEEE 29th international conference on advanced informa‑
tion networking and applications workshops (WAINA): 24-27 March 2015, pp 102–107

	20.	 OpenStack. https​://www.opens​tack.org/ (2015)
	21.	 EMC ViPR. http://www.emc.com/vipr (2015)
	22.	 Agrrawa A, Shankar R, Akarsh S, Madan P (2012) File system aware storage virtualization management. In: Proceed‑

ings of the 2012 IEEE international conference on cloud computing in emerging markets (CCEM): 11-12 Oct. 2012;
Bangalore, India, pp 1–11

	23.	 Hussain T, Marimuthu PN, Habib SJ (2013) Managing distributed storage system through network redesign. In:
Proceedings of the 2013 15th Asia-Pacific network operations and management symposium (APNOMS): 25-27 Sept.
2013; Hiroshima, Japan, pp 1–6

	24.	 Peng C, Jiang Z (2011) Building a cloud storage service system. Procedia Environ Sci 10:691–696
	25.	 Wang D (2011) An efficient cloud storage model for heterogeneous cloud infrastructures. Procedia Eng 23:510–515
	26.	 OpenStack Swift. https​://wiki.opens​tack.org/wiki/Swift​ (2015)
	27.	 Weil SA, Brandt SA, Miller EL, Long DD, Maltzahn C (2006) Ceph: A scalable, high-performance distributed file sys‑

tem. In: Proceedings of the 7th symposium on operating systems design and implementation: 6-8 November 2006;
Seattle, USA, pp 307–320

	28.	 Zheng Q, Chen H, Wang Y, Zhang J, Duan J (2013) Cosbench: Cloud object storage benchmark. In: Proceedings of
the 4th ACM/SPEC international conference on performance engineering (ICPE 2013): 21-24 April 2013; Prague,
Czech Republic, pp 199–210

	29.	 Knott GD (2012) Interpolating Cubic Splines. Springer, Berlin
	30.	 Miao B, Dou C, Jin X (2016) Main trend extraction based on irregular sampling estimation and its application in stor‑

age volume of internet data center. Comput Intell Neurosci 2016:1–12
	31.	 Mastorakis G (2015) Resource management of mobile cloud computing networks and environments. IGI Global, Hershey

https://www.openstack.org/
http://www.emc.com/vipr
https://wiki.openstack.org/wiki/Swift

	On construction of a cloud storage system with heterogeneous software-defined storage technologies
	Abstract
	Introduction
	Related work
	System design and implementation
	System design
	System implementation
	The deployment of storage services
	The mechanism of file distribution

	The experimental results
	Setup of the experimental environment
	Performance evaluations of our system
	User interface design

	Conclusion
	Authors’ contributions
	References

