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Introduction
Face recognition has been a hot research area for its wide range of applications [1]. In 
human identification scenarios, facial metrics are more naturally accessible than many 
other biometrics, such as iris, fingerprint, and palm print [2]. Face recognition is also 
highly valuable in human computer interaction, access control, video surveillance, and 
many other applications.

Although 2D face recognition research made significant progresses in recent years, its 
accuracy is still highly depended on light conditions and human poses [3, 4]. When the 
light is dim or the face poses are not properly aligned in the camera view, the recognition 
accuracy will suffer.

The fast evolution of 3D sensors reveals a new path for face recognition that could 
overcome the fundamental limitations of 2D technologies. The geometric information 
contained in 3D facial data could substantially improve the recognition accuracy under 
conditions that are difficult for 2D technologies [5]. Many researchers have turned their 
focuses to 3D face recognition and made this research area a new trend.

A general work flow for 3D face recognition is shown in Fig. 1. The work flow could 
be decomposed into two phases and five stages. In the training phase, 3D face data are 
acquired and then preprocessed to obtain “clean” 3D faces. Then the data are processed 
by feature extraction algorithms to find the features that could be used to differentiate 
faces. The features of each face are then stored into the feature database. In the testing 
phase, the target face goes through the acquisition, preprocessing, and feature extraction 
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stages that are identical to the stages in the training phase. In the feature matching stage, 
the features of the target face are compared with the faces stored in the feature database 
and calculate the match scores. When a match score is sufficiently high, we would claim 
that the target face is recognized.

3D face acquisition

The acquisition of 3D face samples involves special hardware equipments, which could 
be categorized as active acquisition systems and passive acquisition systems according to 
the technologies used. The active acquisition systems actively emit non-visible light, e.g. 
infrared laser beams, to illuminate the target human face. Then the systems measure the 
reflection to determine the shape features of the target face. According to the different 
types of illumination methods, the active acquisition systems could be further catego-
rized as triangulation-based and structured light based. As shown in Fig.  2a, Minolta 
vivid scanner is an example of triangulation-based 3D scanning system. The scanner 
measures the emitting and the receiving angles of the laser beam, and then use triangu-
lation methods to determine the exact point of reflection. As the laser beam scanning 
through the face, a precise map is formed by calculating and grouping many reflection 
points. The triangulation based systems trade the scanning speed for the precision. It 

Fig. 1  A general 3D face recognition system [6]

Fig. 2  Three popular 3D scanners [11]. a Depth image, b point cloud, c mesh
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would require the target man to hold still for several minutes before a 3D face map could 
be acquired [7]. Therefore this technology is infeasible for the 3D video recording. Com-
pared with the triangulation based systems, the structured light based systems are more 
popular in consumer level 3D face acquisition. Figure  2b shows a Microsoft Kinect, 
which emits a light pattern, such as a light grid, to the target face. It then measures the 
deformation of the light pattern to calculate the surface shape. The structured light 
based systems offer much faster measurements than the triangulation based systems. 
However, the structured light measurements often contain holes and artifacts so that the 
acquired 3D face data are less precise than the triangulation data [8]. Figure 2c shows a 
Bumblebee XB3, which is a passive acquisition system [9]. It contains several cameras 
that are placed apart from each other. The system matches points observed from differ-
ent camera and calculates the exact 3D location of the matched point [10]. The set of the 
matched points forms the 3D face. Systems like Bumblebee XB3 are often called stereo-
imaging systems. Such systems relied on good visible light conditions and usually deliver 
less precise 3D face data than active 3D face acquisition systems.

Preprocessing

Acquired 3D face data cannot be directly used as the inputs of feature extraction algo-
rithms because the data contain the human faces, but also many distracting features 
such as hair, ear, neck, eye glasses, and jeweleries. It is true that when us human beings 
identify each other, these features could be helpful. However, computers are not as 
intelligent as us at least for now. Features like hair, eye glasses, and jeweleries could be 
changed from time to time. Ear and neck features are not reliably identifiable for differ-
ent head poses. These features could be misleading to the current state-of-the-art 3D 
face recognition algorithms and therefore should be removed before feature extraction.

The first step of preprocessing is to detect the position and orientation of human face. 
Geometric transformations are used to “turn” the human face to directly against the 
camera axis. Then the preprocessing uses the help from clearly identifiable facial parts 
such as nose to isolate the human face area out from areas of the distracting features. 
This operation is called segmentation.

The preprocessed facial data samples are often interpreted in three model formats: 
depth image, point cloud, and mesh, as shown in Fig. 2. Note that the three model for-
mats are not one to one corresponding to the three popular 3D scanners. They are for-
mats to represent 3D face data.

Feature extraction, feature database, and feature matching

The most straightforward school of feature extraction is to take the entire face as a sin-
gle feature vector, which is called the global approach [12]. In this approach, the entire 
face is stored in the database. In the feature matching stage, the target face is compared 
with faces in database using statistical classification functions [9]. Opposed to the global 
approach, the component based approach focuses on the local facial characteristics such 
as nose and eyes. It uses graph operators to extract the nose and eyes part and store 
these local features in the database. When a target face is inputed for recognition, the 
component based approach first extract the corresponding parts from the target faces 
and then searching the matched set of parts from the feature database [13]. There are 
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hybrid approaches that combine the features used by the global approaches and the local 
approaches. With more computational cost, the hybrid approach could achieve better 
recognition accuracy [14].

Methodology

In 3D face recognition system, the selection of feature extraction and matching methods 
is very important. Both global and local approach have been extensively investigated in 
the literature and summarized in Table 1.

Performance metrics

This paper proposes the following indications about the performance measures for 3D 
face recognition tasks.

The notation used for evaluation is as follows:

•	 TP—the number of samples for the prediction of the positive class as the positive 
class.

•	 FN—the number of samples of positive class is predicted to be negative class.
•	 FP—the number of samples whose negative class is predicted as positive class.
•	 TN—the number of samples of negative class is predicted to be negative class.

Among them, True and False indicate correct and wrong classification, Positive and 
Negative samples.

The calculation metrics are as follows:
Accuracy refers to the ratio between the number of samples correctly classified by the 

classifier and the total number of samples for a given test data set, which reflects the 
judging ability of the classifier to the entire sample. In other words, it can determine the 
positive value and the negative value.

Error rate is the opposite of accuracy rate.

Precision refers to the proportion of true positive samples in the samples judged as posi-
tive by the classifier, that is, how many of all samples judged as positive by the classifier 
are true positive samples.

Accuracy =
TP + TN

TP + FN + FP + TN

Error =
FN + FP

TP + FN + FP + TN
= 1− accuracy

Table 1  3D global and local features

3D global features 3D local features

Iterative closest point (ICP) Landmark-based features

Eigenfaces (PCA) Curve-based features

Fisherfaces (LDA) Patch-based features

ICA
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Recall refers to the proportion of the positive samples correctly judged by the classifier 
in the total positive samples, that is, how many of all the positive samples are classified 
by the classifier as positive samples.

Fbeta-score is the harmonic mean of precision and recall.

The value of β ( β > 0) reflects the relative importance of precision and recall in perfor-
mance evaluation.

When β = 1, the commonly used F1 (F measure) value indicates that precision is as 
important as recall.

The value of F1 (F measure) is also known as Balanced f-score. When both accuracy and 
recall are high, the value of F1 (F measure) is also high.

The rest of this paper is organized as follows: “History of face recognition research” 
section introduces significant research results of 3D face recognition in an chroni-
cle order. This help establish a bird-view on this research area. “Domain research 
problems” section analyzes current researches and summarize them into domain 
research problems.  “Research on 3D face databases” section collects the up-to-
date information about public 3D face databases, which could facilitate future 
researches.  “Research on pose-invariant 3D face recognition” section reviews the 
technologies that could mitigate the pose variation problem for 3D face recognition. 
“Research on expression—invariant 3D face recognition” section surveys the tech-
nologies that could accurately recognize human faces in different expressions such 
as laughing or crying, using 3D face information. “Research on occlusion—invariant 
3D face recognition” section reviews the 3D face recognition technologies that could 
work when the target faces are partially blocked. “Open problems and perspectives” 

Precision =
TP

TP + FP

Recall =
TP

TP + FN

(1)Fβ = (1+ β2)
Precision× Recall

β2 × Precision+ Recall

(2)= (1+ β2)
(1+ β2)TP

(1+ β2)TP + β2FP + FN

2

F1
=

1

Precision
+

1

Recall

(3)F1 =
2× Precision× Recall

Precision+ Recall

(4)=
2× TP

2× TP + FP + FN
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section suggest significant problems that are still waiting to be solved in 3D face rec-
ognition area. “Conclusions and discussion” section concludes this paper.

History of face recognition research
Research in face recognition can be dated back to 1960s [15]. From 1964 to 1966 Wood-
row W. Bledsoe, along with Helen Chan and Charles Bisson of Panoramic Research, 
researched programming computers to recognize human faces. Their program asks the 
administrator to locate the eyes, ears, nose and mouth in the photo. Then, the refer-
ence data can be use comparison with the distance and measures. However, because of 
inconvenience, this work has not received much recognition. Peter Hart at the Stanford 
Research Institute continued this research, and found optimistic results when using a set 
of images instead of a set of feature points. Since then, there have been many researches 
following on this subject and a substantial amount of efforts have been made to find the 
optimal face recognition method. In the 1970s, Goldstein, Harmon, and Lesk used 21 
specific subjective markers such as hair color and lip thickness to automatically iden-
tify human faces. The attempt obtained good recognition accuracy. However, the fea-
ture measurement and locationing are manually calculated. It is impractical to apply this 
method to many faces. In 1991, Turk and Pentland proposed a method of using princi-
pal component analysis (PCA) to handle face data [16]. This is called the eigenface algo-
rithm which is already become a golden standard for face recognition. Later, inspired by 
eigenface, a large number of such algorithms were proposed [17–19].

In 1997, Christoph von der Malsburg designed a system that can identify people in 
photos when the photos are not clear [20]. Followed this work, the research of face rec-
ognition diverged into two paths. Face recognition by 3D view is proposed and imple-
mented in systems such as Polar and FaceIt [21].

Although 2D face recognition has achieved considerable success, but the accuracy is 
still significantly affected by changes in pose and illumination conditions [14, 22]. Many 
researchers have turned to 3D face recognition because its potential capabilities to over-
come the inherent limitations and drawbacks of 2D face recognition. Moreover, the geo-
metric information provided by 3D face data may result in higher recognition accuracy 
than the 2D case when the pose and illumination conditions are the same [3, 4].

In the late 1980s, [23] used curvature-based methods to test on a small 3D face data-
base, and reached 100% recognition accuracy. In 1996, Gordon’s face recognition experi-
ments showed that combining frontal and side views can improve the recognition 
accuracy [24]. After that, more and more 3D face recognition research has been pro-
posed, becuase of the increasing availability of 3D scanning equipments (mainly based 
on laser and structured light technology).

In 2012, deep learning was first used to analyze and process three-dimensional face 
images for face recognition [25]. Compared with the traditional method, Deep Convo-
lutional Neural Networks (DCNN) has a great advantage in the processing of image and 
video, whereas Recurrent Neural Network (RNN) also shows a very good performance 
in processing continuous data such as voice and text [26]. By using deep learning to train 
large-scale face datasets, the recognition accuracy of 2d face recognition has been sig-
nificantly improved [27]. The method of deep learning needs to large datasets to learn 
face features and be able to depict rich internal information of data. Large-scale 2D face 
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datasets can be obtained from the Internet. Compared 2D face dataset, training discrim-
inative deep features for 3D face recognition is very difficult due to the lack of large-scale 
3D face datasets [27]. In order to solve this problem, Kim et al. [27] proposed using the 
existing trained 2D face model, and adjust a small amount of 3D face datasets to 3D sur-
face matching. Also, [28] proposed a method for generating a large corpus of labeled 3D 
face identities and their multiple instances for training and a protocol for merging the 
most challenging existing 3D datasets for testing. They also proposed the first deep CNN 
model designed specifically for 3D face recognition and trained on 3.1 million 3D facial 
scans of 100,000 identities. The proposed training and test datasets are several orders of 
magnitude larger than previously existing 3D datasets reported in the literature. Based 
on the 3D datasets, FR3DNet algorithm has been proposed and achieved great accuracy 
in closed and open world recognition scenarios [28].

In [14], many identification techniques were surveyed. Face recognition can be divided 
into three categories based on feature extraction methods used in the identification pro-
cess: global approach, component-based approach and hybrid approach. In the global 
approach, the entire face is used as a single feature vector for feature classification. The 
component-based approach mainly analyzes the local facial features such as nose and 
eyes. The hybrid approach uses both global and local features. The hybrid approach is 
very effective when the face is frontal and the expression does not change.

Domain research problems
Compared with other popular biometric identification technologies such as fingerprint, 
iris and retina based recognition, face recognition can identify a person at greater dis-
tance. Therefore, it can be applied to various application scenarios such as crowd moni-
toring and border control. In many of these application scenarios, the 2D face images 
cannot be accurately recognized due to variations in facial expressions, head pose, occlu-
sion and other factors. Any of these adversary factors could lead to a sharp decrease in 
recognition efficiency [29].

In 1999, Blanz and Vetter proposed the 3D deformation model (3DMM) synthesis 
technique and then use this model for 3D face recognition [30]. However, due to the 
technical limit of the 3D scanning technology at the time, their 3D deformation model 
was reconstructed from 2D images. It takes a large amount of computation to recon-
struct the 3D model. Many researchers agree that 3DMM play an important role in face 
recognition, but the computational complexity of the reconstruction process hinders its 
applicability [14, 31–33]. In 2003, Blanz and Vetter proposed to combine 3DMM with 
2D image matching technology in order to recognize faces with various head orienta-
tions [34]. Unlike [30], their algorithm automatically evaluates all 3D scene parame-
ters, including the position and orientation of the head. Through this new initialization 
process, the robustness and reliability of the face recognition system is significantly 
improved. It is noteworthy that the 2D image synthesized 3D facial model is a compro-
mise when fast 3D scanning technology is not available. As soon as people can directly 
scan 3D face data, models like 3DMM is no longer in active research.

In 2003, Wu et al. [35] posposed 3D face recognition by extracting multiple horizontal 
profiles from the facial range data. One pitfall of this method is, the recognition accu-
racy would decrease significantly when the head pose changes. In [1], Zhang compared 
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the methods and algorithms for 3D face recognition under pose variations, and tests 
the maximum angle that can be recognized when pose changes. For example, when the 
face is registered from front and the face model is extracted using the LBP algorithm in 
[29], an acceptable recognition accuracy could be retained at a maximal face rotation of 
60°. Our paper also compares the influence of 2D images and 3D models on recognition 
performance under changes in head pose. Experiments have shown that 3D models are 
better tolerant to pose changes than 2D models. We summarized this type of research 
in  “Research on pose-invariant 3D face recognition” section.

Chua et  al. [36] use point signatures in 3D facial recognition. In order to deal with 
changes in facial expressions, only the rigid part of the face (below the forehead and 
above the nose) is used. The point signature is also used to locate the reference point in 
the standardized face model. The images used in the experiment were obtained from the 
different expressions of 6 subjects, and recognition rate was 100%. The principal com-
ponent analysis (PCA) method explored by Hesher et al. [37] uses different numbers of 
feature vectors and image sizes. The image data set used has 37 subjects, each contain-
ing 6 different facial expressions. Using multiple images in the gallery improves the rec-
ognition accuracy [38]. Moreno et al. [39] segment the 3D face model using Gaussian 
curvature and then created a feature vector based on the segmented region for the rec-
ognition. This method achieved 78% recognition accuracy in a dataset of 420 faces from 
60 people with different facial expressions. Our paper summarizes this type of research 
in “Research on expression—invariant 3D face recognition” section.

When the face is partially blocked, the recognition accuracy would suffer. In [40, 41], 
Martinez et  al. divided the face model into small areas and proposed a probabilistic 
approach to match each area locally. The matching results are then combined for the 
face recognition. Colombo and Cusano [42] propose to recover the blocked part through 
algorithms and then use the recovered face data in recognition. This method is also use-
ful when people have decorative objects on their face such as scarf, hat, or eye glasses. 
Our paper summarizes this type of research in “Research on occlusion—invariant 3D 
face recognition” section.

In this paper, we will review the latest solutions and the results achieved from the 
three classes of face recognition research introduced in sections above. Because these 
researches are all based on some 3D face datasets. In the following sections, we will 
firstly summarize the current publicly available 3D face database, including the data type 
of each database, the number of people being collected, the number of scanned images 
collected, as well as variations in pose, expression, and occlusion.

Research on 3D face databases
There are many large-scale 2D face databases in the world. These databases provide a 
common platform to evaluate and compare 2D face recognition algorithms. 3D face 
databases are less common and smaller in scale. Before 2004, there were few publicly 
available 3D face databases. In recent years, many research institutes have established 
different kinds of 3D face databases to test and evaluate their own methods for 3D face 
recognition. Listed below are some of the published 3D databases (see Table  1) that 
compare different types of data formats, the number of faces, the number of models, 
and the types of scanning devices. Tables 2, 3 and 4 show the 3D databases constructed 



Page 9 of 27Zhou and Xiao ﻿Hum. Cent. Comput. Inf. Sci.            (2018) 8:35 

specifically for recognition algorithms that could adapt to the expression variation, the 
pose variation, and the occlusion variation.

The FRGC [43] database (as shown in Fig.  3c) has tremendous influence on the 
development of 3D face recognition algorithms. It is widely accepted as a standard 
reference database to evaluate the performance of 3D face recognition algorithms. 

Table 2  Available 3D face databases

Reference/name Data type Texture Number 
of subject

Number 
of images

Scanner

ZJU-3DFED Mesh Yes 40 360 –

FSU Mmesh No 37 222 Minolta Vivid 700

GavabDB Mesh No 61 540 Minolta Vi-700 laser range scanner

FRAV3D Mesh Yes 105 – Minolta Vivid 700 red laser light scanner

BU-3DFE Mesh Yes 100 2500 Stereo photography, 3DMD digitizer

Beckman Mesh Yes 475 – CyberWare scanner

UoY Mesh Yes 350 5000 Stereo vision 3D camera

FRGC v1.0 Range image Yes 273 943 Minolta Vivid 3D scanner

FRGC v2.0 Range image Yes 466 4007 Minolta Vivid 3D scanner

UND Range image Yes 277 953 Minolta Vivid 900 range scanner

CASIA Range image No 123 4623 Minolta Vivid 910 range scanner

ND2006 Range image Yes 888 13,450 Minolta Vivid 910 range scanner

MSU Range image No 90 533 Minolta Vivid 910 range scanner

SHREC08 Range image No 61 427 –

3D-TEC Range image Yes 214 428 Minolta scanner

SHREC11 Range image No 130 780 Escan laser scanner

UMB-DB Range image Yes 143 1473 Minolta Vivid 900 laser scanner

Texas 3DFRD Range image Yes 118 1140 MU-2 stereo imaging system

Bosphorus Point cloud Yes 105 4666 The Inspeck Mega Capturor II 3D scanner

Biometrics Range image Yes 277 1906 Minolta Vivid 900 range scanner

BJUT-3D Mesh Yes 500 – CyberWare 3030RGB/PS laser scanner

BU-4DFE 3D video Yes 101 60,600 Di3D (Dimensional Imaging) dynamic 
system

Table 3  Expression specific 3D face databases [6]

Name Expressions

FSU Neutral, smile, scared, angry, squint, frown

GavabDB Neutral, smile, accentuated laugh, random gesture

FRGC v 2.0 Neutral, surprise, happy, puffy cheeks, anger, frown

BU3D-FE Neutral, angry, fear, sadness, disgust, happiness, surprise

CASIA Neutral, smile, eyes closed, anger, laugh, surprise

FRAV3D Neutral, smile, open mouth, and gesture

ND2006 Neutral, surprise, sadness, disgust, happiness, undetermined

ZJU-3DFED Neutral, smile, surprise, sad

Bosphorus Neutral, happy, anger, disgust, fear, sadness, surprise

UoY Neutral, eyes closed, eyebrows raised, happy, anger

Texas-3D Neutral, smile/talk with open/closed eyes and/or open/closed mouth

UMB-3D Neutral, smile, angry, bored

3D-TEC Neutral, smile
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The pictures in the database are all 640 * 480 pixel 3D images, scanned by the Minolta 
Vivid 3D scanner with corresponding RGB texture information. The data was divided 
into the training set FRGC v1.0, which consisted of 943 scanned images of 273 indi-
viduals and the training set (FRGC v2.0), which contains 4007 scanned images of 466 
individuals with additional expression tags such as anger, happiness, sadness, surprise 
and disgust.

BU-3DFE is a 3D face database built specifically for the algorithm development on 
the expression-invariant face recognition [44] (as shown in Fig.  3a). There are 2500 
3D scans from 100 individuals using the stereo photography technique. This database 
contains 6 types of expressions: anger, happiness, sadness, surprise, disgust, and fear. 
Each type of expression is further tagged with four different levels.

Table 4  Pose specific 3D face databases [6]

Name Pose variations

GavabDB Frontal, left profile, right profile, looking up, lookingdown

CASIA Frontal, tilt left and right from 20° to 30°, up and down from 20° to 30°, left and right from 20° to 30°, 
left and right from 50° to 60°, left and right from 80° to 90°

FRAV3D Frontal looking up and down in X-axis direction, 25° Y-axis right turn, 5° Y-axis left turn, small and 
severe Z-axis right turn

Bosphorus Frontal, right-downwards, right-upwards, upwards, downwards, slight upwards and slight down-
wards, or as represented by exact numerical angles + 10°, + 20°, + 30°, + 45°, + 90°, − 45°, − 90°

UoY Frontal, up, down

Fig. 3  A 3D face model extracted from each of the seven key databases
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As shown in Fig. 3b, Bosphorus [45] database contains 3D face images with variations 
on expressions, head poses, and different types of occlusion. This database is based on 
4666 3D scan images of 105 individuals and was scanned using an Inspeck Mega Captu-
ror II 3D scanner.

As shown in Fig. 3e, the ND-2006 dataset [46] was the largest 3D face dataset at the 
time of publication, and it was also a superset of FRGC v2.0. It contains 13,450 3D scan 
images with 6 different expression tags (neutral, happy, sad, surprised, disgusted, etc.) 
and was scanned using a Minolta Vivid 910 range scanner. There were a total of 888 
different people had been scanned. Each person had been scanned multiple times. The 
most scanned person appeared 63 times in the database.

The Texas 3D Face Recognition Database (Texas 3DFRD) [47], shown in Fig. 3d, is a 
set of 1149 pairs of face texture descriptions and scanned images using the MU-2 stereo 
imaging system. The database includes 105 adult subjects.

BJUT-3D is a large Chinese Face 3D Face Dataset [44] (as shown in Fig.  3f ) which 
includes 500 Chinese people as the subjects. 250 women and 250 men registered their 
3D face data in the database. High-resolution human 3D facial data are scanned using a 
CyberWare 3030 RGB/PS laser scanner.

As shown in Fig. 3g, the CASIA dataset [48] was tested in 2004 using a non-contact 
3D digitizer Minolta Vivid 910 range scanner for 4624 scans of 123 people. The data set 
not only considers single changes in pose, expression, and lighting, but also changes in 
expression under the same lighting and pose changes under the same expression.

3D-TEC (3D Twins Expression Challenge (3D-TEC) Data Set) [49], this dataset con-
tains 3D facial scans of 107 pairs of twins, that is 214 people, each with a smile and a 
neutral expression for a total of 428 scans. Although this data set is ten times smaller 
than the FRGC v2.0 data set, it is still very representative, because it includes twins with 
different expressions. This database will help promote the development of 3D face rec-
ognition technology.

In contrast to 2D face images, 3D models contains the geometry information and are 
insensitive to pose and lighting changes [50, 51]. There are two kinds of acquisition tech-
niques for acquiring 3D face models: the active acquisition technologies and the pas-
sive acquisition technologies. Examples of the active acquisition technologies include 
triangulation and structured light. The most typical passive acquisition system is a stereo 
camera [9]. In active acquisition techniques, such as the Minolta Vivid scanners (shown 
in Fig.  4a), triangulation technology is used. The scanner emits laser light on the face 
and then uses the camera to record the image of the light spot. Once the center pixel 
of the point is calculated, the position of the laser spot is determined by the triangle 
formed by the laser spot, camera, and laser emitter. The effective range of the triangula-
tion technique could be a few meters with the accuracy of several millimeters. However, 
the triangulation process could be time-consuming. The scanner has to reconstruct the 
3D face model point by point. Using structured light technology, such as the Microsoft 
Kinect (shown in Fig. 4b), the scanner projects a pattern onto the face surface, and then 
a camera captures the pattern deformed by the face contour. The shape of the face is 
calculated based on the deformation of the pattern. Structured light can acquire 3D face 
data in real time, but the acquired data may contain a large number of holes and arti-
facts. For a typical passive acquisition system, such as the Bumblebee XB3 (shown in 
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Fig. 4c), the scanner uses two (or more) cameras to take pictures for the face from differ-
ent angles. The system uses algorithms to match feature points in different pictures and 
then calculates the exact position of the feature points with the triangulation algorithm. 
Multiple feature points are calculated simultaneously and then used to reconstruct the 
3D face model [10, 52]. The main pitfall of the stereoscopic system is the relatively low 
resolution of the reconstructed 3D face scans.

3D face recognition algorithms have different performances on different 3D face data-
bases. Many methods are implemented on a specific 3D face database, and performance 
on other databases may vary.

Research on pose‑invariant 3D face recognition
As shown in Fig. 5, in 3D face recognition, the change of head poses can substantially 
affect the accuracy of 3D face recognition. Many 3D face recognition systems rely on the 
front face model. Once the head is not upright or the face orientation is rotated away 
from the front-facing pose, the system would have difficulty to match the face scan with 
the preset face models.

As early as 2003, Song et al. [54] proposed a 3D face recognition method which could 
stand with large head deflection. The method depends on the geometric information of 
the feature points on the face to “adjust” the head pose in the scanned image. Figure 6 
briefly shows the extraction of facial feature points, the determination of the head posi-
tion, and the process of recognition. First, the maximum and minimum curvature points 
are automatically extracted using the geometric information of the face. These points are 
composed of the bump points and the nasal peak point (NPP). In order to find the exact 
position of the head and the deflection angle of the head from the input 3D head image, 
They proposed the Error Compensated SVD (EC-SVD) algorithm to minimize the least 

Fig. 4  Three formats of 3D human face models [9]

Fig. 5  Facial scans from the Bosphorus database from a single subject [53]
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square error and then compensate in the established 3D normalized space. For each axis, 
the pose is optimized from the angle acquired by the SVD method, thereby restoring the 
face model to the frontal angle.

Passalis et al. [55] proposed a method to use face symmetry to resolve the pose vari-
ation problem. This method uses wavelet biometric signatures which is also used in the 
landmark detection algorithms proposed in [56]. The signatures allows a matching for 
the face symmetry to compensate the pose variation (as shown in Fig. 7). Experiments 
show that this method is suitable for practical scenarios because it requires no manual 
intervention and the whole process is fully automatic. Moreover, this method is good at 
handling extreme pose changes such as a nearly 90° head rotation and leaving only one 
side of the face to the front.

Perakis et al. [56] proposed an algorithm to handle internal occlusion. The algorithm 
is based on the annotated face model (AFM). The geometry created by the AFM is also 
invariant in the event of data missing. Therefore, this method deals with incomplete data 
problems due to pose changes. Verification experiments had been conducted on FRGC 
v2.0 and can UND. The UND45LR contains a set of scans with each person turns its 
head 45° away from the frontal orientation. For each person in the scan, the left pose 
scan belongs to the training set and the right pose scan is considered to be in the testing 
set. Similarly, the UND60LR marks a collection of side scans with a 60° pose.

Fig. 6  Interpose matching using the proposed method (left to right) [55]
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In [13], a new 3D surface representation method, namely the multi-scale local 
binary model (MS-LBP) depth map, is proposed. This method is used in conjunc-
tion with the shape index (SI) map to increase the significance of the smooth-range 
surface. Scale Invariant Feature Transform (SIFT) are introduced to extract local fea-
tures to enhance their robustness to pose variations. The Rank-one recognition rate 
achieved on the FRGC v2.0 database is 96.1%. Since local facial features are used, this 
method has been shown to be capable of handle partially occluded facial probes.

Berretti et al. [57] uses Scale Invariant Feature Transform (SIFT) key point detec-
tion methods to locate feature points in the depth image and find facial curves that 
connect these key points. The authors use 45° and 60° side scans in the UND database 
to test their proposal. Since the same organization has collected UND and FRGC v2.0 
databases, they have found 39 identical faces between UND’s 45° lateral face and the 
frontal scan of FRGC v2.0. In addition, there are 33 identical faces in the 60° side scan 
of the UND, and the frontal face of the FRGC v 2.0 uses the curvature information of 
the landmark to achieve matching.

In [58], face models are represented by radial curves. In order to overcome the data 
missing problem caused by pose variation, they used a statistical model in the radial 
curve’s shape space. This method works well for recognition and can reach 98.36% 
recognition accuracy for faces looking downwards at 35°. However, the scanning 
result from the right side of the face shows that the recognition rate of the right side 
scan has dropped to 70.49%, while the left side scan has 86.89%. In addition, the limi-
tation of this method is that manual annotation of the nose tip of the side scan is 
required.

Mahmood et  al. [59] proposed a matching method using nose region extraction 
to defend against large yaw changes (approximately 60° of yaw axis). In order to re-
align the face to the frontal orientation, a pre-defined and pre-trained nose model is 
used. Face surfaces are represented by local shape descriptors. The effectiveness of 
this method has been evaluated in the GAVADB 3D facial database, which includes 

Fig. 7  The block diagram of the proposed method [54]
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both frontal and partially frontal facial scans. Using this method, the recognition 
accuracies for frontal face scans and partially frontal facial scans are 94% and 90% 
respectively.

Ding et  al. [60] proposed a PBPR face representation scheme based on the unob-
structed facial texture. PBPR can be applied to face images of arbitrary poses, which has 
greater advantages than other methods. At the same time, they proposed the MtFTL 
model for learning compact feature transformation between poses.

Research on expression—invariant 3D face recognition
Human faces have local non-rigid deformation when the expression changes, which 
reduces the similarity between the scanned face and the trained face models, and 
thereby reducing the accuracy of the 3D face recognition algorithms [68]. Figure 8 shows 
the facial shapes of the five typical expressions: the neutral expression, happiness, sad-
ness, surprise and disgust in 2D and 3D.

3D face recognition methods that can handle the expression changes generally fall 
into two categories: rigid [4, 69, 70] and non-rigid [71–73]. The rigid method treats the 
human face as a rigid subject. Such methods are popular in the early days. The main 
idea is: when the facial expression changes, there are always some facial regions remain 
unchanged or have little change. These regions are considered as the rigid areas. The 
features of the rigid areas are extracted and used in face recognition [74]. The most com-
monly used rigid areas are the nose, eyes, and the area near the forehead. Queirolo and 
Silva [75] uses the round area around the nose, the ellipse area around the nose, the face 
area above the nose, and the entire face area to match. The comprehensive four-part 
score is used to calculate the similarity between two 3D face images. An modified Simu-
late Annealing Algorithm (SAA) is then used to find the optimal value of the score. This 
method was tested with the FRGC v2.0 database and achieved a recognition accuracy 
of 98.4%. Bornak and Rafiei [76] uses the nose area for 3D face recognition. The authors 

Fig. 8  Different types of expressions gathered for subject 04514 and their associated texture and 3D images 
[69]
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proposed to firstly search for the nasal area in the center of the image, and then extract 
the outline of the diagonal area of the nasal area as a feature. Erdogmus et al. [77] pro-
posed another local feature based method. They divided the face into several parts, and 
then calculated the similarity of the corresponding parts between two 3D face images. 
The conditional density is used to transform the face recognition problem into a prob-
ability optimization problem. Miao and Krim [78] uses the nearest point alignment and 
level set method to search for a region where two face images matching with each other 
and then uses the size of the matching areas as the similarity of two face images. The 
method based on the rigid area is relatively simple and easy to implement. However, this 
type of method discards areas affected by expressions and does not use all the informa-
tion contained in the 3D face data.

The non-rigid method applies the deformation recovery algorithms to the 3D facial 
scan to counteract the distortion caused by expression variations. Although a good rec-
ognition method can be found in both categories, the non-rigid method is more capa-
ble of handling 3D face recognition in facial expression variations and can extract richer 
facial information [73]. In non-rigid classification, the recognition algorithms are divided 
into two categories: local methods and holistic methods.

Local feature based expression—invariant approaches

To our best knowledge, the first review of a 3D face recognition systems based on local 
processing was composed by Chang et al. [4].

Samir et al. proposed a method of comparing facial shapes by the surface curvature 
[79]. The basic idea is to roughly represent a facial surface with a limited level curve. 
The curve is extracted from the depth image. In [80], there is a description of the metric 
for the facial curve calculation. Experimental results show that this method is robust to 
various expressions.

Kin-Chung et al. proposed a 3D face recognition system that combines linear discrimi-
nant analysis (LDA) and linear support vector machine (LSVM) [81]. This method can 
obtain the sum of invariants by capturing local characteristics from multiple regions. Ten 
sub-regions and subsequent feature vectors are extracted from the frontal face image. In 
addition, the amount of variation is summed using the moving frame technique [82]. 
LDA and LSVM based on linear optimal fusion rules provide better performance. The 
performance of the reporting method decreases with the expression increases.

Faltemier et  al. used 28 best-performing facial sub-regions for 3D facial recognition 
[83]. To detect the image, a total of 38 sub-regions were extracted, some of which were 
overlapping. By using an ICP algorithm, each sub-regions in the probe image matches a 
gallery image region. The highest Rank-one recognition rate reached 90.2% through sin-
gle-region matching, which promoted the use of fusion strategies. The improved Borda-
count fusion method yields an overall 97.2% Rank-one recognition rate. Although the 
facial information of the image is not complete in some areas of the FRGC v2.0 database, 
this algorithm still performs well.

In [84], they proposed a mesh-based 3D face recognition method and evaluated it 
on the Bosphorus database. The surface micro-components are extracted at the sali-
ent points of the local neighborhoods, which are respectively detected by the maxi-
mum and minimum curvatures, and the final matching score is determined by the 
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two salient points. The experimental results on the Bosphorus dataset highlight the 
effectiveness of the method and its robustness in facial expression variations.

In [85], the meshSIFT algorithm and its 3D face recognition are proposed. The sali-
ent points are detected as extremum points in a scale space, and the convex points are 
determined according to the surface normals in the local neighborhoods that depend 
on the scale. Position the embossments and describe them in the feature vector of the 
connected histogram containing the tilt angle and shape index. Because this descrip-
tor is captured from a local area, expressions are almost always preserved. They allow 
the use of the number of matching features as a measure of similarity to perform 3D 
face recognition with invariant expression. Using the left-right symmetry of the face 
to expand the set of feature descriptors, matching features can be found even without 
overlapping.

Berretti and Werghi [86] proposes a 3D face recognition method based on mesh-
DoG keypoints detector and local GH descriptors, and proposes an original solution 
to improve the stability of keypoints and select the most effective features from local 
descriptors. Experiments have been conducted to evaluate the effectiveness of opti-
mization recommendations for stable keypoint detection and feature selection. The 
recognition accuracy was evaluated on the Bosphorus database and the competition 
results of existing 3D face recognition solutions based on 3D key points are shown.

Tang et  al. proposed a local binary model (LBP) based on a 3D facial segmentation 
scheme [87]. The face surface is divided into 29 sparse areas and 59 dense areas. They 
used the nearest neighbor to perform 3d face recognition based on classifiers (Table 5).

This paper [88] is based on a new 3D facial feature recognition system, namely 
Angular Radial Signature(ARS), which is extracted from the semi-rigid region of the 
face, and then use the kernel principal component analysis (KPCA). The ARSs extract 
medium characteristics to improve the discriminating ability. The medium features 
are then connected into a single feature vector, which is input into a Support Vector 
Machine (SVM) to perform face recognition. This method deals with facial expression 
changes in different individuals by using face scans. They did a lot of experiments on 
FGRGC v2.0 and SHREC 2008 data sets to get excellent recognition performance.

Table 5  Occlusion specific 3D face databases [6]

Name Expressions

FSU FSU

GavabDB FSU

FRGC v 2.0 FSU

BU3D-FE FSU

CASIA FSU

FRAV3D FSU

ND2006 FSU

ZJU-3DFED FSU

Bosphorus FSU

UoY FSU

Texas-3D FSU

UMB-3D FSU

3D-TEC FSU
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Regional Bounding SpheRe descriptors (RBSR) perform effective feature extraction on 
3D facial surfaces [89].

In [90] on the application of biometric recognition in 3D face recognition in real life, a 
new grid SIFT-like algorithm for registration-free 3D face recognition is proposed under 
expression vatiations, occlusion, and pose changes. The principal curvature-based 3D 
keypoint detection algorithm, which can repeatedly recognize the complementary posi-
tion in the local curvature on a facial scan.

Different region based approaches reported so far are summarized in Table 6.

Holistic approaches

The following table (Table 7) shows the main holistic approaches for using the deforma-
tion model functions in different databases.

The method of isometric deformation model belongs to the overall method. In the 
isometric deformation model method, [96] used the fast-moving method to calcu-
late the geodesic distance of the face surface, established a geodesic distance matrix 
(GMD), and then used the singular value decomposition (SVD) method to decompose 
the GMD to obtain the k largest eigenvalues as the shape of the human face descrip-
tor. Miao [97] calculated a set of equal geodesic distance curves for a 3D face surface, 
and then calculated the evolution vectors between the adjacent two geodesic distance 
curves. Considering that the evolution vector is easily affected by the deformation of 
Euclidean space and requires precise face alignment, the author also uses the evolu-
tion angle function (EAF) to normalize the evolution vector into a one-dimensional 
equation. In this way, the comparison problem between two 3D faces is converted 
into a comparison of two EAF curves. Feng and Krim [98] used the 20 isometric geo-
desic distance curves from the tip of the nose to represent the human face, and then 

Table 6  Pose invariant 3D face recognition approaches

Name Pose variations 3D face database No. of faces Accuracy

Lu et al. [61] Up to 45° MSU 300 98%

Dibeklioglu et al. [62, 
63]

Up to 45° Bosphorus 3396 79.41%

Blanz et al. [34, 64] Up to 40° FRGC​ 150 92%

Mian et al. [65] Up to 90° FRGC​ 4007 99.74%

Segundo et al. [66] < 15° FRGC 2.0 4950 100%

Wei et al. [67] < 15° BU-3DFE 2500 98%

Mahmood et al. [59] Up to 60° GavabDB 509 90%

Drira et at. [58] Up + 35° GavabDB 549 100% for looking up

Down − 35° 98.36% for looking 
down

Right + 90° 70.49% from right side

86.89% from left side

Passalis et al. [55] Up to 80° along the 
vertical axis

UND 1018 –

Berretti et al. [57] Up to 60° UND FRGC v2.0 Gav-
abDB

4007 82.1%

Perakis et al. [56] Up to 80° along the 
vertical axis

UND 414 –

Ding et al. [60] Up to 90° LFW – 92.95%
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cut the equal geodesic distance curve into arcs of equal length and then mapped to 
the Euclidean integral invariant space as face Features to achieve face classification 
and recognition. This method is tested in the FRGC v2.0 database and the recognition 
accuracy is 95%.

Berretti and Del Bimbo [99] divide the face surface into a series of equidistant geo-
desic strips, and then establish a direction index table by measuring the spatial dis-
placement between the equidistant geodesic strips. Finally, compare the orientation 
index table of the 3D face model to complete face recognition. This form of table-
based representation greatly reduces the computational complexity, speeds up the 
search, and is suitable for large-scale face databases. In addition, some scholars use 
the elastic geodesic between the facial curves to solve the problem of face expression 
changes and obtain high recognition accuracy [91, 100].

Table 7  Local processing based 3D face recognition approaches [6]

Category/references Dataset Local sub-regions Identification 
rate (%)

Verification 
rate (%)

Classifier/feature 
detection

Chang et al. [4] ND2006 Interior nose, center 
face,entire nose

87.10 – PCA

Kin-Chung et al. [81] FRGC v 2.0 10 Sub-regions from 
nose, eyes, cheeks 
and eyebrows

– 90.45 LDA,LSVM

Faltemier et al. [83] FRGC v 2.0 38 Sub-regions from 
nose, eyes, forehead 
and chin

97.20 93.2 –

Boehnen et al. [91] FRGC v 2.0 Eight sub-regions 
around eyes and 
nose

95.50 – Nearest neighbor

Queirolo et al. [75] FRGC v 2.0 Sub-regions from 
nose and forehead

98.40 96.50 –

Spreeuwers et al. [92] FRGC v 2.0 30 Overlapping 
sub-regions from all 
over the face

99.00 94.60 PCA-LDA

Li and Da [93] FRGC v 2.0 Six sub-regions: fore-
head, left mouth, 
right mouth, 
nose,left cheek and 
right cheek

97.80 96.00 PCA

Lei et al. [94] FRGC v 2.0 Sub-regions from 
nose, eyes and 
forehead area

95.60 97.60 Modified LDA, 
polynomial-
linear-RBF SVM

Tang et al. [87] BU-3DFE Special feature based 
sparse division (29 
blocks) and dense 
division (59 blocks)

97.70 98.20 Nearest neighbor

FRGC v2.0 94.89 –

Li et al. [95] BJUT-3D Multi-scale multi 
resolution patches 
(MSMC-LNP)

95.10 – W-SRC

FRGC v2.0 96.30 –

BU-3DFE 92.21 –

Bosphorus 95.40 –

Ming [89] FRGC v2.0 Seven sub-regions: 
forehead, mouth, 
left cheek, right 
cheek, nose, left 
eye and right eye 
regions

– 95.03 –



Page 20 of 27Zhou and Xiao ﻿Hum. Cent. Comput. Inf. Sci.            (2018) 8:35 

Mpiperis et  al. proposed a geodesic polar coordinatization method for face surfaces 
[21]. In this way, the internal attributes of the face will not change in the case of isomet-
ric deformation, so this representation is suitable for 3D face recognition with expres-
sion-invariant. Image classification is done using a PCA classifier and information on 
colors and shapes is obtained. The experimental results show that the overall perfor-
mance has been significantly improved by using geodesic polar coordinates.

Research on occlusion—invariant 3D face recognition
However, obtaining non-cooperative individuals’ face information in an uncontrolled 
environment may result in certain parts of the face not being captured because hats, 
sunglasses, eyes or faces may be partially covered by the hair (Figs. 9, 10). The unavail-
ability of this 3D face data is caused by occlusion of external objects. During the scan-
ning process, due to the non-frontal face pose of the detected individual, some parts 
of the face may not be captured, which results in erroneous data and we call it internal 
occlusion. Although many researchers are now dealing with the recognition of expres-
sion variations, few researchers do the study of the variation of the occlusion. We will 
give a detailed introduction to the recognition of some researchers in the case of face 
occlusion in the following content, including the methods they used, the database they 
used and the recognition effect that was eventually achieved (Table 8).

Colombo et al. [42] proposed a brand-new recovery strategy that can effectively recog-
nize 3D faces even when faces are partially occlude by unforeseen and unrelated objects 
(such as scarves, hats, glasses, etc.). The occlusion region is detected by considering their 
influence on the face projection in a suitable face space. Then, the non-occluded region 
is used to restore the missing information. Any recognition algorithm can be applied to 

Table 8  Morphable model based approaches [6]

Category/references Dataset Persons 
in dataset

Images 
in dataset

Identification 
rate(%)

Classifier/feature 
detection

Kakadiaris et al. [72] FRGC v2.0 466 4007 97.0 –

Xiaoguang and Jain [73] FRGC v2.0 100 877 92.0 PCA

Mpiperis et al. [101] BU-3DFE 50 1250 86.0 Maximum likelihood

Amberg et al. [102] UND 953 953 100 -

GavabDB 61 427 99.70

Al-Osaimi et al. [103] FRGC v2.0 466 4007 96.52 PCA

Haar and Veltkamp [104] UND 277 953 99.0 PCA

GavabDB 61 427 98.0

BU-3DFE 100 2500 100.0

FRGC v2.0 466 4007 97.0

Fig. 9  Four occlusion types in the Bosphorus database [45]
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this recovery strategy. This recovery strategy fixes 52 3D faces with all kinds of occlusion 
and has achieved very good results.

Alyuz et al. [105] proposed a new 3D face registration and recognition method for par-
tial face regions, which can achieve a good recognition effect in the expression and face 
occlusion. They proposed a fast and flexible alignment method using average regional 
models (ARMs) to infer local information by iterating the closest point (ICP) algorithm. 
Different scores from local regional matchers are derived from local regional matchers 
are fused to robustly identify probe subjects. In this work, a multi-expression 3D facial 
database and a Bosphorus 3D face database containing a large number of different types 
of expressions and realistic face occulsion are used for experimental testing. When face 
were blocked, a good recognition effect was obtained, and the recognition rate increased 
from 47.05 to 94.12%.

Mayo and Zhang [106] proposed and evaluated a 3D face recognition algorithm based 
on point cloud rotations, multiple projections, and voted keypoint matching. His basic 
idea is to rotate every 3D point cloud that represents a person on the x, y, or z-axis, 
iteratively project 3D points onto multiple 2.5D images in each step of the rotation. The 
marked keypoint is then extracted from the generated 2.5D image, and this smaller key-
point will replace the original face scan and its projection in the face database. In an 
extensive assessment using the GavabDB 3D facial recognition data set, their method 
has a recognition rate of 95% in neutral expressions, and 90% in recognition of faces 
such as smiles, laughing faces, and partial occlusion of faces.

Alyuz et al. [107] proposed a new type of a novel occlusion-resistant 3D face recog-
nition system that can cope with severe occlusions of hair, hands, and glasses. A two-
step registration model first detects the nose region on the curvedness-weighted convex 
shape index map and then uses the nose-based iterative closest point (ICP) algorithm to 
perform well alignment. The occlusion region is automatically determined by a generic 
facial model. After the occluded introduction of the non-facial part is removed, Gappy 
PCA is used to recover the entire face from the non-occlude facial surface. Experimental 
results obtained on realistically occluded facial images from the Bosphorus 3D face data-
base show that using the score level fusion of the regional Linear Discriminant Analysis 
(LDA) classifier, this method improves the Rank-one recognition accuracy significantly 
from 76.12 to 94.23%.

Alyuz et al. [108] proposed a fully automatic and effective 3D face recognition method, 
which is robust to face occlusion. In order to align the occluded surfaces, they use a 
model based registration scheme in which the model is selected to adaptive the face’s 
occlusion. The alignment model is formed by the automatic inspection for validity and 

Fig. 10  Sample faces from the UMB-DB [58]
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includes only the patch of the non occluded face. By registering the occlusion surfaces 
of the adaptive selection model, a one-to-one correspondence between the model and 
non-occlusion surface points is obtained. Therefore, occlusion face registration can 
be achieved. Compared with the registration strategy based on the overall face model 
(which is usually used for non-occluded surfaces), the recognition rate of the registration 
strategy is better than that of the overall face model and achieved about 20% improve-
ment identification rate by the adaptive model method testing of Bosphorus and UMB-
DB databases. Drira et al. [58] proposed a new geometric framework for analyzing 3D 
faces and give a specific targets for comparison, matching, and averaging their shapes. 
They use radial curves from the tip of the nose to represent facial surfaces and use the 
elastic shape analysis of these curves to form a Riemannian frame to analyze the shape of 
the entire facial surface. The representation, together with the elastic Riemannian met-
ric, seems to be naturally used to measure facial deformation and is very robust to par-
tial obstructions and glasses, hair, etc.

Open problems and perspectives
3D face recognition still have a lot of open problems for us to research, such as auto-
matic facial expression recognition, age-invariant face recognition and transfer learning.

As an important part of face recognition technology, facial expression (emotion) rec-
ognition (FER) has received extensive attention in the fields of human-computer inter-
action, security, robot manufacturing, automation, medical care, communication and 
driving in recent years, and become an active research field in the academic and indus-
trial circles [109]. 3D facial expression recognition can overcome weakness and improve 
recognition accuracy. Some efforts have focused on the recognition of complex and 
spontaneous emotions rather than the identification of a typical emotional expression 
that is deliberately displayed [110–113].

Most face recognition systems are sensitive to age variation. Although some of the 
earlier papers proposed some recognition methods under age-variations [114–117]. But 
there are still many problems that need us to explore.

Transfer learning is a machine learning method where a model developed for a task 
is reused as the starting point for a model on a second task. The performance of 2D 
face recognition algorithms has significantly increased by leveraging the representa-
tional power of deep neural networks and the use of large-scale labeled training data. As 
opposed to 2D face recognition, training discriminative deep features for 3D face recog-
nition is very difficult due to the lack of large-scale 3D face datasets. In [27], they show 
that transfer learning from a CNN trained on 2D face images can effectively work for 
3D face recognition by finetuning the CNN with a relatively small number of 3D facial 
scans.

3D facial expression analysis, recognition under age-variations and transfer learning 
constitute three open problems that is still in its infancy.

Future 3D technology will be applied to 3D sensing and 3D visualization. 3D sens-
ing is a depth-sensing technology that augments camera capabilities for facial and 
object recognition in augmented reality, gaming, autonomous driving, and a wide 
range of applications. 3D sensing technology is about to go full-on mainstream as the 
likes of Apple, Google and Samsung race to incorporate 3D sensors into their next 
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generation of smartphones. 3D visualization is the latest mainstream technology that 
allows designing objects in three-dimensional space with the help of 3D software and 
producing high-quality digital products. 3D visualization will be used in games, car-
toons, films and motion comics because this is the exact sphere for developing and 
improvement the 3D visualization production.

Conclusions and discussion
3D face recognition is an important and popular area in recent years. More and more 
researchers are working on this field and presenting their 3D face recognition meth-
ods. In this paper, we surveyed some of the latest methods for 3D face recognition 
under expressions, occlusions, and pose variations. At first we summarized some var-
ious available 3D face databases. All of the above methods are tested on these data-
bases. Almost all researchers use the following three formats of face data: point cloud, 
mesh and range data. All three type face data are obtained by 3D scanner.

The recognition methods are mainly divided into two categories: local methods and 
holistic methods. Although many experiments are carried out based on the holistic 
method, we believe that the local method is more suitable for 3D face recognition. 
Compared to holistic methods, the local method has stronger robustness in terms of 
occlusion and can obtain better experimental results.

This survey divided 3D face recognition into three directions, pose-invariant 3D 
face recognition, expression-invariant 3D face recognition and occlusion-invariant 
3D face recognition.

This paper survey some methods for pose-invariant face recognition that handles a 
wide range of poses on publicly available databases. The recognition method is mainly 
local method. For instance, By using half face matching, a complete face model can be 
synthesized [55]. Using a statistical model in the radial curve’s shape space to over-
come the data missing problem.

There are two methods for Expression-Invariant 3d face recognition, one is 
local approaches based expression invariant approaches and the other is holistic 
approaches.

This survey made a detailed introduction to the recognition of some researchers in 
the case of face occlusion in the following content, including the methods they used, 
the database they used and the recognition effect that was eventually achieved.

Also, 3D face recognition technology has been applied in many fields, such as access 
control and automatic driving. The iPhone X uses Face ID, technology that unlocks 
the phone by using infrared and visible light scans to uniquely identify your face. It 
works in a variety of conditions and is extremely secure. In the world of autonomous 
driving, the autopilot needs to manage the hand-over between the automated and the 
manual modes. To have a smooth hand-over, it is important to make sure that the 
driver is alert and ready to take control of the car before the autopilot is disengaged. 
To have a smooth transition between modes of operation, Omron introduce 3D facial 
recognition technology that detects a drowsy or distracted driver. Considering the 
fact that one out of every six car accidents is attributed to a drowsy or distracted 
driver, the technology can have a huge impact even on the safety of manual driving.
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Expression-invariant and occlusion-invariant 3D face recognition are very active and 
also proposed a lot of high recognition rates methods. We expect that all three direc-
tions can get a well performance in the near future.
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