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Abstract
In a Hilbert spaceH, we study a dynamic inertial Newton method which aims to
solve additively structured monotone equations involving the sum of potential and
nonpotential terms. Precisely, we are looking for the zeros of an operator A =∇f + B,
where ∇f is the gradient of a continuously differentiable convex function f and B is a
nonpotential monotone and cocoercive operator. Besides a viscous friction term, the
dynamic involves geometric damping terms which are controlled respectively by the
Hessian of the potential f and by a Newton-type correction term attached to B. Based
on a fixed point argument, we show the well-posedness of the Cauchy problem. Then
we show the weak convergence as t → +∞ of the generated trajectories towards the
zeros of ∇f + B. The convergence analysis is based on the appropriate setting of the
viscous and geometric damping parameters. The introduction of these geometric
dampings makes it possible to control and attenuate the known oscillations for the
viscous damping of inertial methods. Rewriting the second-order evolution equation
as a first-order dynamical system enables us to extend the convergence analysis to
nonsmooth convex potentials. These results open the door to the design of new
first-order accelerated algorithms in optimization taking into account the specific
properties of potential and nonpotential terms. The proofs and techniques are
original and differ from the classical ones due to the presence of the nonpotential
term.

Keywords: Proximal-gradient algorithms; Inertial methods; Hessian driven damping;
Nonpotential term; Cocoercive operators

1 Introduction and preliminary results
Let H be a real Hilbert space endowed with the scalar product 〈·, ·〉 and the associated
norm ‖ · ‖. Many situations coming from physics, biology, human sciences involve equa-
tions containing both potential and nonpotential terms. In human sciences, this comes
from the presence of both cooperative and noncooperative aspects. In physics, this comes
from the joint presence of terms of diffusion and convection. To describe such situations
we will focus on solving additively structured monotone equations of the type

Find x ∈H : ∇f (x) + B(x) = 0. (1.1)
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In the above equation, ∇f is the gradient of a convex continuously differentiable func-
tion f : H → R (that’s the potential part), and B : H → H is a nonpotential operator 1

which is supposed to be monotone and cocoercive. To this end, we will consider contin-
uous inertial dynamics whose solution trajectories converge as t → +∞ to solutions of
(1.1). Our study is part of the active research stream that studies the close relationship be-
tween continuous dissipative dynamical systems and optimization algorithms which are
obtained by their temporal discretization. To avoid lengthening the paper, we limit our
study to the analysis of the continuous dynamic. The analysis of the algorithmic part and
its link with first-order numerical optimization will be carried out in a second companion
paper. From this perspective, damped inertial dynamics offer a natural way to accelerate
these systems. As the main feature of our study, we will introduce the dynamic geometric
dampings which are respectively driven by the Hessian for the potential part and by the
corresponding Newton term for the nonpotential part. In addition to improving the con-
vergence rate, this will considerably reduce the oscillatory behavior of the trajectories. We
will pay particular attention to the minimal assumptions which guarantee convergence of
the trajectories, and which highlight the asymmetric role played by the two operators in-
volved in the dynamic. We will see that many results can be extended to the case where
f : H → R ∪ {+∞} is a convex lower semicontinuous proper function, which makes it
possible to broaden the field of applications.

1.1 Dynamical inertial Newton method for additively structured monotone
problems

For t ≥ t0, let us introduce the following second-order differential equation which will
form the basis of our analysis:

ẍ(t) + γ ẋ(t) + ∇f
(
x(t)
)

+ B
(
x(t)
)

+ βf ∇2f
(
x(t)
)
ẋ(t) + βbB′(x(t)

)
ẋ(t) = 0. (DINAM)

We use (DINAM) as an abbreviation for dynamical inertial Newton method for additively
structured monotone problems. We call t0 ∈ R the origin of time. Since we are consid-
ering autonomous systems, we can take any arbitrary real number for t0. For simplic-
ity, we set t0 = 0. When considering the corresponding Cauchy problem, we add the ini-
tial conditions: x(0) = x0 ∈ H and ẋ(0) = x1 ∈ H. The term B′(x(t))ẋ(t) is interpreted as
d
dt (B(x(t))) taken in the distribution sense. Likewise the term ∇2f (x(t))ẋ(t) is interpreted
as d

dt (∇f (x(t))) taken also in the distribution sense. Because of the assumptions made be-
low, these terms are indeed measurable functions which are bounded on the bounded time
intervals. So, we will consider strong solutions of the above equation (DINAM).

Throughout the paper we make the following standing assumptions:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(A1) f : H →R is convex, of class C1,

∇f is Lipschitz continuous on the bounded sets;

(A2) B : H →H is a λ-cocoercive operator for some λ > 0;

(A3) γ > 0,βf > 0,βb ≥ 0 are given real damping parameters.

1i.e. B is not supposed to be equal to the gradient of a given function.
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We emphasize the fact that we do not assume the gradient of f to be globally Lipschitz
continuous. Developing our analysis without using any bound on the gradient of f is a key
to further extend the theory to the nonsmooth case. As a specific property, the inertial
system (DINAM) combines two different types of driving forces associated respectively
with the potential operator ∇f and the nonpotential operator B. It also involves three
different types of friction:

(a) The term γ ẋ(t) models viscous damping with a positive coefficient γ > 0.
(b) The term βf ∇2f (x(t))ẋ(t) is the so-called Hessian driven damping, which allows to

attenuate the oscillations that naturally occur with the inertial gradient dynamics.
(c) The term βbB′(x(t))ẋ(t) is the nonpotential version of the Hessian driven damping.

It can be interpreted as a Newton-type correction term.
Note that each driving force term enters (DINAM) with its temporal derivative. In fact,
we have

∇2f
(
x(t)
)
ẋ(t) =

d
dt
(∇f
(
x(t)
))

and B′(x(t)
)
ẋ(t) =

d
dt
(
B
(
x(t)
))

.

This is a crucial observation which makes (DINAM) equivalent to a first-order system in
time and space, and makes the corresponding Cauchy problem well posed. This will be
proved later (see Sect. 2.1 for more details). The cocoercivity assumption on the operator
B plays an important role in the analysis of (DINAM), not only to ensure the existence of
solutions, but also to analyze their asymptotic behavior as time t → +∞.

Recall that the operator B : H →H is said to be λ-cocoercive for some λ > 0 if

〈By – Bx, y – x〉 ≥ λ‖By – Bx‖2, ∀x, y ∈H.

Note that B is λ-cocoercive is equivalent to B–1 is λ-strongly monotone, i.e., cocoercivity
is a dual notion of strong monotonicity. It is easy to check that B is λ-cocoercive implies
that B is 1/λ-Lipschitz continuous. The reverse implication holds true in the case where
the operator is the gradient of a convex and differentiable function. Indeed, according to
Baillon–Haddad’s theorem [17], ∇f is L-Lipschitz continuous implies that ∇f is a 1/L-
cocoercive operator (we refer to [18, Corollary 18.16] for more details).

1.2 Historical aspects of the inertial systems with Hessian-driven damping
The following inertial system with Hessian-driven damping

ẍ(t) + γ ẋ(t) + β∇2f
(
x(t)
)
ẋ(t) + ∇f

(
x(t)
)

= 0

was first considered by Alvarez, Attouch, Peypouquet, and Redont in [6]. Then, according
to the continuous interpretation by Su, Boyd, and Candès [28] of the accelerated gradi-
ent method of Nesterov, Attouch, Peypouquet, and Redont [14] replaced the fixed viscous
damping parameter γ with an asymptotic vanishing damping parameter α

t , with α > 0.
At first glance, the presence of the Hessian may seem to entail numerical difficulties.
However, this is not the case as the Hessian intervenes in the above ODE in the form
∇2f (x(t))ẋ(t), which is nothing but the derivative with respect to time of ∇f (x(t)). So, the
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temporal discretization of these dynamics provides first-order algorithms of the form

⎧
⎨

⎩
yk = xk + αk(xk – xk–1) – βk(∇f (xk) – ∇f (xk–1)),

xk+1 = yk – s∇f (yk).

As a specific feature, and by comparison with the classical accelerated gradient methods,
these algorithms contain a correction term which is equal to the difference of the gradients
at two consecutive steps. While preserving the convergence properties of the accelerated
gradient method, they provide fast convergence to zero of the gradients and reduce the
oscillatory aspects. Several recent studies have been devoted to this subject, see Attouch,
Chbani, Fadili, and Riahi [7], Boţ, Csetnek, and László [20], Kim [24], Lin and Jordan [25],
Shi, Du, Jordan, and Su [27], and Alesca, Lazlo, and Pinta [4] for an implicit version of
the Hessian driven damping. Application to deep learning has been recently developed by
Castera, Bolte, Févotte, and Pauwels [23]. In [3], Adly and Attouch studied the finite con-
vergence of proximal-gradient inertial algorithms combining dry friction with Hessian-
driven damping.

1.3 Inertial dynamics involving cocoercive operators
Let us come to the transposition of these techniques to the case of maximally monotone
operators. Álvarez and Attouch [5] and Attouch and Maingé [10] studied the equation

ẍ(t) + γ ẋ(t) + A
(
x(t)
)

= 0, (1.2)

when A : H →H is a cocoercive (and hence maximally monotone) operator (see also [19]).
The cocoercivity assumption plays an important role in the study of (1.2), not only to en-
sure the existence of solutions, but also to analyze their long-term behavior. Assuming that
the cocoercivity parameter λ and the damping coefficient γ satisfy the inequality λγ 2 > 1,
Attouch and Maingé [10] showed that each trajectory of (1.2) converges weakly to a zero
of A, i.e., x(t) ⇀ x∞ ∈ A–1(0) as t → +∞. Moreover, the condition λγ 2 > 1 is sharp.

For general maximally monotone operators, this property has been further exploited by
Attouch and Peypouquet [13] and by Attouch and Laszlo [8, 9]. The key property is that,
for λ > 0, the Yosida approximation Aλ of A is λ-cocoercive and A–1

λ (0) = A–1(0). So the
idea is to replace the operator A with its Yosida approximation and adjust the Yosida reg-
ularization parameter. Another related work has been done by Attouch and Maingé [10]
who first considered the asymptotic behavior of the second-order dissipative evolution
equation with f : H →R convex and B : H →H cocoercive

ẍ(t) + γ ẋ(t) + ∇f
(
x(t)
)

+ B
(
x(t)
)

= 0, (1.3)

combining potential with nonpotential effects. Our study will therefore consist initially in
introducing the Hessian term and the Newton-type correcting term into this dynamic.

1.4 Link with Newton-like methods for solving monotone inclusions
Let us specify the link between our study and Newton’s method for solving (1.1). To over-
come the ill-posed character of the continuous Newton method for a general maximally
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monotone operator A, the following first-order evolution system was studied by Attouch
and Svaiter [16]:

⎧
⎨

⎩
v(t) ∈ A(x(t)),

γ (t)ẋ(t) + β v̇(t) + v(t) = 0.

This system can be considered as a continuous version of the Levenberg–Marquardt
method, which acts as a regularization of the Newton method. Remarkably, under a fairly
general assumption on the regularization parameter γ (t), this system is well posed and
generates trajectories that converge weakly to equilibria (zeroes of A). Parallel results have
been obtained for the associated proximal algorithms obtained by implicit temporal dis-
cretization, see [2, 12, 15]. Formally, this system is written as

γ (t)ẋ(t) + β
d
dt
(
A
(
x(t)
))

+ A
(
x(t)
)

= 0.

Thus (DINAM) can be considered as an inertial version of this dynamical system for struc-
tured monotone operator A = ∇f + B. Our study is also linked to the recent works by At-
touch and Laszlo [8, 9] who considered the general case of monotone equations. By con-
trast with [8, 9], according to the cocoercivity of B, we do not use the Yosida regularization
and exhibit minimal assumptions involving only the nonpotential component.

1.5 Contents
The paper is organized as follows. Section 1 introduces (DINAM) with some historical
perspective. In Sect. 2, based on the first-order equivalent formulation of (DINAM), we
show that the Cauchy problem is well-posed (in the sense of existence and uniqueness
of solutions). In Sect. 3, we analyze the asymptotic convergence properties of the tra-
jectories generated by (DINAM). Using appropriate Lyapunov functions, we show that
any trajectory of (DINAM) converges weakly as t → +∞, and that its limit belongs to
S = (∇f + B)–1(0). The interplay between the damping parameters βf , βb, γ and the coco-
ercivity parameter λ will play an important role in our Lyapunov analysis. In Sect. 4, we
perform numerical experiments showing that the well-known oscillations in the case of
the heavy ball with friction are damped with the introduction of the geometric (Hessian-
like) damping terms. An application to the LASSO problem with a nonpotential operator
as well as a coupled system in dynamical games are considered. Section 5 deals with the
extension of the study to the nonsmooth and convex case. Section 6 contains some con-
cluding remarks and perspectives.

2 Well-posedness of the Cauchy–Lipschitz problem
We first show the existence and the uniqueness of the solution trajectory for the Cauchy
problem associated with (DINAM) for any given initial condition data (x0, x1) ∈H×H.

2.1 First-order in time and space equivalent formulation
The following first-order equivalent formulation of (DINAM) was first considered by Al-
varez, Attouch, Bolte, and Redont [6] and Attouch, Peypouquet, and Redont [14] in the
framework of convex minimization. Specifically, in our context, we have the following
equivalence, which follows from a simple differential and algebraic calculation.
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Proposition 2.1 Suppose that βf > 0. Then the following problems are equivalent: (i) ⇐⇒
(ii)

(i) ẍ(t) + γ ẋ(t) + ∇f
(
x(t)
)

+ B
(
x(t)
)

+ βf ∇2f
(
x(t)
)
ẋ(t) + βbB′(x(t)

)
ẋ(t) = 0.

(ii)

⎧
⎨

⎩

ẋ(t) + βf ∇f (x(t)) + βbB(x(t)) + (γ – 1
βf

)x(t) + y(t) = 0;

ẏ(t) – (1 – βb
βf

)B(x(t)) + 1
βf

(γ – 1
βf

)x(t) + 1
βf

y(t) = 0.

Proof (i) �⇒ (ii). For t ≥ 0, set

y(t) := –ẋ(t) – βf ∇f
(
x(t)
)

– βbB
(
x(t)
)

–
(

γ –
1
βf

)
x(t), (2.1)

which gives the first equation of (ii). By differentiating y(·) and using (i), we get

ẏ(t) = –ẍ(t) – βf ∇2f
(
x(t)
)
ẋ(t) – βbB′(x(t)

)
ẋ(t) –

(
γ –

1
βf

)
ẋ(t)

= γ ẋ(t) + ∇f
(
x(t)
)

+ B
(
x(t)
)

–
(

γ –
1
βf

)
ẋ(t)

= ∇f
(
x(t)
)

+ B
(
x(t)
)

+
1
βf

ẋ(t). (2.2)

By combining (2.1) and (2.2), we obtain

ẏ(t) +
1
βf

y(t) =
(

1 –
βb

βf

)
B
(
x(t)
)

–
1
βf

(
γ –

1
βf

)
x(t). (2.3)

This gives the second equation of (ii).
(ii) �⇒ (i). By differentiating the first equation of (ii), we obtain

ẍ(t) + βf ∇2f
(
x(t)
)
ẋ(t) + βbB′(x(t)

)
ẋ(t) +

(
γ –

1
βf

)
ẋ(t) + ẏ(t) = 0. (2.4)

Let us eliminate y from this equation to obtain an equation involving only x. For this, we
successively use the second equation in (ii), then the first equation in (ii) to obtain

ẏ(t) =
(

1 –
βb

βf

)
B
(
x(t)
)

–
1
βf

(
γ –

1
βf

)
x(t) –

1
βf

y(t)

=
(

1 –
βb

βf

)
B
(
x(t)
)

–
1
βf

(
γ –

1
βf

)
x(t) +

1
βf

ẋ(t)

+ ∇f
(
x(t)
)

+
βb

βf
B
(
x(t)
)

+
1
βf

(
γ –

1
βf

)
x(t).

Therefore,

ẏ(t) = ∇f
(
x(t)
)

+ B
(
x(t)
)

+
1
βf

ẋ(t). (2.5)

From (2.4) and (2.5), we obtain (i). �
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2.2 Well-posedness of the evolution equation (DINAM)
In the following theorem, we show the well-posedness of the Cauchy problem for the evo-
lution equation (DINAM).

Theorem 2.1 Suppose that βf > 0 and βb ≥ 0. Then, for any (x0, x1) ∈H×H, there exists a
unique strong global solution x : [0, +∞[→H of the continuous dynamic (DINAM) which
satisfies the Cauchy data x(0) = x0, ẋ(0) = x1.

Proof System (ii) in Proposition 2.1 can be written equivalently as

Ż(t) + F
(
Z(t)

)
= 0, Z(0) = (x0, y0),

where Z(t) = (x(t), y(t)) ∈H×H and

F(x, y) = βf
(∇f (x), 0

)

+
(

βbB(x) +
(

γ –
1
βf

)
x + y, –

(
1 –

βb

βf

)
B(x) +

1
βf

(
γ –

1
βf

)
x +

1
βf

y
)

,

y0 = –x1 – βf ∇f (x0) – βbB(x0) –
(

γ –
1
βf

)
x0.

Therefore, F = ∇� + G, where � : H×H →R is the convex differentiable function

�(x, y) := βf f (x)

and G : H×H →H×H

G(x, y) :=
(

βbB(x) +
(

γ –
1
βf

)
x + y, –

(
1 –

βb

βf

)
B(x) +

1
βf

(
γ –

1
βf

)
x +

1
βf

y
)

is a Lipschitz continuous map. Indeed, the Lipschitz continuity of G is a direct conse-
quence of the Lipschitz continuity of B. The existence of a classical solution to

Ż(t) + ∇�
(
Z(t)

)
+ G
(
Z(t)

)
= 0, Z(0) = (x0, y0)

follows from Brézis [21, Proposition 3.12]. In fact, the proof of this result relies on a fixed
point argument. It consists in finding a fixed point of the mapping u ∈ C([0, T],H) �→
K(u) ∈ C([0, T],H), where K(u) = w is the solution of

ẇ(t) + ∇�
(
w(t)

)
= –G

(
u(t)
)
, w(0) = (x0, y0).

It is proved that the sequence of iterates (wn) generated by the corresponding Picard iter-
ation

ẇn+1(t) + ∇�
(
wn+1(t)

)
= –G

(
wn(t)

)
, wn+1(0) = (x0, y0),

converges uniformly on [0, T] to a fixed point of K . When returning to (DINAM), that
is, equation (i) of Proposition 2.1, we recover a strong solution. Precisely, ẋ is Lipschitz
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continuous on the bounded time intervals, and ẍ taken in the distribution sense is locally
essentially bounded. �

Remark 2.1 Note that when ∇f is supposed to be globally Lipschitz continuous, the above
proof can be notably simplified by just applying the classical Cauchy–Lipschitz theorem.

3 Asymptotic convergence properties of (DINAM)
In this section, we study the asymptotic behavior of the solution trajectories of (DINAM).
For each solution trajectory t �→ x(t) of (DINAM), we show that the weak limit w-
limt→+∞ x(t) = x∞ exists and satisfies x∞ ∈ S, where

S :=
{

p ∈H : ∇f (p) + B(p) = 0
}

.

Before stating our main result, notice that B(p) is uniquely defined for p ∈ S.

Lemma 3.1 B(p) is uniquely defined for p ∈ S, i.e.,

p1 ∈ S, p2 ∈ S �⇒ B(p1) = B(p2).

Proof Since p1 ∈ S, p2 ∈ S, we have

∇f (p1) + B(p1) = ∇f (p2) + B(p2) = 0.

By the monotonicity of ∇f , we have

〈∇f (p2) – ∇f (p1), p2 – p1
〉≥ 0.

Replacing ∇f (p1) with –B(p1) and ∇f (p2) with –B(p2), we get

〈
B(p2) – B(p1), p2 – p1

〉≤ 0,

which by cocoercivity of B gives λ‖B(p2) – B(p1)‖2 ≤ 0, and hence B(p2) = B(p1). �

3.1 General case
The general line of the proof is close to that given by Attouch and Laszlo in [8, 9]. The first
major difference with the approach developed in [8, 9] is that in our context, thanks to
the hypothesis of cocoercivity on the nonpotential part, we do not need to go through the
Yosida regularization of the operators. The second difference is that we treat the potential
and nonpotential operators in a differentiated way. These points are crucial for applica-
tions to numerical algorithms, because the computation of the Yosida regularization of
the sum of the two operators is often out of reach numerically.

The following theorem states the asymptotic convergence properties of (DINAM).

Theorem 3.1 Let B : H → H be a λ-cocoercive operator and f : H → R be a C1 convex
function whose gradient is Lipschitz continuous on the bounded sets. Suppose that S = (∇f +
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B)–1(0) �= ∅, and that the parameters involved in the evolution equation (DINAM) satisfy
the following conditions: βf > 0 and

4λγ >
(βb – βf )2

βf
+ 2
(

βb +
1
γ

)
+ 2

√(
βb +

1
γ

)2

+
(βb – βf )2

γβf
. (3.1)

Then, for any solution trajectory x : [0, +∞[→H of (DINAM), the following properties are
satisfied:

(i) (convergence) x(t) converges weakly, as t → +∞, to an element of S.
(ii) (integral estimates) Set A := B + ∇f and p ∈ S. Then

∫ +∞

0

∥∥ẋ(t)
∥∥2 dt < +∞,

∫ +∞

0

∥∥ẍ(t)
∥∥2 dt < +∞,

∫ +∞

0

∥∥B
(
x(t)
)

– B(p)
∥∥2 dt < +∞,

∫ +∞

0

∥
∥∥∥

d
dt

B
(
x(t)
)
∥
∥∥∥

2

dt < +∞,

∫ +∞

0

∥
∥A
(
x(t)
)∥∥2 dt < +∞, and

∫ +∞

0

∥∥
∥∥

d
dt

A
(
x(t)
)
∥∥
∥∥

2

dt < +∞.

(iii) (pointwise estimates)

lim
t→+∞

∥
∥ẋ(t)

∥
∥ = 0, lim

t→+∞
∥
∥B
(
x(t)
)

– B(p)
∥
∥ = 0, lim

t→+∞
∥
∥A
(
x(t)
)∥∥ = 0,

where B(p) is uniquely defined for p ∈ S.

Proof Lyapunov analysis. Set A := B + ∇f and Aβ := βbB + βf ∇f . Take p ∈ S. Consider the
function t ∈ [0, +∞[ �→ Vp(t) ∈R+ defined by

Vp(t) :=
1
2
∥∥x(t) – p + c

(
ẋ(t) + Aβ

(
x(t)
)

– Aβ (p)
)∥∥2 +

δ

2
∥∥x(t) – p

∥∥2, (3.2)

where c and δ are coefficients to adjust. Using the differentiation chain rule for absolutely
continuous functions (see [22, Corollary VIII.10]) and (DINAM), we get

V̇p(t) =
〈
ẋ(t) – c

(
γ ẋ + A

(
x(t)
))

, x(t) – p + c
(
ẋ(t) + Aβ

(
x(t)
)

– Aβ (p)
)〉

+ δ
〈
ẋ(t), x(t) – p

〉
. (3.3)

Setting δ := cγ – 1 > 0, from (3.3) we obtain

V̇p(t) =
〈
–cA

(
x(t)
)
, x(t) – p

〉
+ c
〈
(1 – cγ )ẋ(t) – cA

(
x(t)
)
, ẋ(t) + Aβ

(
x(t)
)

– Aβ (p)
〉
. (3.4)

We have

c
〈
(1 – cγ )ẋ(t) – cA

(
x(t)
)
, ẋ(t) + Aβ

(
x(t)
)

– Aβ (p)
〉

= c(1 – cγ )
∥
∥ẋ(t)

∥
∥2 + c(1 – cγ )

〈
ẋ(t), Aβ

(
x(t)
)

– Aβ (p)
〉

– c2〈A
(
x(t)
)
, ẋ(t)

〉
– c2〈A

(
x(t)
)
, Aβ

(
x(t)
)

– Aβ (p)
〉
,

= c(1 – cγ )
∥∥ẋ(t)

∥∥2 – c2βb
∥∥B
(
x(t)
)

– B(p)
∥∥2 – c2βf

∥∥∇f
(
x(t)
)

– ∇f (p)
∥∥2
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+
[
c(1 – cγ )βb – c2]〈ẋ(t), B

(
x(t)
)

– B(p)
〉

+
[
c(1 – cγ )βf – c2]〈ẋ(t),∇f

(
x(t)
)

– ∇f (p)
〉

– c2(βb + βf )
〈
B
(
x(t)
)

– B(p),∇f
(
x(t)
)

– ∇f (p)
〉
. (3.5)

Using the fact that p ∈ S, ∇f is monotone, and B is λ-cocoercive, we have

–c
〈
A
(
x(t)
)
, x(t) – p

〉
= –c

〈
A
(
x(t)
)

– A(p), x(t) – p
〉

= –c
〈∇f
(
x(t)
)

– ∇f (p), x(t) – p
〉
– c
〈
B
(
x(t)
)

– B(p), x(t) – p
〉

≤ –cλ
∥∥B
(
x(t)
)

– B(p)
∥∥2. (3.6)

From (3.4)–(3.6), we deduce that

V̇p(t) ≤ –cδ
∥∥ẋ(t)

∥∥2 –
[
c2βb + cλ

]∥∥B
(
x(t)
)

– B(p)
∥∥2 – c2βf

∥∥∇f
(
x(t)
)

– ∇f (p)
∥∥2

–
[
cδβb + c2]〈ẋ(t), B

(
x(t)
)

– B(p)
〉
–
[
cδβf + c2]〈ẋ(t),∇f

(
x(t)
)

– ∇f (p)
〉

– c2(βb + βf )
〈
B
(
x(t)
)

– B(p),∇f
(
x(t)
)

– ∇f (p)
〉
. (3.7)

Let 	 : [0, +∞[→ R be the function defined by

	(t) := f
(
x(t)
)

– f (p) –
〈∇f (p), x(t) – p

〉
,

and Ep : [0, +∞[→R be the energy function given by

Ep(t) := Vp(t) +
[
cδβf + c2]	(t).

Since f is convex, we have 	(t) ≥ 0 for all t ≥ 0. This implies Ep(t) ≥ 0 for all t ≥ 0 as well.
We have

	̇(t) =
〈
ẋ(t),∇f

(
x(t)
)

– ∇f (p)
〉
, (3.8)

Ėp(t) = V̇p(t) +
[
cδβf + c2]	̇(t). (3.9)

By using (3.8) and (3.9), equation (3.7) can be rewritten as

Ėp(t) + cδ
∥∥ẋ(t)

∥∥2 +
[
c2βb + cλ

]∥∥B
(
x(t)
)

– B(p)
∥∥2 + c2βf

∥∥∇f
(
x(t)
)

– ∇f (p)
∥∥2 (3.10)

+
[
cδβb + c2]〈ẋ(t), B

(
x(t)
)

– B(p)
〉
+ c2(βb + βf )

〈
B
(
x(t)
)

– B(p),∇f
(
x(t)
)

– ∇f (p)
〉

≤ 0.

Let us eliminate the term ∇f (x(t)) – ∇f (p) from this relation by using the elementary al-
gebraic inequality

c2βf
∥
∥∇f

(
x(t)
)

– ∇f (p)
∥
∥2 + c2(βb + βf )

〈
B
(
x(t)
)

– B(p),∇f
(
x(t)
)

– ∇f (p)
〉

≥ –
c2(βb + βf )2

4βf

∥
∥B
(
x(t)
)

– B(p)
∥
∥2.



Adly et al. Fixed Point Theory Algorithms Sci Eng         (2021) 2021:17 Page 11 of 30

We obtain

Ėp(t) + cδ
∥
∥ẋ(t)

∥
∥2 +

[
c2βb + cλ –

c2(βb + βf )2

4βf

]∥
∥B
(
x(t)
)

– B(p)
∥
∥2

+
[
cδβb + c2]〈ẋ(t), B

(
x(t)
)

– B(p)
〉≤ 0.

Equivalently

Ėp(t) + cS(t) ≤ 0, (3.11)

where

S(t) := δ
∥∥ẋ(t)

∥∥2 + [δβb + c]
〈
ẋ(t), B

(
x(t)
)

– B(p)
〉

+
[

cβb + λ –
c(βb + βf )2

4βf

]∥∥B
(
x(t)
)

– B(p)
∥∥2.

Set X(t) = ẋ(t) and Y (t) = B(x(t))–B(p). We haveS(t) = q(X(t), Y (t)), where q : H×H →R

is the quadratic form

q(X, Y ) := a‖X‖2 + b〈X, Y 〉 + g‖Y‖2

with a = δ, b = δβb + c, and g = cβb + λ – c(βb+βf )2

4βf
= λ – c(βb–βf )2

4βf
.

According to Lemma A.3, and since a = δ = cγ – 1 > 0, we have that q is positive definite
if and only if 4ag – b2 > 0. Equivalently

4δ

(
λ –

c(βb – βf )2

4βf

)
– [δβb + c]2 > 0. (3.12)

Our aim is to find c such that cγ – 1 > 0 and such that (3.12) is satisfied. Take δ := cγ – 1 > 0
as a new variable. Equivalently, we must find δ > 0 such that

4δ

(
λ –

δ + 1
γ

.
(βb – βf )2

4βf

)
–
(

δβb +
δ + 1
γ

)2

> 0.

After development and simplification we obtain

4λ >
[

(βb – βf )2

γβf
+

2
γ

(
βb +

1
γ

)]
+

1
γ 2δ

+
[(

βb +
1
γ

)2

+
(βb – βf )2

γβf

]
δ.

Therefore, we just need to assume that

4λ >
[

(βb – βf )2

γβf
+

2
γ

(
βb +

1
γ

)]
+ inf

δ>0

(
1

γ 2δ
+
[(

βb +
1
γ

)2

+
(βb – βf )2

γβf

]
δ

)
.

Elementary optimization argument gives that

inf
δ>0

(
C
δ

+ Dδ

)
= 2

√
CD.
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Therefore we end up with the condition

4λ >
[

(βb – βf )2

γβf
+

2
γ

(
βb +

1
γ

)]
+

2
γ

√(
βb +

1
γ

)2

+
(βb – βf )2

γβf
.

Equivalently

4λγ >
[

(βb – βf )2

βf
+ 2
(

βb +
1
γ

)]
+ 2

√(
βb +

1
γ

)2

+
(βb – βf )2

γβf
. (3.13)

When βb = βf = β , we recover the condition

λγ > β +
1
γ

.

Note that cγ = 1 + δ and δ > 0 implies c > 0. According to (3.11), S(t) = q(X(t), Y (t)), and q
positive definite, we deduce that there exist positive real numbers c, μ such that

Ėp(t) + cμ
∥
∥ẋ(t)

∥
∥2 + cμ

∥
∥B
(
x(t)
)

– B(p)
∥
∥2 ≤ 0. (3.14)

Estimates. Let us start from (3.14) that we integrate on [0, t], t ≥ 0. We obtain

Ep(t) + cμ
∫ t

0

∥∥ẋ(s)
∥∥2 ds + cμ

∫ t

0

∥∥B
(
x(s)
)

– B(p)
∥∥2 ds ≤ Ep(0). (3.15)

From (3.15) and the definition of Ep, we immediately deduce

sup
t≥0

∥∥x(t) – p
∥∥ < +∞, (3.16)

sup
t≥0

∥∥x(t) – p + c
(
ẋ(t) + Aβ

(
x(t)
)

– Aβ (p)
)∥∥ < +∞, (3.17)

∫ +∞

0

∥
∥ẋ(t)

∥
∥2 dt < +∞, (3.18)

∫ +∞

0

∥∥B
(
x(t)
)

– B(p)
∥∥2 dt < +∞. (3.19)

Let us return to (3.10). We recall that

Ėp(t) + cδ
∥
∥ẋ(t)

∥
∥2 +

[
c2βb + cλ

]∥∥B
(
x(t)
)

– B(p)
∥
∥2 + c2βf

∥
∥∇f

(
x(t)
)

– ∇f (p)
∥
∥2 (3.20)

+
[
cδβb + c2]〈ẋ(t), B

(
x(t)
)

– B(p)
〉
+ c2(βb + βf )

〈
B
(
x(t)
)

– B(p),∇f
(
x(t)
)

– ∇f (p)
〉

≤ 0.

After integration on [0, t], and by using the integral estimates
∫ +∞

0 ‖ẋ(t)‖2 dt < +∞ and
∫ +∞

0 ‖B(x(t)) – B(p)‖2 dt < +∞ obtained in (3.18) and (3.19), we get the existence of a con-
stant C > 0 such that

c2βf

∫ t

0

∥∥∇f
(
x(s)
)

– ∇f (p)
∥∥2 ds

≤ C + c2(βb + βf )
∫ t

0

∥
∥B
(
x(s)
)

– B(p)
∥
∥
∥
∥∇f

(
x(s)
)

– ∇f (p)
∥
∥ds.
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Therefore, for any ε > 0, we have

c2βf

∫ t

0

∥∥∇f
(
x(s)
)

– ∇f (p)
∥∥2 ds

≤ C + c2(βb + βf )
∫ t

0

(
1

4ε

∥
∥B
(
x(s)
)

– B(p)
∥
∥2 + ε

∥
∥∇f

(
x(s)
)

– ∇f (p)
∥
∥2
)

ds.

By taking ε > 0 such that βf > ε(βb +βf ), which is always possible since βf > 0, we conclude

∫ +∞

0

∥
∥∇f

(
x(t)
)

– ∇f (p)
∥
∥2 dt < +∞.

Combining this with
∫ +∞

0 ‖B(x(t)) – B(p)‖2 dt < +∞, it follows immediately

∫ +∞

0

∥∥A
(
x(t)
)

– A(p)
∥∥2 dt < +∞. (3.21)

Moreover, we also have

∫ +∞

0

∥∥Aβ

(
x(t)
)

– Aβ (p)
∥∥2 dt

=
∫ +∞

0

∥
∥βf
(∇f
(
x(t)
)

– ∇f (p)
)

+ βb
(
B
(
x(t)
)

– B(p)
)∥∥2 dt

≤ (β2
f + β2

b
)∫ +∞

0

∥∥∇f
(
x(t)
)

– ∇f (p)
∥∥2 +

∥∥B
(
x(t)
)

– B(p)
∥∥2 dt < +∞. (3.22)

According to (3.16) the trajectory x(·) is bounded. Set R := supt≥0 ‖x(t)‖. By assumption,
∇f is Lipschitz continuous on the bounded sets. Let LR < +∞ be the Lipschitz constant
of ∇f on B(0, R). Since B is λ-cocoercive, it is 1

λ
-Lipschitz continuous. Therefore A is L-

Lipschitz continuous on the trajectory with L := LR + 1
λ

. Therefore

d
dt
∥
∥A
(
x(t)
)∥∥≤

∥∥
∥∥

d
dt

A
(
x(t)
)
∥∥
∥∥≤ L

∥
∥ẋ(t)

∥
∥ for all t ≥ 0. (3.23)

Using (3.21) and (3.23), we deduce that u(t) := ‖A(x(t))‖ satisfies the condition of
Lemma A.2 (with p = 2 and r = 2). Therefore,

lim
t→+∞

∥∥A
(
x(t)
)∥∥ = 0. (3.24)

Likewise, according to (3.22), we have

lim
t→+∞

∥∥Aβ

(
x(t)
)

– Aβ (p)
∥∥ = 0. (3.25)

By using the same argument as in (3.23), we obtain that d
dt Aβ (x(t)) is bounded. From (3.23)

we also get that

∫ +∞

0

∥∥
∥∥

d
dt

A
(
x(t)
)
∥∥
∥∥

2

dt < +∞.
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Similarly, we also have

∫ +∞

0

∥∥∥
∥

d
dt

B
(
x(t)
)
∥∥∥
∥

2

dt < +∞.

By using (DINAM), we have

ẍ(t) = –γ ẋ(t) – A
(
x(t)
)

–
d
dt

Aβ

(
x(t)
)

= –γ ẋ(t) – A
(
x(t)
)

– βf
d
dt

A
(
x(t)
)

– (βb – βf )
d
dt

B
(
x(t)
)
.

Since the second member of the above equality belongs to L2(0, +∞;H), we finally get

∫ +∞

0

∥
∥ẍ(t)

∥
∥2 dt < +∞.

Combining this property with (3.18) and using Lemma A.2, we deduce that

lim
t→+∞

∥
∥ẋ(t)

∥
∥ = 0. (3.26)

The limit. To prove the existence of the weak limit of x(t), we use Opial’s lemma (see
[26] for more details). Given p ∈ S, let us consider the anchor function defined by, for
every t ∈ [0, +∞[,

qp(t) :=
1
2
∥
∥x(t) – p

∥
∥2.

From q̇p(t) = 〈ẋ(t), x(t) – p〉 and q̈p(t) = ‖ẋ(t)‖2 + 〈ẍ(t), x(t) – p〉, we obtain

q̈p(t) + γ q̇p(t) =
∥∥ẋ(t)

∥∥2 +
〈
ẍ(t) + γ ẋ(t), x(t) – p

〉

=
∥
∥ẋ(t)

∥
∥2 –

〈
A
(
x(t)
)

+
d
dt

Aβ

(
x(t)
)
, x(t) – p

〉

≤ ∥∥ẋ(t)
∥∥2 –

〈
d
dt

Aβ

(
x(t)
)
, x(t) – p

〉
.

Equivalently,

q̈p(t) + γ q̇p(t) +
〈

d
dt

Aβ

(
x(t)
)
, x(t) – p

〉
≤ ∥∥ẋ(t)

∥∥2. (3.27)

According to the differentiation formula for a product, we can rewrite (3.27) as follows:

q̈p(t) + γ q̇p(t) +
d
dt
〈
Aβ

(
x(t)
)

– Aβ (p), x(t) – p
〉≤ ∥∥ẋ(t)

∥∥2 +
〈
Aβ

(
x(t)
)

– Aβ (p), ẋ(t)
〉
.

By the Cauchy–Schwarz inequality, we get

q̈p(t) + γ q̇p(t) +
d
dt
〈
Aβ

(
x(t)
)

– Aβ (p), x(t) – p
〉

≤ ∥∥ẋ(t)
∥∥2 +

∥∥Aβ

(
x(t)
)

– Aβ (p)
∥∥∥∥ẋ(t)

∥∥. (3.28)
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Then note that the second member of (3.28)

g(t) :=
∥∥ẋ(t)

∥∥2 +
∥∥Aβ

(
x(t)
)

– Aβ (p)
∥∥∥∥ẋ(t)

∥∥

is nonnegative and belongs to L1(0, +∞). Indeed, we have

∫ +∞

0

∥
∥Aβ

(
x(t)
)

–Aβ (p)
∥
∥
∥
∥ẋ(t)

∥
∥dt ≤ 1

2

∫ +∞

0

∥
∥Aβ

(
x(t)
)

–Aβ (p)
∥
∥2 dt +

1
2

∫ +∞

0

∥
∥ẋ(t)

∥
∥2 dt.

Using (3.18) and (3.22), we deduce that

∫ +∞

0
g(t) dt < +∞.

Note that the left member of (3.28) can be rewritten as a derivative of a function, precisely

q̈p(t) + γ q̇p(t) +
d
dt
〈
Aβ

(
x(t)
)

– Aβ (p), x(t) – p
〉

= ḣ(t)

with

h(t) = q̇p(t) + γ qp(t) +
〈
Aβ

(
x(t)
)

– Aβ (p), x(t) – p
〉
. (3.29)

So we have

ḣ(t) ≤ g(t) for every t ≥ 0.

Let us prove that the function h given in (3.29) is bounded from below by some constant.
Indeed, since the terms qp(t) and 〈Aβ (x(t)) – Aβ (p), x(t) – p〉 are nonnegative, we have

h(t) ≥ q̇p(t) ≥ –
∥∥ẋ(t)

∥∥∥∥x(t) – p
∥∥.

According to the boundedness of x(·) and ẋ(·) (see (3.16) and (3.26)), we deduce that there
exists m ∈R such that

h(t) ≥ m for every t ≥ 0.

Let us introduce the real-valued function ϕ : R+ →R, t �→ ϕ(t) defined by

ϕ(t) = h(t) –
∫ t

0
g(s) ds.

We have ϕ′(t) = ḣ(t) – g(t) ≤ 0. Hence, the function ϕ is nonincreasing on [0, +∞[. This
classically implies that the limit of ϕ exists as t → +∞. Since g ∈ L1(0, +∞), we deduce
that limt→+∞ h(t) exists.

Using the fact that 〈Aβ (x(t)) – Aβ (p), x(t) – p〉 tends to zero as t → +∞ (a consequence
of (3.25) and x(·) bounded), we obtain

q̇p(t) + γ qp(t) = θ (t)
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with limit of θ (t) exists as t → +∞. The existence of the limit of qp then follows from a
classical general result concerning the convergence of evolution equations governed by
strongly monotone operators (here γ Id, see Theorem 3.9, p. 88 in [21]). This means that,
for all p ∈ S,

lim
t→+∞

∥
∥x(t) – p

∥
∥ exists.

To complete the proof via Opial’s lemma, we need to show that every weak sequential
cluster point of x(t) belongs to S. Let tn → +∞ such that x(tn) ⇀ x∗, n → +∞. We have

A
(
x(tn)

)→ 0 strongly in H and x(tn) ⇀ x∗ weakly in H.

From the closedness property of the graph of the maximally monotone operator A in w –
H× s – H, we deduce that A(x∗) = 0, that is, x∗ ∈ S.

Consequently, x(t) converges weakly to an element of S as t goes to +∞. The proof of
Theorem 3.1 is thereby completed. �

Remark 3.1 In the statement of Theorem 3.1, the parameters have to satisfy a certain con-
dition. If the rest of parameters are fixed, then the set of λs that fulfill the inequality can
easily be found. Likewise, the feasible set of γ s if the other parameters are fixed can be
determined explicitly.

In fact, let us rewrite condition (3.1) as follows:

4λ >
β2

b + β2
f

γβf
+

2
γ 2 +

2
γ

√

β2
b +

1
γ 2 +

β2
b + β2

f

γβf
.

Equivalently,

4λ + β2
b > β2

b +
1
γ 2 +

β2
b + β2

f

γβf
+

2
γ

√

β2
b +

1
γ 2 +

β2
b + β2

f

γβf
+

1
γ 2 . (3.30)

Thanks to

β2
b +

1
γ 2 +

β2
b + β2

f

γβf
+

2
γ

√

β2
b +

1
γ 2 +

β2
b + β2

f

γβf
+

1
γ 2 =

(√

β2
b +

1
γ 2 +

β2
b + β2

f

γβf
+

1
γ

)2

,

we immediately deduce that

4λ + β2
b >
(√

β2
b +

1
γ 2 +

β2
b + β2

f

γβf
+

1
γ

)2

.

Therefore (3.30) is equivalent to

√

β2
b +

1
γ 2 +

β2
b + β2

f

γβf
+

1
γ

<
√

4λ + β2
b .
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This in turn is equivalent to

⎧
⎪⎨

⎪⎩

1
γ

<
√

4λ + β2
b ,

(
√

β2
b + 1

γ 2 +
β2

b +β2
f

γβf
)2 < (

√
4λ + β2

b – 1
γ

)2.
(3.31)

From the first inequation of (3.31), we deduce that

γ >
1

√
4λ + β2

b

. (3.32)

From the second inequation of (3.31), we deduce that

β2
b +

1
γ 2 +

β2
b + β2

f

γβf
< 4λ + β2

b +
1
γ 2 –

2
γ

√
4λ + β2

b .

Therefore,

γ >
1

4λ

(
β2

b + β2
f

βf
+ 2
√

4λ + β2
b

)
. (3.33)

Since (3.33) implies (3.32), we obtain that the feasible set of γ s is defined by

γ >
1

4λ

(
β2

b + β2
f

βf
+ 2
√

4λ + β2
b

)
.

3.2 Case βb = βf

Let us specialize the previous results in the case βb = βf . We set βb = βf := β > 0 and A :=
∇f + B. We thus consider the evolution system

(DINAM) ẍ(t) + γ ẋ(t) + A
(
x(t)
)

+ β
d
dt
(
A
(
x(t)
))

= 0, t ≥ 0.

The existence of strong global solutions to this system is guaranteed by Theorem 2.1. The
convergence properties as t → +∞ of the solution trajectories generated by this system is
a consequence of Theorem 3.1 and are given below.

Corollary 3.1 Let B : H → H be a λ-cocoercive operator and f : H → R be a C1 convex
function whose gradient is Lipschitz continuous on the bounded sets. Suppose that the solu-
tion set S = (∇f +B)–1(0) �= ∅. Consider the evolution equation (DINAM), where A = ∇f +B,
βb = βf := β > 0 and where the involved parameters satisfy the following conditions:

γ > 0, β > 0, and λγ > β +
1
γ

. (3.34)

Then, for any solution trajectory x : [0, +∞[→H of (DINAM), the following properties are
satisfied:

(i) (convergence) The trajectory x(·) is bounded and x(t) converges weakly, as t → +∞,
to an element x∗ ∈ S.
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(ii) (integral estimate)

∫ +∞

0

∥
∥ẋ(t)

∥
∥2 dt < +∞,

∫ +∞

0

∥
∥ẍ(t)

∥
∥2 dt < +∞,

∫ +∞

0

∥∥A
(
x(t)
)∥∥2 dt < +∞, and

∫ +∞

0

∥
∥∥
∥

d
dt

A
(
x(t)
)
∥
∥∥
∥

2

dt < +∞.

(iii) (pointwise estimate)

lim
t→+∞

∥∥ẋ(t)
∥∥ = 0, and lim

t→+∞
∥∥A
(
x(t)
)∥∥ = 0.

Remark 3.2 It is worth stating the result of Corollary 3.1 apart because this is an important
case. This also makes it possible to highlight this result compared to the existing literature
for second-order dissipative evolution systems involving cocoercive operators. Indeed, let-
ting β go to zero in (3.34) gives the condition

λγ 2 > 1 (3.35)

introduced by Attouch and Maingé in [10] to study the second-order dynamic (1.3) with-
out geometric damping. With respect to [10], the introduction of the geometric damping,
i.e., taking β > 0, provides some useful additional estimates.

4 Numerical illustrations
In this section, we give some numerical illustrations of (DINAM).

4.1 From continuous dynamic to algorithms
Let us first give some indications concerning the algorithms obtained by temporal dis-
cretization of the continuous dynamic (DINAM). Their convergence analysis will be
postponed to another research investigation. Let us recall the condensed formulation of
(DINAM)

ẍ(t) + γ ẋ(t) + A
(
x(t)
)

+
d
dt
(
Aβ

(
x(t)
))

= 0, (DINAM)

where A := ∇f + B and Aβ := βbB + βf ∇f . Take a fixed time step h > 0, and consider the
following finite-difference scheme for (DINAM):

1
h2 (xk+1 – 2xk + xk–1) +

γ

h
(xk+1 – xk) +

βb

h
(
B(xk+1) – B(xk)

)

+
βf

h
(∇f (xk) – ∇f (xk–1)

)
+ B(xk+1) + ∇f (xk) = 0. (4.1)

This scheme is implicit with respect to the nonpotential B and explicit with respect to
the potential operator ∇f . The temporal discretization of the Hessian driven damping
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βf ∇2f (x(t))ẋ(t) is taken equal to βf
h (∇f (xk) – ∇f (xk–1)). After expanding (4.1), we obtain

xk+1 +
h2

1 + γ h
B(xk+1) +

hβb

1 + γ h
B(xk+1)

= xk +
1

1 + γ h
(xk – xk–1) +

hβb

1 + γ h
B(xk)

–
hβf

1 + hγ

(∇f (xk) – ∇f (xk–1)
)

–
h2

1 + hγ
∇f (xk). (4.2)

Set s := h
1+γ h and α := 1

1+γ h . So we have

xk+1 + sBh(xk+1) = yk , (4.3)

where Bh = (h + βb)B, and

yk = xk + α(xk – xk–1) + sβbB(xk) – s(h + βf )∇f (xk) + sβf ∇f (xk–1). (4.4)

From (4.3) we get

xk+1 = (Id +sBh)–1(yk). (4.5)

By combining (4.4) and (4.5), we obtain the following algorithm, called (DINAAM). It is a
splitting algorithm which involves the operators ∇f and B separately.

(DINAAM):
Initialize: x0 ∈H, x1 ∈H

h > 0,

α =
1

1 + γ h
,

s =
h

1 + γ h
,

yk = xk + α(xk – xk–1) + sβbB(xk) – s(h + βf )∇f (xk) + sβf ∇f (xk–1),

xk+1 = (I + sBh)–1(yk).

(4.6)

4.2 Numerical experiments for the continuous dynamics (DINAM)
A general method to generate monotone cocoercive operators which are not gradients of
convex functions is to start from a linear skew symmetric operator A and then take its
Yosida approximation Aλ. As a model situation, take H = R

2 and start from A equal to the
rotation of angle π

2 . We have A =
( 0 –1

1 0

)
. An elementary computation gives that, for any

λ > 0, Aλ = 1
1+λ2

(
λ –1
1 λ

)
, which is therefore λ-cocoercive. As a consequence, for λ = 1, we

obtain that the matrix B =
( 1 –1

1 1

)
is 1

2 -cocoercive. With these basic blocks, one can easily
construct many other cocoercive operators which are not potential operators. For that,
use Lemma A.1 which gives that the sum of two cocoercive operators is still cocoercive,
and therefore the set of cocoercive operators is a convex cone.
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Figure 1 Trajectories of (DINAM) for different values of the parameters βb , βf

Figure 2 Oscillation of the trajectories of (DINAM) for different values of βb , βf

Example 4.1 Let us start this section by a simple illustrative example in R
2. We take H =

R
2 equipped with the usual Euclidean structure. Let us consider B as a linear operator

whose matrix in the canonical basis of R2 is defined by B = Aλ for λ = 5. According to the
above remark, we can check that B is λ-cocoercive with λ = 5 and that B is a nonpotential
operator. To observe the classical oscillations, in the heavy ball with friction, we take f :
R

2 →R defined by

f (x1, x2) = 50x2
2.

We set γ = 0.9. It is clear that f is convex but not strongly convex. We study three cases:
(1) βb = 1, βf = 0.5, (2) βb = 0.5, βf = 1, and (3) βb = βf = 0.5. As a straight application of
Theorem 3.1, we obtain that the trajectory x(t) generated by (DINAM) converges to x∞,
where x∞ ∈ S = (B + ∇f )–1(0) = {0}. The trajectory obtained by using Matlab is depicted
in Fig. 1, where we represent the components x1(t) and x2(t) in red and blue respectively.

Now we study the behavior of the trajectories by considering more different values of
βb and βf . We study four cases in Fig. 2. The plots of the second variable of the solutions
have been depicted in Fig. 2(a), while in Fig. 2(b) the number of iterations k versus ‖B(xk) +
∇f (xk)‖ is plotted. Through Figs. 1 and 2, we can conclude that by introducing the Hessian
damping (βf > 0) the oscillations of the trajectories in Fig. 2 are attenuated. The oscillations
of the solutions appear whenever βf goes to 0.

Example 4.2 Now we are looking at another higher dimensional example. Let us consider
f : Rn →R given by f (x) = 1

2‖Mx – b‖2, where M ∈R
m×n and b ∈R

m. We have

∇f (x) = M�(Mx – b), ∇2f (x) = M�M.

Since M�M is positive semidefinite for any matrix M, the quadratic function f is convex.
Furthermore, if M has full column rank, i.e., rank(M) = n, then M�M is positive definite.
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Figure 3 The behavior of (DINAAM) for a high dimension problem

Therefore f is strongly convex. Take

B =

⎛

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎝

1 –1 0 · · · 0

1 1 0 · · · ...

0 0 1 · · · ...
...

...
. . .

...
0 . . . . . . . . . 1

⎞

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎠

∈R
n×n.

Then B is cocoercive. Indeed, for any x, y ∈ R
n,

〈Bx – By, x – y〉 = ‖x1 – y1‖2 + ‖x2 – y2‖2 + · · · + ‖xn – yn‖2

≥ 1
2
[
2
(‖x1 – y1‖2 + ‖x2 – y2‖2) + ‖x3 – y3‖2 + · · · + ‖xn – yn‖2]

=
1
2
‖Bx – By‖2.

If the matrix M has not full column rank with M�M + B nonsingular, then

B(x) + ∇f (x) = 0 if and only if x =
(
M�M + B

)–1M�b.

In our experiment, we pick M a random 10 × 100 matrix which has not full column rank.
Set γ = 3, βb = 1, βf = 1 and the operator B as presented above. Thanks to Corollary 3.1,
we conclude that the trajectory x(t) generated by the system (DINAM) converges to x∞ =
(M�M + B)–1M�b. Implementing the algorithm (DINAAM) in Matlab, we obtain the plot
of k versus the norm of B(xk) + ∇f (xk). Similarly, we study several cases by changing the
parameters βb, βf . This is depicted in Fig. 3.

Before ending this part, we discuss an application of our model to dynamical games.
The following example is taken from Attouch and Maingé [10] and adapted to our con-

text.

Example 4.3 We make the following standing assumptions:
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(i) H = X1 ×X2 is the Cartesian product of two Hilbert spaces equipped with norms
‖ · ‖X1 and ‖ · ‖X2 respectively. In which, x = (x1, x2), with x1 ∈X1 and x2 ∈X2,
stands for an element in H;

(ii) f : X1 ×X2 →R is a convex function whose gradient is Lipschitz continuous on
bounded sets;

(iii) B = (∇x1L, –∇x2L) is the maximally monotone operator which is attached to a
smooth convex-concave function L : X1 ×X2 →R. The operator B is assumed to
be λ-cocoercive with λ > 0.

In our setting, with x(t) = (x1(t), x2(t)) the system (DINAM) is written

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẍ1(t) + γ ẋ1(t) + ∇x1 f (x1(t), x2(t)) + ∇x1L(x1(t), x2(t))

+ βf
d
dt (∇x1 f (x1(t), x2(t))) + βb

d
dt (∇x1L(x1(t), x2(t))) = 0,

ẍ2(t) + γ ẋ2(t) + ∇x2 f (x1(t), x2(t)) – ∇x2L(x1(t), x2(t))

+βf
d
dt (∇x2 f (x1(t), x2(t))) – βb

d
dt (∇x2L(x1(t), x2(t))) = 0.

(4.7)

According to Theorem 3.1, x(t) ⇀ x∞ = (x1,∞, x2,∞) weakly in H, where (x1,∞, x2,∞) is so-
lution of

⎧
⎨

⎩
∇x1 f (x1(t), x2(t)) + ∇x1L(x1(t), x2(t)) = 0,

∇x2 f (x1(t), x2(t)) – ∇x2L(x1(t), x2(t)) = 0.
(4.8)

Structured systems such as (4.8) contain both potential and nonpotential terms which
are often present in decision sciences and physics. In game theory, (4.8) describes Nash
equilibria of the normal form game with two players 1, 2 whose static loss functions are
respectively given by

⎧
⎨

⎩
F1 : (x1, x2) ∈X1 ×X2 → F1(x1, x2) = f (x1, x2) + L(x1, x2),

F2 : (x1, x2) ∈X1 ×X2 → F2(x1, x2) = f (x1, x2) – L(x1, x2).
(4.9)

f (·, ·) is their joint convex payoff, and L is a convex-concave payoff with zero-sum rule.
For more details, we refer the reader to [10]. As an example, take X1 = X2 = R and L :
R

2 → R given by L(x) = 1
2 (x2

1 – 2x1x2 – x2
2). Then B = (∇x1L, –∇x2L) =

( 1 –1
1 1

)
. Pick f (x) =

1
2 (3x2

1 – 2x1x2 + x2
2) – x1 – 2x2. The Nash equilibria described in (4.8) can be solved by

using (DINAM). Take γ = 3, βb = 0.5, βf = 0.5 and x0 = (1, –1), ẋ0 = (–10, 10) as initial
conditions, then the numerical solution for (DINAM) converges to x∞ = ( 3

4 , 1) which is

Figure 4 An application of (DINAM) to dynamical games: trajectories (a) and phase portrait (b)
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the solution of (4.8) as well. The numerical trajectories and phase portrait of our model
applied to dynamical games are depicted in Fig. 4.

5 The nonsmooth case
The equivalence obtained in Proposition 2.1 between (DINAM) and a first-order evolution
system in time and space allows a natural extension of both our theoretical and numerical
results to the case of a convex, lower semicontinuous and proper function f : H → R ∪
{+∞}. It suffices to replace the gradient of f with the convex subdifferential ∂f . We recall
that the subdifferential of f at x ∈H is defined by

∂f (x) =
{

z ∈H : 〈z, ξ – x〉 ≤ f (ξ ) – f (x) for every ξ ∈H
}

,

and the domain of f is equal to dom f = {x ∈ H : f (x) < +∞}. This leads to consider the
system

⎧
⎨

⎩

ẋ(t) + βf ∂f (x(t)) + βbB(x(t)) + (γ – 1
βf

)x(t) + y(t) � 0;

ẏ(t) – (1 – βb
βf

)B(x(t)) + 1
βf

(γ – 1
βf

)x(t) + 1
βf

y(t) = 0.
(g-DINAM)

The prefix g in front of (DINAM) stands for generalized. Note that the first equation of
(g-DINAM) is now a differential inclusion, because of the possibility for ∂f (x(t)) to be mul-
tivalued. By taking f = f0 + δC , where δC is the indicator function of a constraint set C, the
system (g-DINAM) allows to model damped inelastic shocks in mechanics and decision
sciences, see [11]. The original aspect comes from the fact that (g-DINAM) now involves
both potential driven forces (attached to f0) and nonpotential driven forces (attached to
B). As we will see, taking into account shocks created by nonpotential driving forces is a
source of difficulties.

Let us first establish the existence and uniqueness of the solution trajectory of the
Cauchy problem.

Theorem 5.1 Let f : H →R∪ {+∞} be a convex, lower semicontinuous, and proper func-
tion. Suppose that βf > 0 and βb ≥ 0. Then, for any (x0, y0) ∈ dom f × H, there exists a
unique strong global solution (x, y) : [0, +∞[→ H × H of (g-DINAM) which satisfies the
Cauchy data x(0) = x0, y(0) = y0.

Proof The proof is parallel to that of Theorem 2.1. The system (g-DINAM) can be equiv-
alently written as

Ż(t) + ∂�
(
Z(t)

)
+ G
(
Z(t)

) � 0, Z(0) = (x0, y0), (5.1)

where Z := (x, y), and the function �(Z) = �(x, y) := βf f (x) is now convex lower semicon-
tinuous and proper on H × H. The operator G is unchanged and is globally Lipschitz
continuous. The above equation falls under the setting of the Lipschitz perturbation of an
evolution system governed by the subdifferential of a convex lower semicontinuous and
proper function. The existence and uniqueness of the strong solution to (5.1) follows from
Brézis [21, Proposition 3.12] and the fact that (x0, y0) ∈ dom�. Recall that strong solution
means that x(·) and y(·) are locally absolutely continuous functions whose distributional
derivatives ẋ and ẏ belong to L2(0, T ,H) for any T > 0. �
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Remark 5.1 As a consequence of the general theory developed above, the system
(g-DINAM) satisfies a regularization effect on the initial condition. Precisely given
(x0, y0) ∈ dom f ×H, there still exists a unique strong solution to the corresponding Cauchy
problem, but now with

√
tẋ(t) ∈ L2(0, T ,H) and

√
tẏ(t) ∈ L2(0, T ,H) for any T > 0.

The solution set S is now defined by

S :=
{

p ∈H : ∂f (p) + B(p) � 0
}

.

Before stating our main result, notice that B(p) is uniquely defined for p ∈ S.

Lemma 5.1 B(p) is uniquely defined for p ∈ S, i.e.,

p1 ∈ S, p2 ∈ S �⇒ B(p1) = B(p2).

Proof The proof is similar to that of Lemma 3.1. It is based on the monotonicity of the
subdifferential of f and the cocoercivity of the operator B. �

For the sake of simplicity, we give a detailed proof of the convergence analysis in the case
βf = βb = β > 0. The system (g-DINAM) takes the simpler form:

⎧
⎨

⎩
ẋ(t) + β∂f (x(t)) + βB(x(t)) + (γ – 1

β
)x(t) + y(t) � 0;

ẏ(t) + 1
β

(γ – 1
β

)x(t) + 1
β

y(t) = 0.
(g-DINAM)

To formulate the convergence results and the corresponding estimates, we write the first
equation of (g-DINAM) as follows:

ẋ(t) + βξ (t) + βB
(
x(t)
)

+
(

γ –
1
β

)
x(t) + y(t) = 0, (5.2)

where ξ (t) ∈ ∂f (x(t)), and we set A(x(t)) = ξ (t) + B(x(t)).

Theorem 5.2 Let B : H → H be a λ-cocoercive operator. Let f : H → R∪ {+∞} be a con-
vex, lower semicontinuous, proper function. Suppose that S = {p ∈H : 0 ∈ ∂f (p) + B(p)} �= ∅.
Consider the evolution equation (g-DINAM) where the parameters satisfy the conditions:
βf = βb = β > 0 and

γ > 0, β > 0 and λγ > β +
1
γ

. (5.3)

Then, for any solution trajectory x : [0, +∞[→ H of (g-DINAM), the following properties
are satisfied:

(i) (integral estimates) Set A(x(t)) := ξ (t) + B(x(t)) with ξ (t) ∈ ∂f (x(t)) as defined in (5.2)
and p ∈ S. Then

∫ +∞

0

∥
∥ẋ(t)

∥
∥2 dt < +∞,

∫ +∞

0

∥
∥B
(
x(t)
)

– B(p)
∥
∥2 dt < +∞,

∫ +∞

0

∥∥A
(
x(t)
)∥∥2 dt < +∞,

∫ ∞

0

〈
A
(
x(t)
)
, x(t) – p

〉
dt < +∞.
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(ii) (convergence) For any p ∈ S,
1. limt→+∞ ‖x(t) – p‖ exists.
2. limt→+∞ ‖B(x(t)) – B(p)‖ = 0, where B(p) is uniquely defined for p ∈ S.

Proof Let us adapt the Lyapunov analysis developed in the previous sections to the case
where f is nonsmooth. We have to pay attention to the following points. First, we must
invoke the (generalized) chain rule for derivatives over curves (see [21, Lemma 3.3]), that
is, for a.e t ≥ 0,

d
dt

f
(
x(t)
)

=
〈
ξ (t), ẋ(t)

〉
.

The second ingredient is the validity of the subdifferential inequality for convex functions.
As a Lyapunov function, let us consider the function t ∈ [0, +∞[ �→ Ep(t) ∈ R+ defined

by

Ep(t) :=
1
2
∥
∥x(t) – p + c

(
ẋ(t) + βA

(
x(t)
))∥∥2 +

δ

2
∥
∥x(t) – p

∥
∥2 +

[
cδβ + c2]	(t), (5.4)

where we recall that A(x(t)) := ξ (t) + B(x(t)) with ξ (t) ∈ ∂f (x(t)) as defined in (5.2) and
p ∈ S. To differentiate Ep(t), we use the formulation (g-DINAM)

ẋ(t) + βA
(
x(t)
)

= –
(

γ –
1
β

)
x(t) – y(t).

Since x and y are locally absolutely continuous functions, this allows us to differentiate
ẋ(t)+βA(x(t)) and obtain similar formulas as in the smooth case. Then a close examination
of the Lyapunov analysis shows that we can obtain the additional estimate

∫ ∞

0

〈
A
(
x(t)
)
, x(t) – p

〉
dt < +∞. (5.5)

Set 0 ∈ ∂f (p)+B(p). To obtain (5.5), we return to (3.6) and consider the following minoriza-
tion that we split into a sum with coefficients ε′ and 1 – ε′ (where ε′ > 0 will be taken small
enough). According to the monotonicity of ∂f and the definition of A(x(t)), we have

c
〈
A
(
x(t)
)
, x(t) – p

〉
= cε′〈A

(
x(t)
)
, x(t) – p

〉
+ c
(
1 – ε′)〈A

(
x(t)
)

– Ap, x(t) – p
〉

≥ cε′〈A
(
x(t)
)
, x(t) – p

〉
+ c
(
1 – ε′)〈B

(
x(t)
)

– B(p), x(t) – p
〉

≥ cε′〈A
(
x(t)
)
, x(t) – p

〉
+ c
(
1 – ε′)λ

∥
∥B
(
x(t)
)

– B(p)
∥
∥2. (5.6)

So the proof continues with λ replaced with (1 – ε′)λ. This does not change the conditions
on the parameters since in our assumptions the inequality λγ > β + 1

γ
is strict, it is still

satisfied by (1 – ε′)λ when ε′ is taken small enough. So, after integrating the resulting strict
Lyapunov inequality, we obtain the supplementary property (5.5). Until (3.22) the proof is
essentially the same as in the case of a smooth function f . We obtain the integral estimates

∫ +∞

0

∥
∥ẋ(t)

∥
∥2 dt < +∞,

∫ +∞

0

∥
∥B
(
x(t)
)

– B(p)
∥
∥2 dt < +∞,
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∫ +∞

0

∥∥A
(
x(t)
)∥∥2 dt < +∞.

But then, we can no longer invoke the Lipschitz continuity on the bounded sets of ∇f . To
overcome this difficulty, we modify the end of the proof as follows. Recall that given p ∈ S,
the anchor function is defined by, for every t ∈ [0, +∞[,

qp(t) :=
1
2
∥
∥x(t) – p

∥
∥2,

and that we need to prove that the limit of the anchor functions exists, as t → +∞. The
idea is to play on the fact that we have in hand a whole collection of Lyapunov functions,
parametrized by the coefficient c. Recall that we have obtained that the limit of Ep(t) exists
as t → +∞, and this is satisfied for the whole interval of values of c. So, for such c, the limit
of Wc(t) := 1

cδβ+c2 Ep(t) as t → +∞ exists, where

Wc(t) =
1

2(cδβ + c2)
∥
∥x(t) – p + c(ẋ(t) + βA(x(t)))

∥
∥2 +

δ

2(cδβ + c2)
∥
∥x(t) – p

∥
∥2 + 	(t).

Take two such values of c, let c1 and c2, and make the difference (recall that δ = cγ – 1).
We obtain

Wc1 (t) – Wc2 (t) =
[

1
(c1γ – 1)β + c1

–
1

(c2γ – 1)β + c2

]
W (t),

where

W (t) :=
γ

2
∥∥x(t) – p

∥∥2 +
β

2(γβ + 1)
∥∥ẋ(t) + βA

(
x(t)
)∥∥2 +

〈
ẋ(t) + βA

(
x(t)
)
, x(t) – p

〉
.

So, we obtain the existence of the limit as t → +∞ of W (t). Then note that W (t) = γ qp(t) +
d
dt w(t) where

w(t) := qp(t) + β

∫ t

0

〈
A
(
x(s)
)
, x(s) – p

〉
ds +

β

2(γβ + 1)

∫ t

0

∥∥ẋ(s) + βA
(
x(s)
)∥∥2 ds.

Reformulate W (t) in terms of w(t) as follows:

W (t) = γ w(t) +
d
dt

w(t)

–
(

γβ

∫ t

0

〈
A
(
x(s)
)
, x(s) – p

〉
ds +

γβ

2(γβ + 1)

∫ t

0

∥∥ẋ(s) + A
(
x(s)
)∥∥2 ds

)
.

As a consequence of (5.5) and of the previous estimates, we have that the limit of the two
above integrals exists as t → +∞. Therefore, according to the convergence of W (t), we
obtain that

lim
t→+∞

(
γ w(t) +

d
dt

w(t)
)

exists.

The existence of the limit of w follows from a classical general result concerning the con-
vergence of evolution equations governed by strongly monotone operators (here γ Id, see
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Theorem 3.9, p. 88 in [21]). In turn, using the same argument as above, we obtain that, for
all p ∈ S,

lim
t→+∞

∥∥x(t) – p
∥∥ exists.

As in the smooth case, the strong convergence of B(x(t)) to B(p) is a direct consequence of
the integral estimates

∫ +∞
0 ‖B(x(t)) – B(p)‖2 dt < +∞,

∫ +∞
0 ‖ẋ(t)‖2 dt < +∞ and of the fact

that B is Lipschitz continuous. The proof of Theorem 3.1 is thereby completed. �

Remark 5.2
(i) A natural question is to know if the weak limit of the trajectory exists. Indeed we are

not far from this result since
∫ +∞

0 ‖A(x(t))‖2 dt < +∞, which implies that A(x(t))
converges strongly to zero in an “essential” way. According to Opial’s lemma, this
allows to complete the convergence proof as in the smooth case. This is a seemingly
difficult question to examine in the future.

(ii) A particular situation is the case γ = 1
β

, in which case the system (g-DINAM) can be
written in an equivalent way

u̇(t) + γ u(t) = 0,

where

ẋ(t) + βA
(
x(t)
) � u(t).

The convergence of the trajectory t �→ x(t) is then a consequence of the
convergence of the semigroup generated by the sum of a cocoercive operator with
the subdifferential of a convex lower semicontinuous and proper function, see
Abbas and Attouch [1]. Note that in this case the condition for the convergence of
the trajectories generated by (g-DINAM) does not depend any more on the
cocoercivity parameter λ.

6 Conclusion, perspectives
In this paper, in a general real Hilbert space setting, we investigated a dynamic inertial
Newton method for solving additively structured monotone problems. The dynamic is
driven by the sum of two monotone operators with distinct properties: the potential com-
ponent is the gradient of a continuously differentiable convex function f , and the non-
potential one is a monotone and cocoercive operator B. The geometric damping is con-
trolled by the Hessian of the potential f and by a Newton-type correction term attached
to B. The well-posedness of the Cauchy problem is shown as well as the asymptotic con-
vergence properties of the trajectories generated by the continuous dynamic. The conver-
gence analysis is carried out through the parameters βf and βb attached to the geometric
dampings as well as the parameters γ and λ (the viscous damping and the coefficient of
cocoercivity respectively). The introduction of geometric damping makes it possible to
control and attenuate the oscillations known for viscous damping of inertial systems, giv-
ing rise to faster numerical methods. It would be interesting to extend the analysis for
both the continuous dynamic and its discretization to the case of an asymptotic vanishing
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damping γ (t) = α
t , with α > 0 as in [28]. This is a decisive step towards proposing faster

algorithms for solving structured monotone inclusions, which are connected to the accel-
erated gradient method of Nesterov. The study of the corresponding splitting methods is
also an important topic which needs further investigations. In fact, by replacing ∇f with a
general maximally monotone operator A, the resolvent of which can be easily computed, it
would be interesting to study a forward-backward inertial algorithm with Hessian-driven
damping for solving structured monotone inclusions of the form: Ax + Bx � 0. These are
interesting topics for future research.

Appendix
A.1 Technical lemmas
Let us show that the sum of two cocoercive operators is still cocoercive. For further prop-
erties concerning cocoercive operators see [18].

Lemma A.1 Let T1, T2 : H → H be two cocoercive operators with respective cocoercivity
coefficients λ1,λ2 > 0. Then T := T1 + T2 : H →H is λ-cocoercive with λ = λ1λ2

λ1+λ2
.

Proof According to the cocoercivity assumptions of T1 and T2, we have

〈T1y – T1x, y – x〉 ≥ λ1‖T1y – T1x‖2, ∀x, y ∈H,

〈T2y – T2x, y – x〉 ≥ λ2‖T2y – T2x‖2, ∀x, y ∈H.

Let us show that the sum T = T1 + T2 is still cocoercive. Using elementary computation in
Hilbert spaces, for all x, y ∈H, we have

‖Ty – Tx‖2 = ‖T1y – T1x + T2y – T2x‖2

= ‖T1y – T1x‖2 + ‖T2y – T2x‖2 + 2〈T1y – T1x, T2y – T2x〉

≤ ‖T1y – T1x‖2 + ‖T2y – T2x‖2 +
λ1

λ2
‖T1y – T1x‖2 +

λ2

λ1
‖T2y – T2x‖2

=
(
λ–1

1 + λ–1
2
)(

λ1‖T1y – T1x‖2 + λ2‖T2y – T2x‖2).

Since T1, T2 are cocoercive, we deduce that

‖Ty – Tx‖2 ≤ (λ–1
1 + λ–1

2
)(〈T1y – T1x, y – x〉 + 〈T2y – T2x, y – x〉)

=
(
λ–1

1 + λ–1
2
)〈Ty – Tx, y – x〉.

Equivalently,

〈Ty – Tx, y – x〉 ≥ λ1λ2

λ1 + λ2
‖Ty – Tx‖2, ∀x, y ∈H.

So, T is still λ-cocoercive with λ = λ1λ2
λ1+λ2

> 0.
Let us show that this estimate is sharp. Take T1 : H → H, x �→ λ–1

1 x and T2 : H → H,
x �→ λ–1

2 x. It is easy to check that T1, T2 are two cocoercive operators with cocoercivity
coefficients λ1, λ2 respectively. Then their sum operator is equal to Tx = (λ–1

1 + λ–1
2 )x =
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λ–1x with λ = λ1λ2
λ1+λ2

, and hence is λ cocoercive. This shows that we cannot obtain a better
estimate. �

The next lemma is a classical result in integration theory.

Lemma A.2 Let 1 ≤ p < ∞ and 1 ≤ r ≤ ∞. Suppose that u ∈ Lp([0,∞[;R) is a locally
absolutely continuous nonnegative function, g ∈ Lr([0,∞[;R) and

u̇(t) ≤ g(t)

for almost every t > 0. Then limt→∞ u(t) = 0.

In the proof of Theorem 3.1, we use the following elementary result concerning positive
quadratic forms.

Lemma A.3 Let a, b, c be three real numbers. The quadratic form q : H×H →R

q(X, Y ) := a‖X‖2 + 2b〈X, Y 〉 + c‖Y‖2

is positive definite if and only if ac – b2 > 0 and a > 0. Moreover,

q(X, Y ) ≥ μ
(‖X‖2 + ‖Y‖2) for all X, Y ∈H,

where the positive real number μ := 1
2 (a + c –

√
(a – c)2 + 4b2) is the smallest eigenvalue of

the positive symmetric matrix associated with q.
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