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Abstract
In this paper, we prove the �-convergence of a modified proximal point algorithm
for common fixed points in a CAT(0) space for different classes of generalized
nonexpansive mappings including a total asymptotically nonexpansive mapping, a
multivalued mapping, and a minimizer of a convex function. The results in this paper
generalize the corresponding results given by some authors. Moreover, numerical
example is given to illustrate and show the �-convergence of the proposed
algorithm for supporting our result.
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1 Introduction
Let (Y , θ ) be a geodesic space and h : Y → (–∞,∞] be a proper convex function. By
arg minr∈Y h(r), we denote the set of minimizers of a convex function. To solve s ∈ Y such
that

h(s) = min
r∈Y

h(r),

in optimization theory a powerful tool is the well-known PPA which was introduced by
Martinet [1].

Rockafellar [2] studied, the convergence to a solution of the convex minimization prob-
lem in the framework of a Hilbert space by the PPA. He also proved that the sequence {sm}
converges weakly to a minimizer of a convex function h such that

∑∞
m=1 πm = ∞.

Bacak [3] introduced the PPA in a CAT(0) space (Y , θ ) as follows:

⎧
⎨

⎩

s1 ∈ Y ,

sm+1 = arg minr∈Y [h(r) + 1
2πm

θ2(r, sm)], ∀m ∈N,

where πm > 0,∀m ∈ N, and he showed that, if h has a minimizer and
∑∞

m=1 πm = ∞, then
the sequence {sm} �-converges to its minimizer [4].
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Cholamjiak [5] modified the PPA in CAT(0) spaces (Y , θ ) by using the Halpern method
as follows:

⎧
⎨

⎩

rm = arg minr∈Y [h(r) + 1
2r θ

2(r, sm)],

sm+1 = amu ⊕ (1 – am)rm, ∀m ∈ N,

where r > 0, limm→∞ am = 0, and
∑∞

m=1 am = ∞. He proved that the sequence {sm} con-
verges to its minimizer.

Cholamjiak et al. [6] modified the following PPA in CAT(0) spaces as follows:

⎧
⎪⎪⎨

⎪⎪⎩

qm = arg minr∈Y [h(r) + 1
2πm

θ2(r, sm)],

rm = (1 – bm)sm ⊕ bmT1qm,

sm+1 = (1 – amT1sm ⊕ amT2rm, ∀m ∈N

and established some strong convergence theorems of the proposed algorithm to common
fixed points of nonexpansive mappings and to minimizers of a convex function. Chang
et al. [7] established some strong convergence theorems of the PPA to a common fixed
point of asymptotically nonexpansive mappings and to minimizers of a convex function
in CAT(0) spaces.

Kitkuan and Padcharoen [8] studied the iteration process in CAT(0) spaces as follows:

⎧
⎪⎪⎨

⎪⎪⎩

pm = (1 – am)sm ⊕ amT msm,

rm = (1 – bm)pm ⊕ bmT mpm,

sm+1 = (1 – cm)rm ⊕ cmT mrm, ∀m ∈ N,

where {am}, {bm}, and {cm} are real sequences in (0, 1). They also proved some strong con-
vergence theorems for generalized asymptotically quasi-nonexpansive mappings under
certain conditions.

Markin [9] and Nadler [10] introduced the study of fixed points for multivalued con-
tractions and nonexpansive mappings using the Hausdorff metric. Shimizu and Takahashi
[11] proved the existence of fixed points for multivalued nonexpansive mappings in con-
vex metric spaces, that is, every multivalued mapping T : Y → C(Y ) has a fixed point in a
bounded, complete, and uniformly convex metric space (y, θ ), where C(Y ) is the family of
all compact subsets of Y .

Motivated and inspired by the above results, we propose the modified proximal point
algorithm with the process for three asymptotically nonexpansive mappings and multival-
ued mappings in CAT(0) spaces. Under suitable conditions, we prove some convergence
theorems of the proposed method. Further, we provide a numerical example to illustrate
and show the efficiency of the proposed algorithm for supporting our main results.

2 Preliminaries
A metric space (Y , θ ) is called a CAT space if it is geodesically connected and every
geodesic triangle in Y is at least as “thin” as its comparison triangle in the Euclidean plane.
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A subset W of a CAT(0) space Y is said to be convex if, for any s, r ∈ W , we have [s, r] ⊂
W , where

[s, r] :=
{

ts ⊕ (1 – t)r : 0 ≤ t ≤ 1
}

is the unique geodesic joining s and r.
In this paper, we can write (1 – t)s ⊕ tr for the unique point q in the geodesic segment

joining from s to r such that

θ (s, q) = tθ (s, r), θ (r, q) = (1 – t)θ (s, r),

where t ∈ [0, 1].

Lemma 2.1 Let Y be a geodesic space in a CAT(0) space. For all s, r, q ∈ Y and t ∈ [0, 1],
we have

(i) θ2((1 – t)s ⊕ tr, q) ≤ (1 – t)θ2(s, q) + tθ2(r, q) – t(1 – t)θ2(s, r),
(ii) θ ((1 – t)s ⊕ tr, q) ≤ (1 – t)θ (s, q) + tθ (r, q).

Definition 2.1 Let T : W → W be a mapping.
(i) An element s ∈ W is said to be a fixed point of T if s = T s. Denote by G(T ) the set

of fixed points of T ;
(ii) semi-compact if every bounded sequence {sm} ⊂ W , satisfying θ (sm,T sm) → 0 as

m → ∞, has a convergent subsequence;
(iii) nonexpansive if θ (T s,T r) ≤ θ (s, r) for any s, r ∈ W ;
(iv) asymptotically nonexpansive if there exists a sequence {em} ⊂ [0, +∞) and

limm→∞ em = 0 such that

θ
(
T ms,T mr

) ≤ (1 + em)θ (s, r), ∀s, r ∈ W , m ≥ 1;

(v) ({νm}, {μm},ρ)-total asymptotically nonexpansive, if there exist nonnegative
sequences {νm}, {μm} with μm → 0,νm → 0 and a strictly increasing continuous
function ρ : [0, +∞) → [0, +∞) with ρ(0) = 0 such that

θ
(
T ms,T mr

) ≤ θ (s, r) + νmρ
(
θ (s, r)

)
+ μm, ∀s, r ∈ W , m ≥ 1;

(vi) uniformly L-Lipschitzian if there exists a constant L > 0 such that

θ
(
T ms,T mr

) ≤ Lθ (s, r), ∀s, r ∈ W , m ≥ 1.

Definition 2.2 Let {sm} be a bounded sequence in a CAT(0) space (Y , θ ). For any s ∈ Y ,
we put

r̂
(
s, {sm}) = lim

m→∞ sup θ (s, sm).

Then,
1. The asymptotic radius r̂({sm}) of {sm} is given by

r̂
({sm}) = inf

{
r̂
(
s, {sm}) : s ∈ Y

]
.
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2. The asymptotic center A({sm}) of {sm} is the set

A
({sm}) =

{
s ∈ Y : r̂

(
s, {sm}) = r̂

({sm})}.

In a complete CAT(0) space, A({sm}) consists of exactly one point [6].

Definition 2.3 A sequence {sm} in a CAT(0) space Y is said to be �-convergent to a point
s ∈ Y if s is the unique asymptotic center of {um} for every subsequence {um} of {sm}. In
this case, we write � limm→∞ sm = s of {sm} and denote W�(sm) :=

⋃{A({um})}, where the
union is sum over all subsequences {um} of {sm}.

Lemma 2.2 ([6]) If {sm} is a bounded sequence in a complete CAT(0) space with A({sm}) =
{s}, {um} is a subsequence of {sm} with A({um}) = {u}, and the sequence {θ (sm, u)} converges,
then s = u.

Lemma 2.3 ([10]) Assume that a subset of a complete CAT(0) space (Y , θ ) is closed, convex
and T : W → W is a total asymptotically nonexpansive mapping. Let {sm} be a bounded
sequence in W such that � limm→∞ sm = t and limm→∞ θ (sm,T sm) = 0. Then T t = t.

Let CB(W ) be a collection of all nonempty and closed bounded subsets and P(W ) be a
collection of all nonempty proximal bounded and closed subsets of W , respectively. Let
H(·, ·) be the Hausdorff distance on CB(W ) defined by

H(A,B) := max
{

sup
s∈A

dist(s,B), sup
r∈B

dist(r,A)
}

, ∀A,B ∈ CB(W ).

A subset W ⊂ Y 
= ∅ is said to be proximal if, for each s ∈ Y , there exists an element
r ∈ W such that

θ (s, r) = dist(s, W ) := inf
{
θ (s, q) : q ∈ W

}
.

It is well known that each weakly compact convex subset of a Banach space is proximal as
well as each closed convex subset of a uniformly convex Banach space is also proximal.

Let T : Y → 2Y be a multivalued mapping. An element s ∈ Y is said to be a fixed point
of T if s ∈ T s.

Definition 2.4 A multivalued mapping T : Y → CB(Y ) is called nonexpansive if

H(T s,T r) ≤ θ (T s,T r), s, r ∈ Y .

Recall that a function h : W → (–∞,∞] is said to be convex if, for any geodesic [s, r] :=
{cs,r(a) : 0 ≤ a ≤ 1} := {as⊕(1–a)r : 0 ≤ a ≤ 1} joining s, r ∈ W , the function h◦c is convex,
i.e.,

h
(
cs,r(a)

)
:= h

(
as ⊕ (1 – a)r

) ≤ ah(s) + (1 – a)h(r).
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For all π > 0, define the Moreau–Yosida resolvent of h in a complete CAT(0) space Y as
follows:

Jπ (s) = arg
r∈Y

min

[

h(r) +
1

2π
θ2(r, s)

]

, ∀s ∈ Y .

Let h : Y → (–∞,∞] be a proper, convex, and lower semi-continuous function. The
set F(Jπ ) of fixed points of the resolvent Jπ associated with h coincides with the set
argr∈Y min h(r) of minimizers of h. Also, for any π > 0, the resolvent Jπ of h is nonex-
pansive [4, 12].

Lemma 2.4 ([13]) Let (Y , θ ) be a complete CAT(0) space and h : Y → (–∞,∞] be proper,
convex, and lower semi-continuous function. Then, for all s, r ∈ Y and π > 0, we have

1
2π

θ2(Jπ s, r) –
1

2π
θ2(s, r) +

1
2π

θ2(s,Jπ s) + h(Jπ s) ≤ h(r).

Lemma 2.5 ([1]) Let (Y , θ ) be a complete CAT(0) space and h : W → (–∞,∞] be a proper
convex and lower semi-continuous function. Then the following identity holds:

Jπ s = Jμ

(
π – μ

π
Jπ s ⊕ μ

π
s
)

, ∀s ∈ Y

and π > μ > 0.

Lemma 2.6 ([11]) Let {am}, {bm}, and {rm} be sequences of nonnegative real numbers such
that

am+1 ≤ (1 + bm)am + rm, ∀m ∈ N.

If
∑∞

m=1 bm < ∞ and
∑∞

m=1 rm < ∞, then limm→∞ am exists.

3 Convergence results
Now we construct and prove the main result of this paper.

Theorem 3.1 Let (Y , θ ) be a complete CAT(0) space and W be a nonempty closed con-
vex subset. Let T : W → P(W ) be a multivalued mapping and PT be a nonexpansive
mapping. Let h : Y → (–∞,∞] be a proper convex and lower semi-continuous function,
A, B, C : W → W be three total asymptotically nonexpansive mappings with {μm} and {νm}
being nonnegative real sequences such that

∑∞
m=1 μm < ∞ and

∑∞
m=1 νm < ∞. There exists

a constant M1 > 0 such that ζ (θ ) ≤ M1θ , θ ≥ 0 with G(A) ∩ G(B) ∩ G(C) 
= ∅ and

Ξ := G(A) ∩ G(B) ∩ G(C) ∩ G(T ) ∩ arg min
r∈W

h(r) 
= ∅.

Let {sm} be defined by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

pm = arg minr∈Y [h(r) + 1
2πm

θ2(r, sm)],

qm = (1 – cm)pm ⊕ cmAmzm,

rm = (1 – bm)qm ⊕ bmBmym,

sm+1 = (1 – am)rm ⊕ amCmxm,

(3.1)
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where zm ∈ PT (pm), ym ∈ PT (qm), and xm ∈ PT (rm) for each m ∈ N. Let {am}, {bm}, and
{cm} be sequences in [0, 1] for all m ∈ N and {πm} be a sequence with πm > 0 for all m ∈ N.
Then

lim
m→∞ θ (sm, t) exists for all t ∈ Ξ .

Proof Let t ∈ Ξ . Then t = At = Bt = Ct and h(t) ≤ h(r) for any r ∈ W . So, we have

h(t) +
1

2πm
θ2(t, t) ≤ h(r) +

1
2πm

θ2(r, t)

for each r ∈ W , and so we have t = Jπm t for each m ∈ N. Since pm = Jπm sm and Jπm is
nonexpansive, we have

θ (pm, t) = θ (Jπm sm,Jπm t) ≤ θ (sm, t). (3.2)

Now, using (3.1), (3.2), and Lemma 2.1(ii), we have

θ (qm, t) = θ
(
(1 – cm)pm ⊕ cmAmzm, t

)

≤ (1 – cm)θ (pm, t) + cmθ
(
Amzm, t

)

≤ (1 – cm)θ (pm, t) + cm
[
θ (zm, t) + νm

(
θ (zm, t)

)
+ μm

]

≤ (1 – cm)θ (pm, t) + cm
[
θ (zm, t) + νmM1θ (zm, t) + μm

]

= (1 – cm)θ (pm, t) + cm(1 + νmM1)θ (zm, t) + cmμm

≤ (1 – cm) dist
(
pm,PT (t)

)
+ cm(1 + νmM1) dist

(
zm,PT (t)

)
+ cmμm

≤ (1 – cm)H
(
PT (pm),PT (t)

)
+ cm(1 + νmM1)H

(
PT (pm),PT (t)

)

+ cmμm

≤ (1 – cm)θ (pm, t) + cm(1 + νmM1)θ (pm, t) + cmμm

≤ (1 + νmM1)θ (pm, t) + cmμm

≤ (1 + νmM1)θ (sm, t) + μm, (3.3)

and using (3.1), (3.3), and Lemma 2.1(ii), we have

θ (rm, t) = θ
(
(1 – bm)qm ⊕ bmBmym, t

)

≤ (1 – bm)θ (qm, t) + bmθ
(
Bmym, t

)

≤ (1 – bm)θ (qm, t) + bm
[
θ (ym, t) + νm

(
θ (ym, t)

)
+ μm

]

≤ (1 – bm)θ (qm, t) + bm
[
θ (ym, t) + νmM1θ (ym, t) + μm

]

= (1 – bm)θ (qm, t) + bm(1 + νmM1)θ (ym, t) + bmμm

≤ (1 – bm) dist
(
qm,PT (t)

)
+ bm(1 + νmM1) dist

(
ym,PT (t)

)
+ bmμm

≤ (1 – bm)H
(
PT (qm),PT (t)

)
+ bm(1 + νmM1)H

(
PT (qm),PT (t)

)

+ bmμm
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≤ (1 – bm)θ (qm, t) + bm(1 + νmM1)θ (qm, t) + bmμm

≤ (1 + νmM1)θ (qm, t) + bmμm

≤ (1 + νmM1)
[
(1 + νmM1)θ (sm, t) + μm

]
+ bmμm

≤ (1 + νmM1)2θ (sm, t) + (1 + νmM1)μm + bmμm

≤ (1 + νmM1)2θ (sm, t) + (2 + νmM1)μm. (3.4)

Similarly using (3.1), (3.4), and Lemma 2.1(ii), we have

θ (sm+1, t) = θ
(
(1 – am)rm ⊕ amCmxm, t

)

≤ (1 – am)θ (rm, t) + amθ
(
Cmxm, t

)

≤ (1 – am)θ (rm, t) + am
[
θ (xm, t) + νm

(
θ (xm, t)

)
+ μm

]

≤ (1 – am)θ (rm, t) + am
[
θ (xm, t) + νmM1θ (xm, t) + μm

]

= (1 – am)θ (rm, t) + am(1 + νmM1)θ (xm, t) + amμm

≤ (1 – am) dist
(
rm,PT (t)

)
+ am(1 + νmM1) dist

(
xm,PT (t)

)
+ amμm

≤ (1 – am)H
(
PT (rm),PT (t)

)
+ am(1 + νmM1)H

(
PT (rm),PT (t)

)

+ amμm

≤ (1 – am)θ (rm, t) + am(1 + νmM1)θ (rm, t) + amμm

≤ (1 + νmM1)θ (rm, t) + amμm

≤ (1 + νmM1)
[
(1 + νmM1)2θ (sm, t) + (2 + νmM1)μm

]
+ amμm

≤ (1 + νmM1)3θ (sm, t) + (1 + νmM1)(2 + νmM1)μm + amμm

≤ (1 + νmM1)3θ (sm, t) + 3(1 + νmM1)μm

= (1 + Sm)θ (sm, t) + Wm, (3.5)

where Sm = 3M1νm + 3M2
1ν

2
m + M3

1ν
3
m and Wm = 3(1 + νmM1)μm. Since it is given that

∑∞
m=1 μm < ∞ and

∑∞
m=1 νm < ∞, we get

∑∞
m=1 Sm < ∞ and

∑∞
m=1 Wm < ∞. From

Lemma 2.6, (3.5) we have limm→∞ θ (sm, t) exists, and we assume that

lim
m→∞ θ (sm, t) = κ ≥ 0. (3.6)

From (3.6), {sm} is bounded and so the sequences {pm}, {qm}, {rm}, {Amsm}, {Bmsm}, and
{Cmsm} are bounded. �

Theorem 3.2 Let (Y , θ ) be a complete CAT(0) space and W be a nonempty closed con-
vex subset. Let T : W → P(W ) be a multivalued mapping and PT be a nonexpansive
mapping. Let h : Y → (–∞,∞] be a proper convex and lower semi-continuous function
and A, B, C : W → W be three total asymptotically nonexpansive mappings with {μm} and
{νm} being nonnegative real sequences such that

∑∞
m=1 μm < ∞ and

∑∞
m=1 νm < ∞. There

exists a constant M1 > 0 such that ζ (θ ) ≤ M1θ , θ ≥ 0, with G(A) ∩ G(B) ∩ G(C) 
= ∅ and

Ξ := G(A) ∩ G(B) ∩ G(C) ∩ G(T ) ∩ arg min
r∈W

h(r) 
= ∅.
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Let {sm} be defined by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

pm = arg minr∈Y [h(r) + 1
2πm

θ2(r, sm)],

qm = (1 – cm)pm ⊕ cmAmzm,

rm = (1 – bm)qm ⊕ bmBmym,

sm+1 = (1 – am)rm ⊕ amCmxm,

where zm ∈ PT (pm), ym ∈ PT (qm), and xm ∈ PT (rm) for each m ∈ N. Let {am}, {bm}, and
{cm} be sequences in [0, 1] for all m ∈ N and {πm} be a sequence with πm > 0 for all m ∈ N.
Then

(i) limm→∞ θ (sm, pm) = 0;
(ii) limm→∞ θ (sm, Asm) = limm→∞ θ (sm, Bsm) = limm→∞ θ (sm, Csm) = 0.

Proof (i) By Lemma 2.4, we have

1
2πm

{
θ2(pm, t) – θ2(sm, t) + θ2(sm, pm)

} ≤ h(t) – h(pm).

Since h(t) ≤ h(pm) for each m ∈N, we have

θ2(sm, pm) ≤ θ2(sm, t) – θ2(pm, t). (3.7)

From (3.5), we have

θ (sm+1, t) ≤ (1 + νmM1)θ (rm, t) + amμm

and

lim
m→∞ inf θ (rm, t) ≥ κ . (3.8)

From (3.4), we have

lim
m→∞ sup θ (rm, t) ≤ κ . (3.9)

So, from (3.8) and (3.9), we have

lim
m→∞ θ (rm, t) = κ . (3.10)

Similarly, from (3.4), we have

θ (rm, t) ≤ (1 + νmM1)θ (qm, t) + bmμm

and

lim
m→∞ inf θ (qm, t) ≥ κ . (3.11)
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From (3.3), we have

lim
m→∞ sup θ (qm, t) ≤ κ . (3.12)

From (3.11) and (3.12), we have

lim
m→∞ θ (qm, t) = κ . (3.13)

From (3.3), we have

θ (qm, t) ≤ (1 + νmM1)θ (pm, t) + cmμm

and

lim
m→∞ inf θ (pm, t) ≥ κ . (3.14)

Also from (3.3), we have

lim
m→∞ sup θ (pm, t) ≤ κ . (3.15)

From (3.14) and (3.15), we have

lim
m→∞ θ (pm, t) = κ . (3.16)

So from (3.7), we have

lim
m→∞ θ (sm, pm) = 0. (3.17)

(ii) Suppose that Ξ is nonempty, and let t ∈ Ξ . From (3.6), limm→∞ θ (sm, t) exists and
{sm} is bounded. From (3.1) and Lemma 2.1(i), we have

θ2(qm, t) = θ2((1 – cm)pm ⊕ cmAmzm, t
)

≤ (1 – cm)θ2(pm, t) + cmθ2(Amzm, t
)

– cm(1 – cm)θ2(pm, Amzm
)

≤ (1 – cm)θ2(pm, t) + cm
[
θ (zm, t) + νm

(
θ (zm, t)

)
+ μm

]2

– cm(1 – cm)θ2(pm, Amzm
)

≤ cm
[
θ (zm, t) + νmM1θ (zm, t) + μm

]2 + (1 – cm)θ2(pm, t)

– cm(1 – cm)θ2(Amzm, pm
)

= cm
[
(1 + νmM1)θ (zm, t) + μm

]2 + (1 – cm)θ2(pm, t)

– cm(1 – cm)θ2(Amzm, pm
)

≤ (1 + νmM1)2cmθ2(zm, t) + (1 + νmM1)2(1 – cm)θ2(pm, t)

+ cm
[
2(1 + νmM1)μmθ (zm, t) + μ2

m
]

– cm(1 – cm)θ2(Amzm, pm
)

≤ (1 + νmM1)2cm dist
(
zm,PT (t)

)2 + (1 + νmM1)2(1 – cm) dist
(
pm,PT (t)

)2
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+ cm
[
2(1 + νmM1)μm dist

(
zm,PT (t)

)
+ μ2

m
]

– cm(1 – cm)θ2(pm, Amzm
)

≤ (1 + νmM1)2cmH
(
PT (pm),PT (t)

)2

+ (1 + νmM1)2(1 – cm)H
(
PT (pm),PT (t)

)2

+ cm
[
2(1 + νmM1)μmH

(
PT (pm),PT (t)

)
+ μ2

m
]

– cm(1 – cm)θ2(pm, Amzm
)

≤ (1 + νmM1)2cmθ2(pm, t) + (1 + νmM1)2(1 – cm)θ2(pm, t)

+ cm
[
2(1 + νmM1)μmθ (pm, t) + μ2

m
]

– cm(1 – cm)θ2(pm, Amzm
)

= (1 + νmM1)2θ2(pm, t) + cm
[
2(1 + νmM1)μmθ (pm, t) + μ2

m
]

– cm(1 – cm)θ2(pm, Amzm
)

≤ (1 + νmM1)2θ2(sm, t) + cm
[
2(1 + νmM1)μmθ (sm, t) + μ2

m
]

– cm(1 – cm)θ2(pm, Amzm
)

≤ θ2(sm, t) + pνm + qμm – cm(1 – cm)θ2(pm, Amzm
)

(3.18)

for some p, q > 0, which implies that

θ2(qm, t) ≤ θ2(sm, t) + pνm + qμm,

and from (3.1) and Lemma 2.1(i), we have

θ2(rm, t) = θ2((1 – bm)qm ⊕ bmBmym, t
)

≤ (1 – bm)θ2(qm, t) + bmθ2(Bmym, t
)

– bm(1 – bm)θ2(qm, Bmym
)

≤ (1 – bm)θ2(qm, t) + bm
[
θ (ym, t) + νm

(
θ (ym, t)

)
+ μm

]2

– bm(1 – bm)θ2(qm, Bmym
)

≤ (1 – bm)θ2(qm, t) + bm
[
θ (ym, t) + νmM1θ (ym, t) + μm

]2

– bm(1 – bm)θ2(Bmym, qm
)

= (1 – bm)θ2(qm, t) + bm
[
(1 + νmM1)θ (ym, t) + μm

]2

– bm(1 – bm)θ2(Bmym, qm
)

≤ (1 – bm)(1 + νmM1)2θ2(qm, t) + (1 + νmM1)2bmθ2(ym, t)

+ bm
[
2(1 + νmM1)μmθ (ym, t) + μ2

m
]

– bm(1 – bm)θ2(Bmym, qm
)

≤ (1 – bm)(1 + νmM1)2 dist
(
qm,PT (t)

)2 + (1 + νmM1)2bm dist
(
ym,PT (t)

)2

+ bm
[
2(1 + νmM1)μm dist

(
ym,PT (t)

)
+ μ2

m
]

– bm(1 – bm)θ2(Bmym, qm
)

≤ (1 – bm)(1 + νmM1)2H
(
PT (qm),PT (t)

)2

+ (1 + νmM1)2bmH
(
PT (qm),PT (t)

)2

+ bm
[
2(1 + νmM1)μmH

(
PT (qm),PT (t)

)
+ μ2

m
]

– bm(1 – bm)θ2(Bmym, qm
)

≤ (1 – bm)(1 + νmM1)2θ2(qm, t) + (1 + νmM1)2bmθ2(qm, t)

+ bm
[
2(1 + νmM1)μmθ (qm, t) + μ2

m
]

– bm(1 – bm)θ2(Bmym, qm
)
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= (1 + νmM1)2θ2(qm, t) + bm
[
2(1 + νmM1)μmθ (qm, t) + μ2

m
]

– bm(1 – bm)θ2(Bmym, qm
)

≤ θ2(qm, t) + rνm + sμm – bm(1 – bm)θ2(Bmym, qm
)

(3.19)

for some r, s > 0, which implies that

θ2(rm, t) ≤ θ2(qm, t) + rνm + sμm.

Similarly, from (3.1) and Lemma 2.1(i), we have

θ2(sm+1, t) = θ2((1 – am)rm ⊕ amCmxm, t
)

≤ (1 – am)θ2(rm, t) + amθ2(Cmxm, t
)

– am(1 – am)θ2(rm, Cmxm
)

≤ (1 – am)θ2(rm, t) + am
[
θ (xm, t) + νm

(
θ (xm, t)

)
+ μm

]2

– am(1 – am)θ2(rm, Cmxm
)

≤ (1 – am)θ2(rm, t) + am
[
θ (xm, t) + νmM1θ (xm, t) + μm

]2

– am(1 – am)θ2(Cmxm, rm
)

= (1 – am)θ2(rm, t) + am
[
(1 + νmM1)θ (xm, t) + μm

]2

– am(1 – am)θ2(Cmxm, rm
)

≤ (1 – am)(1 + νmM1)2θ2(rm, t) + (1 + νmM1)2amθ2(xm, t)

+ am
[
2(1 + νmM1)μmθ (xm, t) + μ2

m
]

– am(1 – am)θ2(Cmxm, rm
)

≤ (1 – am)(1 + νmM1)2 dist
(
rm,PT (t)

)2 + (1 + νmM1)2am dist
(
xm,PT (t)

)2

+ am
[
2(1 + νmM1)μm dist

(
xm,PT (t)

)
+ μ2

m
]

– am(1 – am)θ2(Cmxm, rm
)

≤ (1 – am)(1 + νmM1)2H
(
PT (rm),PT (t)

)2 + (1 + νmM1)2am

×H
(
PT (rm),PT (t)

)2 + am
[
2(1 + νmM1)μmH

(
PT (rm),PT (t)

)
+ μ2

m
]

– am(1 – am)θ2(Cmxm, rm
)

≤ (1 – am)(1 + νmM1)2θ2(rm, t) + (1 + νmM1)2amθ2(rm, t)

+ am
[
2(1 + νmM1)μmθ (rm, t) + μ2

m
]

– am(1 – am)θ2(Cmxm, rm
)

= (1 + νmM1)2θ2(rm, t) + am
[
2(1 + νmM1)μmθ (rm, t) + μ2

m
]

– am(1 – am)θ2(Cmxm, rm
)

≤ θ2(rm, t) + tνm + wμm – am(1 – am)θ2(Cmxm, rm
)

(3.20)

for some t, w > 0, which implies that

θ2(sm+1, t) ≤ θ2(rm, t) + tνm + wμm.

From (3.18), we have

cm(1 – cm)θ2(Amzm, pm
) ≤ θ2(sm, t) – θ2(qm, t) + pνm + qμm.
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Since
∑∞

m=1 νm < ∞,
∑∞

m=1 μm < ∞, we have

cm(1 – cm)θ2(Amzm, pm
)

< ∞.

From lim infm→∞ cm(1 – cm) > 0, we have

lim
m→∞ θ

(
Amzm, pm

)
= 0. (3.21)

From (3.19), we have

bm(1 – bm)θ2(Bmym, qm
) ≤ θ2(qm, t) – θ2(rm, t) + rνm + sμm.

Since
∑∞

m=1 νm < ∞,
∑∞

m=1 μm < ∞, we have

bm(1 – bm)θ2(Bmym, qm
)

< ∞.

From lim infm→∞ bm(1 – bm) > 0, we have

lim
m→∞ θ

(
Bmym, qm

)
= 0. (3.22)

From (3.20), we have

am(1 – am)θ2(Cmxm, rm
) ≤ θ2(rm, t) – θ2(sm+1, t) + tνm + wμm.

Since
∑∞

m=1 νm < ∞,
∑∞

m=1 μm < ∞, we have

am(1 – am)θ2(Cmxm, rm
)

< ∞.

From lim infm→∞ am(1 – am) > 0, we have

lim
m→∞ θ

(
Cmxm, rm

)
= 0. (3.23)

Now using (3.17) and (3.21), we have

θ (qm, sm) = θ
(
(1 – cm)pm ⊕ cmAmzm, sm

)

≤ (1 – cm)θ (pm, sm) + cmθ
(
Amzm, sm

)

≤ (1 – cm)θ (pm, sm) + cm
[
θ
(
Amzm, pm

)
+ θ (pm, sm)

]

≤ (1 – cm)θ (pm, sm) + cmθ
(
Amzm, pm

)
+ cmθ (pm, sm)

= θ (pm, sm) + cmθ
(
Amzm, pm

)

→ 0 as m → ∞, (3.24)

and using (3.22) and (3.24), we have

θ (rm, sm) = θ
(
(1 – bm)qm ⊕ bmBmym, sm

)
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≤ (1 – bm)θ (qm, sm) + bmθ
(
Bmym, sm

)

≤ (1 – bm)θ (qm, sm) + bm
[
θ
(
Bmym, qm

)
+ θ (qm, sm)

]

≤ (1 – bm)θ (qm, sm) + bmθ
(
Bmym, qm

)
+ bmθ (qm, sm)

= θ (qm, sm) + bmθ
(
Bmym, qm

)

→ 0 as m → ∞, (3.25)

and again using (3.23) and (3.25), we have

θ (sm+1, sm) = θ
(
(1 – am)rm ⊕ amCmxm, sm

)

≤ (1 – am)θ (rm, sm) + amθ
(
Cmxm, sm

)

≤ (1 – am)θ (rm, sm) + am
[
θ
(
Cmxm, rm

)
+ θ (rm, sm)

]

≤ (1 – am)θ (rm, sm) + amθ
(
Cmxm, rm

)
+ amθ (rm, sm)

= θ (rm, sm) + amθ
(
Cmxm, rm

)

→ 0 as m → ∞. (3.26)

Using the triangle inequality (3.17) and (3.21), we have

θ
(
Amsm, sm

) ≤ θ
(
Amsm, Amzm

)
+ θ

(
Amzm, pm

)
+ θ (pm, sm)

≤ Lθ (sm, zm) + θ
(
Amzm, pm

)
+ θ (pm, sm)

= LH
(
PT (sm),PT (pm)

)
+ θ

(
Amzm, pm

)
+ θ (pm, sm)

≤ Lθ (sm, pm) + θ
(
Amzm, pm

)
+ θ (pm, sm)

≤ (L + 1)θ (sm, pm) + θ
(
Amzm, pm

)

→ 0 as m → ∞. (3.27)

Again using the triangle inequality (3.22) and (3.24), we have

θ
(
Bmsm, sm

) ≤ θ
(
Bmsm, Bmym

)
+ θ

(
Bmym, qm

)
+ θ (qm, sm)

≤ Lθ (sm, ym) + θ
(
Bmym, qm

)
+ θ (qm, sm)

= LH
(
PT (sm),PT (qm)

)
+ θ

(
Bmym, qm

)
+ θ (qm, sm)

≤ Lθ (sm, qm) + θ
(
Bmym, qm

)
+ θ (qm, sm)

≤ (L + 1)θ (sm, qm) + θ
(
Bmym, qm

)

→ 0 as m → ∞. (3.28)

Similarly, again using the triangle inequality (3.23) and (3.25), we have

θ
(
Cmsm, sm

) ≤ θ
(
Cmsm, Cmxm

)
+ θ

(
Cmxm, rm

)
+ θ (rm, sm)

≤ Lθ (sm, xm) + θ
(
Cmxm, rm

)
+ θ (rm, sm)
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= LH
(
PT (sm),PT (rm)

)
+ θ

(
Cmxm, rm

)
+ θ (rm, sm)

≤ Lθ (sm, rm) + θ
(
Cmxm, rm

)
+ θ (rm, sm)

≤ (L + 1)θ (sm, rm) + θ
(
Cmxm, rm

)

→ 0 as m → ∞. (3.29)

Now, using (3.26) and (3.27), we have

θ (sm, Asm) ≤ θ (sm, sm+1) + θ
(
sm+1, Am+1sm+1

)
+ θ

(
Am+1sm+1, Am+1sm

)

+ θ
(
Am+1sm, Asm

)

≤ θ (sm, sm+1) + θ
(
sm+1, Am+1sm+1

)
+ Lθ (sm+1, sm) + Lθ

(
Amsm, sm

)

→ 0 as m → ∞. (3.30)

Similarly, we have

lim
m→∞ θ (sm, Bsm) = lim

m→∞ θ (sm, Csm) = 0. �

Theorem 3.3 Let W be a nonempty closed convex subset of a complete CAT(0) space. Let
T : W → P(W ) be a multivalued mapping and PT be a nonexpansive mapping. Let h :
Y → (–∞,∞] be a proper convex and lower semi-continuous function and A, B, C : W →
W be three total asymptotically nonexpansive mappings. Then {sm} given by (3.1) is �-
convergent to a common fixed point of Ξ .

Proof From Lemma 2.5 and (3.17), we have

θ (Jπ sm, sm) ≤ θ (Jπ sm, pm) + θ (pm, sm)

= θ (Jπ sm,Jπm sm) + θ (pm, sm)

= θ

(

Jπ sm,Jπ

(
πm – π

πm
Jπm sm ⊕ π

πm
sm

))

+ θ (pm, sm)

≤ θ

(

sm,
(

1 –
π

πm

)

Jπm sm ⊕ π

πm
sm

)

+ θ (pm, sm)

≤
(

1 –
π

πm

)

θ (sm,Jπm sm) +
π

πm
θ (sm, sm) + θ (pm, sm)

=
(

1 –
π

πm

)

θ (sm, pm) + θ (pm, sm)

→ 0 as m → ∞.

From Theorem 3.1, we have limm→∞ θ (sm, t) exists for all t ∈ Ξ and

lim
m→∞ θ (sm, Asm) = lim

m→∞ θ (sm, Bsm) = lim
m→∞ θ (sm, Csm) = 0.

Next, we have to show that

W�(sm) =
⋃

{um}⊂{sm}
A

({un}
) ⊂ Ξ .
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Let u ∈ W�(sm). Then there exists a subsequence {um} of {sm} such that A({um}) = {u}.
From Definition 2.3, there exists a subsequence {vm} of {um} such that �-limm→∞ vm = v
for some v ∈ W . By Lemma 2.3, v ∈ Ξ . By Lemma 2.2, u = v. This shows that W�(sm) ⊂ Ξ .

Finally, we have to prove that the sequence {sm} �-converges to a point in Ξ , which will
prove that W�(sm) consists of exactly one point. Let {um} be a subsequence of {sm} with
A({um}) = {u}, and let A({sm}) = {s}. Since u ∈ W�(sm) ⊂ Ξ and {θ (sm, u)} converges by
Lemma 2.2, we have s = u. Thus, W�(sm) = {s}. �

Corollary 3.1 Let W be a nonempty closed convex subset of a real Hilbert space H .
Let T : W → P(W ) be a multivalued mapping, let h : Y → (∞,∞] be a proper con-
vex and lower semi-continuous function, and A, B, C, zm ∈ PT (pm), ym ∈ PT (qm), xm ∈
PT (rm), {am}, {bm}, {cm}, and {πm} satisfy all the conditions given in Theorem 3.1. Let {sm}
be the sequence given by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

pm = arg minr∈Y [h(r) + 1
2πm

‖r – sm‖2],

qm = (1 – cm)pm ⊕ cmAmzm,

rm = (1 – bm)qm ⊕ bmBmym,

sm+1 = (1 – am)rm ⊕ amCmxm

for each m ∈N, then the sequence {sm} converges weakly to a common point in Ξ .

Now we construct and prove strong convergence theorems.
Let W be a nonempty closed convex subset of a CAT(0) space (Y , θ ). A family {A, B, C,T }

of mappings is said to satisfy Condition (Ξ ) if there exists a nondecreasing function h :
[0,∞) → [0,∞) with h(0) = 0 and h(w) > 0 for all w ∈ (0,∞) such that

θ (s, As) ≥ h
(
θ (s,G)

)
,

or

θ (s, Bs) ≥ h
(
θ (s,G)

)
,

or

θ (s, Cs) ≥ h
(
θ (s,G)

)
,

or

θ (s,T s) ≥ h
(
θ (s,G)

)
,

for all s ∈ Y , where G = G(A) ∩ G(B) ∩ G(C) ∩ G(T ).

Theorem 3.4 Suppose that the conditions in Theorem 3.1 are given and {A, B, C,Jπ } sat-
isfy Condition (Ξ ). Then the sequence {sm} strongly converges to a common element of Ξ .
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Proof From Theorem 3.1 we have limm→∞ θ (sm, t) exists for all t ∈ Ξ . Also it follows that
limm→∞ θ (sm,Ξ ) exists. On the other hand, by Condition Ξ , we have

lim
m→∞ θ

(
θ (sm,Ξ )

) ≥ lim
m→∞ θ (sm, Asm) = 0,

or

lim
m→∞ θ

(
θ (sm,Ξ )

) ≥ lim
m→∞ θ (sm, Bsm) = 0,

or

lim
m→∞ θ

(
θ (sm,Ξ )

) ≥ lim
m→∞ θ (sm, Csm) = 0,

or

lim
m→∞ θ

(
θ (sm,Ξ )

) ≥ lim
m→∞ θ (sm,Jπ sm) = 0.

Thus, we have limm→∞ h(θ (sm,Ξ )) = 0. By using the property of h, we have

lim
m→∞ θ (sm,Ξ ) = 0.

Thus, {sm} is a Cauchy sequence in Y , and so {sm} converges to a point t ∈ Y and hence
θ (t,Ξ ) = 0. Since Ξ is closed, so we have t ∈ Ξ . �

Remark 3.1 Our results extend the results of Cho et al. [14] in the framework of
CAT(0) spaces. They established convergence theorems for three asymptotically quasi-
nonexpansive mappings involving the convex and lower semi-continuous function for
solving the convex minimization problem and the common fixed point problem.

4 Numerical results
In this section, we give a numerical example to illustrate the convergence of the iterative
algorithm given by (3.1) for supporting our main results.

Example 4.1 Let Y = R be a Euclidean metric space and W = [1, 12]. Let T : W → P(W )
be the mapping defined by

T (s) = {2s – 1}, ∀s ∈ W .

Suppose that A, B, C : R →R are the mappings defined by

A(s) =
5s + 1

6
; B(s) =

√
2s2 – 2s + 1 and C(s) = 3√s2 + s – 1.

For all s ∈ W , let h : Y → (–∞,∞] defined by

h(s) = ‖s‖1 +
1
2
‖s‖2

2 – 2s + 1.
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Table 1 Numerical values of sm and ‖sm – sm–1‖2
No. of iterations sm h(sm) ‖sm – sm–1‖2
m = 1 10 51 –
m = 2 2.887912 2.267415 5.143740
m = 3 1.513123 0.6300537 4.117401
m = 4 1.230808 0.528876 1.801738
m = 5 1.153017 0.511232 0.583212
m = 6 1.119232 0.507252 0.120032
m = 7 1.098545 0.504013 0.000651
m = 8 1.083867 0.503242 2.680507×e–2
m = 9 1.063823 0.502737 3.324120×e–4
m = 10 1.056611 0.502344 9.929354×e–7
m = 11 1.041421 0.500856 2.906031×e–9
m = 12 1.028531 0.500547 1.170353×e–11
m = 13 1.017221 0.500236 2.224861×e–14
m = 14 1.016117 0.500228 5.773151×e–19
m = 15 1.009912 0.500179 0.00000
m = 16 1.009234 0.500132 0.00000
m = 17 1.008221 0.500101 0.00000
m = 18 1.007608 0.500097 0.00000
m = 19 1.006803 0.500082 0.00000
m = 20 1.004818 0.500060 0.00000
m = 21 1.003001 0.500012 0.00000
m = 22 1.000387 0.500001 0.00000
m = 23 1.000201 0.500000 0.00000
m = 24 1.000000 0.500000 0.00000
m = 25 1.000000 0.500000 0.00000

Figure 1 The values of h(sm) given in Table 1

It is easy to check that A, B, C are uniformly continuous and total asymptotically nonex-
pansive mappings with G(A) ∩ G(B) ∩ G(C) ∩ G(T ) = {1} and h is a proper convex and
lower semi-continuous function.

Let am = 3m–2
6m , bm = 7m–3

11m , and cm = 11m–7
19m , and s1 = 10 is the initial value. Then we obtain

numerical results with the error values in Table 1.
From Table 1 and Fig. 1, we see that the sequence {sm} converges to 1 which is a common

fixed point of three asymptotically nonexpansive mappings, multivalued mapping, and a
solution of a minimizer of a function h.
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Figure 2 The values of errors given in Table 1

5 Conclusion
In the above section, we prove the �-convergence of a modified proximal point algorithm
for common fixed points in a CAT(0) space for generalized nonexpansive mappings which
includes a total asymptotically nonexpansive mapping, a multivalued mapping, and a min-
imizer of a convex function. Moreover, we have illustrated our result by a numerical ex-
ample which supports the �-convergence of our proposed algorithm.
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