
Farid et al. Fixed Point Theory and Applications  (2018) 2018:17 
https://doi.org/10.1186/s13663-018-0642-3

R E S E A R C H Open Access

Common fixed point theorems for a finite
family of multivalued mappings in an ordered
Banach space
Mohamed Amine Farid1, Karim Chaira2, El Miloudi Marhrani1* and Mohamed Aamri1

*Correspondence:
marhrani@gmail.com
1Laboratory of Algebra, Analysis and
Applications (L3A), Faculty of
Sciences Ben M’Sik, Hassan II
University of Casablanca,
Casablanca, Morocco
Full list of author information is
available at the end of the article

Abstract
In this paper, we prove some common fixed point theorems for a finite family of
multivalued and single-valued mappings operating on ordered Banach spaces. Our
results extend and generalize many results in the literature on fixed point theory and
lead to existence theorems for a system of integral inclusions.
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1 Introduction
A good part of the research publications on the fixed point theory was devoted to the
existence of a common fixed point for pairs of single and multivalued functions in various
types of spaces such as metric spaces, ordered spaces, and so on.

By using the measure of noncompactness, Dehage et al. [1] proved some common fixed
point results for pairs of condensing mappings in ordered Banach spaces and they showed
that these results have interesting applications in differential and integral equations. Sev-
eral authors got generalizations of these results under a weaker hypothesis (see [2–6]).
The main objective of the present paper is to generalize the results of [2, 3] by establishing
some common fixed point results for a finite family of single and multivalued functions on
ordered Banach spaces. Some examples will be given to support our results. As applica-
tion, we will prove the existence solutions for a system of integral inclusions, which gives
a generalization of results in [7].

2 Methods
Many authors studied the existence of a common fixed point for pairs of condensing map-
pings in an ordered Banach space with weak and strong topology.

The goal of this article is to generalize these results to the case of a finite family of multi-
valued condensing mapping. The main tool in this study is the notion of noncompactness
measure on Banach spaces.

Our work is organized as follows: we discuss some concepts used in this paper, and we
present our main results and their consequences. We give also some examples to validate
our results. Then we apply the obtained results to solve a system of integral inclusions.
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3 Results and discussion
Let us first give some preliminaries and notations. For a given real Banach space X, we
denote by 2X the space of all nonempty subsets of X. Recall that a multivalued function
on X is a mapping from X into 2X and that a point x∗ ∈ X is called a fixed point of T if
x∗ ∈ T(x∗).

In the following, we denote by T(A) the set
⋃

x∈A T(x) for every A ∈ 2X , by

�(T) =
{

(x, y) ∈ X × X : y ∈ T(x)
}

the graph of T , and by X ′ be the topological dual space of X.

Definition 3.1 A sequence {xn} of X is weakly convergent to x ∈ X if limn f (xn) = f (x) for
all f ∈ X ′.

In this case, we denote xn ⇀ x.

Definition 3.2 Let X be an ordered Banach space, T is said to be monotone-closed if for
each monotone sequence {xn} in X with xn → x and for each sequence {yn} with yn ∈ T(xn)
such that yn → y, we have y ∈ T(x).

Definition 3.3 T is said to be closed if for each sequence {(xn, yn)} in �(T) with (xn, yn) →
(x, y) strongly in X × X, we have y ∈ T(x).

Definition 3.4 A nonempty closed subset P of X is called an order cone if
1. P �= {0};
2. For all a, b ∈R

+ and x, y ∈ P, we have ax + by ∈ P;
3. P ∩ (–P) = {0}.

Given an order cone P on X, we can define a partial order “≤” on X by

x ≤ y ⇐⇒ y – x ∈ P.

An order cone P is called normal if there is a real constant N > 0 such that, for all x, y ∈ X,
we have

0 ≤ x ≤ y ⇒ ‖x‖ ≤ N‖y‖.

The following lemma can be found in [3] and [8].

Lemma 3.5 Let X be an ordered real Banach space with a normal order cone. Suppose
that {xn} is a monotone sequence which contains a subsequence {xσ (n)} converging weakly
to some x ∈ X. Then {xn} converges strongly to x.

We can also define a partial order on 2X by

A ≤ B ⇐⇒ x ≤ y, ∀(x, y) ∈ A × B.
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We define the measure of noncompactness on bounded subsets of X by

ψ(A) = inf

{

δ > 0 : ∃A1, . . . , An ⊂ X, diam(Ai) ≤ δ and A ⊂
n⋃

i=1

Ai

}

,

where diam(A) denotes the diameter of a subset A of X.
The following lemma describes some properties of the measure of noncompactness.

Lemma 3.6 Let A and B be bounded sets of X, then
1. ψ(A) = 0 if and only if A is relatively compact;
2. A ⊆ B implies ψ(A) ≤ ψ(B);
3. ψ(A) = ψ(A);
4. ψ(A ∪ B) = max{ψ(A),ψ(B)}.

For more properties of the measure of noncompactness, we refer to [9, 10].

Definition 3.7 A mapping T : M ⊆ X → X is said to be locally almost nonexpansive if,
for each x ∈ M and ε > 0, there exists a weak neighborhood Ux of x such that

∥
∥T(u) – T(v)

∥
∥ ≤ ‖u – v‖ + ε for all u, v ∈ Ux.

Now, we give our main results.
As extension of the results of [6], we define the notion of (Tk)2≤k≤p-weakly isotone for a

given integer p ≥ 2 as follows.

Definition 3.8 Let M be a nonempty subset of an ordered Banach space X, and let
T1, T2, . . . , Tp : M → 2M be p multivalued mappings on M; we say that

1. T1 is (Tk)2≤k≤p-weakly isotone increasing if, for all x ∈ M, the relations

x1 ∈ T1(x), x2 ∈ T2(x1), . . . , xp ∈ Tp(xp–1)

imply

T1(x) ≤ T2(x1) ≤ · · · ≤ Tp(xp–1) ≤ T1(xp).

2. T1 is (Tk)2≤k≤p-weakly isotone decreasing if, for all x ∈ M, the relations

x1 ∈ T1(x), x2 ∈ T2(x1), . . . , xp ∈ Tp(xp–1)

imply

T1(xp) ≤ Tp(xp–1) ≤ Tp–1(xp–2) ≤ · · · ≤ T1(x).

3. T1 is (Tk)2≤k≤p-weakly isotone if it is either (Tk)2≤k≤p-weakly isotone increasing or
weakly isotone decreasing.

The following definition will be used in the next of this paper.
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Definition 3.9 ([11]) Let X be a Banach space, M be a nonempty subset of X, T : M → 2M

be a multivalued mapping on M, and let ψ be a measure of noncompactness on X. For
k ∈ [0, 1], we have the following definitions:

1. T is called ψ-condensing if T(M) is bounded and, for every nonempty bounded
subset N of M with ψ(N) > 0, we have ψ(T(N)) < ψ(N).

2. T is called k – ψ-contractive if T(M) is bounded and, for every nonempty bounded
subset N of M, we have ψ(T(N)) ≤ kψ(N).

Our first main result is the following theorem.

Theorem 3.10 Let X be an ordered Banach space, ψ be a measure of noncompactness on X
and p ≥ 2 be an integer. Let M be a nonempty closed subset of X and T1, T2, . . . , Tp : M → 2M

be p monotone-closed mappings satisfying:
1. T2, T3, . . . , Tp are 1 – ψ-contractive;
2. T1 is ψ-condensing;
3. T1 is (Tk)2≤k≤p-weakly isotone.

Then T1, T2, . . . , Tp have a common fixed point.

Proof Assume that T1 is (Tk)2≤k≤p-weakly isotone increasing, and let x ∈ M. We define a
sequence {xn} in M as follows:

x0 = x, xpn+1 ∈ T1(xpn), xpn+2 ∈ T2(xpn+1), . . . , xpn+p ∈ Tp(xpn+(p–1))

for n = 0, 1, 2, . . . .
As we have

x1 ∈ T1(x0), x2 ∈ T2(x1), . . . , xp ∈ Tp(xp–1),

we obtain

T1(x0) ≤ T2(x1) ≤ · · · ≤ Tp(xp–1) ≤ T1(xp),

and then

x1 ≤ x2 ≤ · · · ≤ xp ≤ xp+1,

which gives

x1 ≤ x2 ≤ x3 ≤ · · · ≤ xn ≤ · · · .

Let Aj = {xnp+j : n ∈ N}, j = 0, 1, . . . , p – 1, and Ap = A0 \ {x0}, we have

Aj ⊂ Tj(Aj–1), for all j ∈ {1, 2, . . . , p}.

The set

A =

( p⋃

k=1

Ak

)

∪ {x0}



Farid et al. Fixed Point Theory and Applications  (2018) 2018:17 Page 5 of 14

is bounded; and since T2, T3, . . . , Tp are 1 – ψ-contractive, we have

ψ(Ak) ≤ ψ(Tk(Ak–1) ≤ ψ(Ak–1) ≤ ψ(Tk–1(Ak–2) ≤ · · · ≤ ψ
(
T1(A0)

)

for all k = 1, 2, . . . , p.
Assume that ψ(A) �= 0, we have

ψ(A) = max
{
ψ(Ak) : k = 1, 2, . . . , p

}

≤ max
{
ψ

(
Tk(Ak–1)

)
: k = 1, 2, . . . , p

}

≤ max
{
ψ(Ak–1) : k = 1, 2, . . . , p

}

≤ max
{
ψ

(
Tk–1(Ak–2)

)
: k = 2, . . . , p

}

...

≤ ψ
(
T1(A0)

)
.

As T1 is ψ-condensing, we obtain

ψ(A) ≤ ψ
(
T1(A0)

) ≤ ψ
(
T1(A)

)
< ψ(A),

which is contraction. Thus ψ(A) = 0, and then A is relatively compact. Since {xn} is mono-
tone increasing in A, it is convergent to some x∗. Since xpn+1 ∈ T1(xpn) and T1 has a closed
graph, we obtain that x∗ ∈ T1(x∗). Similarly, we obtain x∗ ∈ Tk(x∗) for k = 2, 3, . . . , p; and
consequently, x∗ is a common fixed point for T1, T2, T3, . . . , Tp.

The case T1 is (Tk)2≤k≤p-weakly isotone decreasing is similar, which ends the proof. �

Remark 3.11 For p = 2, we obtain [3] Theorem 3.10.

Let M be a nonempty subset of an ordered Banach space X, and let

T1, T2, . . . , Tp : M → M

be p mappings. As in Definition 3.8, we can define that the notion of T1 is (Tk)2≤k≤p-weakly
isotone. Note that in this case the set T(x) becomes single {T(x)} and y ∈ {T(x)} becomes
y = T(x).

By Theorem 3.10, we obtain the following result.

Corollary 3.12 Let X be an ordered Banach space and ψ be a measure of noncompactness
on X. Let M be a nonempty closed subset of X, and T1, T2, . . . , Tp : M → M be p closed
mappings satisfying:

1. T2, T3, . . . , Tp are 1 – ψ-contractive;
2. T1 is ψ-condensing;
3. T1 is (Tk)2≤k≤p-weakly isotone.

Then T1, T2, . . . , Tp have a common fixed point.

Remark 3.13 For p = 2, this corollary is obtained in [2].
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Using Definition 3.7, we have the following corollary.

Corollary 3.14 Let M be a nonempty, closed subset of an ordered reflexive Banach space
X, and ψ be a measure of noncompactness on X.

Let T1, T2, . . . , Tp : M → M be p continuous mappings satisfying:
1. T2, T3, . . . , Tp are locally almost nonexpansive mappings;
2. T1 is ψ-condensing;
3. T1 is (Tk)2≤k≤p-weakly isotone.

Then T1, T2, . . . , Tp have a common fixed point.

Proof By [12], Lemma 1, p. 672, we have T2, T3, . . . , Tp are 1 – ψ-contractive; hence the
proof of Theorem 3.10. �

Theorem 3.15 Let X be an ordered Banach space, and ψ be a measure of noncompactness
on X. Let M be a nonempty closed subset of X, and T1, T2, . . . , Tp : M → 2M be p monotone-
closed mappings (p ≥ 2) satisfying:

1. T1, T2, T3, . . . , Tp are ψ-condensing;
2. T1 is (Tk)2≤k≤p-weakly isotone.

Then T1, T2, . . . , Tp have a common fixed point.

Proof We use the same notations as in the proof of the previous theorem and assume that
ψ(A) �= 0; we have

A =

( p⋃

k=1

Tk(Ak–1)

)

∪ {x0},

then

ψ(A) = max
{
ψ

(
Tk(Ak–1)

)
; k = 1, 2, . . . , p

}

≤ max
{
ψ

(
Tk(A)

)
; k = 1, 2, . . . , p

}

< ψ(A).

Then ψ(A) = 0, which is contradiction. Therefore A is relatively compact, which ends the
proof. �

Definition 3.16 Let M be a nonempty subset of an ordered Banach space X and
T1, T2, . . . , Tp : M → 2M be p mappings with p ≥ 2.

1. The p-uplet (T1, T2, . . . , Tp) is called weakly isotone increasing if for all x ∈ M, we
have

⎧
⎨

⎩

Tp(x) ≤ T1(y) for all y ∈ Tp(x),

∀i ∈ {1, 2, . . . , p – 1}, Ti(x) ≤ Ti+1(y) for all y ∈ Ti(x).
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2. We say that the p-uplet (T1, T2, . . . , Tp) is weakly isotone decreasing if for all x ∈ M,
we have

⎧
⎨

⎩

T1(y) ≤ Tp(x) for all y ∈ Tp(x),

∀i ∈ {1, 2, . . . , p – 1}, Ti+1(y) ≤ Ti(x) for all y ∈ Ti(x).

3. The p-uplet (T1, T2, . . . , Tp) is weakly isotone if it is either weakly isotone increasing
or weakly isotone decreasing.

Remark 3.17 If p = 2 and T1, T2 are a single-valued mappings, then Definition 3.16 coin-
cides with [6], Definition 2.2.

Remark 3.18 If (T1, T2, . . . , Tp) is weakly isotone increasing (resp. decreasing), then T1 is
(Tk)2≤k≤p-weakly isotone increasing (resp. decreasing).

Using this remark, the statement of Theorem 3.15 remains if we replace “T1 is (Tk)2≤k≤p-
weakly isotone” with “(T1, T2, . . . , Tp) is weakly isotone”.

Let M be a nonempty subset of an ordered Banach space X. Motivated by [3], we intro-
duce the following definition.

Definition 3.19 p maps T1, T2, . . . , Tp with p ≥ 2 are said to satisfy condition BM if, for
any monotone sequence {xn} of M and for any fixed a ∈ M, the condition

{xn} ⊂ {a} ∪
( p⋃

k=1

Tk
({xn}

)
)

implies {xn} has a weakly convergent subsequence.

Theorem 3.20 Let X be an ordered Banach space with a normal order cone. Let M be a
nonempty closed subset of X and T1, T2, . . . , Tp : M → 2M be p monotone-closed mappings
with p ≥ 2 satisfying:

1. T1, T2, . . . , Tp satisfy condition BM ;
2. T1 is (Tk)2≤k≤p-weakly isotone.

Then T1, T2, . . . , Tp have a common fixed point.

Proof Assume that T1 is (Tk)2≤k≤p-weakly isotone increasing, and let x ∈ M be fixed. We
define a sequence {xn} in M as follows:

x0 = x, xpn+1 ∈ T1(xpn), xpn+2 ∈ T2(xpn+1), . . . , xpn+p ∈ Tp(xpn+(p–1)),

n = 0, 1, 2, . . . .

Then as in the proof of Theorem 3.10, it follows that

x1 ≤ x2 ≤ x3 ≤ · · · ≤ xn ≤ · · · .
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We have

{xn} ⊂ {x0} ∪
( p⋃

k=1

Tk
({xn}

)
)

.

Since T1, T2, . . . , Tp satisfy condition BM , there exist x∗ ∈ M and a subsequence {xσ (n)} of
{xn} such that xσ (n) ⇀ x∗. Referring to Lemma 3.5, we get {xn} strongly converges to x∗.
Now we have xpn+1 ∈ T1(xpn) for all n ∈ N, and T1 is monotone-closed, we obtain that
x∗ ∈ T1(x∗). A similar argument yields x∗ ∈ Tk(x∗), k = 2, 3, . . . , p, and consequently, x∗ is a
common fixed point for T1, T2, T3, . . . , Tp.

The case when T1 is (Tk)2≤k≤p-weakly isotone decreasing is similar. �

Remark 3.21 For p = 2, Theorem 3.20 was proved in [3].

Example 3.22 Let X = R
2, P = {x = (t, t) ∈R

2 : t ≥ 0} and

M =
{

x ∈ X : ‖x‖∞ ≤ 2
} ∪ {

(t, 0) ∈ X : t > 2
}

.

(X,‖ · ‖∞) is an ordered Banach space with a normal order cone P, and M is a nonempty
closed subset of X.

Let T1, T2, T3 : M → 2M be defined by, for all x ∈ M,

T1(x) =

⎧
⎨

⎩

{(‖x‖∞,‖x‖∞), ( ‖x‖∞+2
2 , ‖x‖∞+2

2 )} if ‖x‖∞ ≤ 2,

{(2, 2)} if ‖x‖∞ > 2,

T2(x) =

⎧
⎨

⎩

{(2, 2)} if ‖x‖∞ ≤ 2,

{( t
t–1 , t

t–1 ) : t ∈ [2,‖x‖∞]} if ‖x‖∞ > 2

and T3(x) = {x}.
The multivalued mappings T1, T2, T3 are closed, so monotone-closed, and satisfying the

condition BM , and T1 is (T2, T3)-weakly-isotone increasing. Besides, the mappings T1, T2,
T3 have the common fixed point (2, 2).

The following corollary can be obtained from Theorem 3.20.

Corollary 3.23 Let X be an ordered Banach space with a normal order cone. Let M be a
nonempty closed subset of X. Let T1, T2, . . . , Tp : M → M be p monotone-continuous map-
pings with p ≥ 2 satisfying:

1. T1, T2, . . . , Tp satisfy condition BM ;
2. T1 is (Tk)2≤k≤p-weakly isotone.

Then T1, T2, . . . , Tp have a common fixed point.

Let M be a nonempty subset of an ordered Banach space X, and let a ∈ M. Motivated
by [6] we introduce the following condition.
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Definition 3.24 p maps T1, T2, . . . , Tp : M → 2M with p ≥ 2 are said to satisfy the condi-
tion DM if, for any countable set of M, the condition

A ⊂ {a} ∪
( p⋃

k=1

Tk(A)

)

implies A is weakly compact.

Theorem 3.25 Let X be an ordered Banach space with a normal cone and M be a
nonempty closed subset of X. Let p ≥ 2 and let T1, T2, . . . , Tp : M → 2M be p monotone-
closed mappings satisfying:

1. T1, T2, . . . , Tp satisfy condition DM ;
2. T1 is (Tk)2≤k≤p-weakly isotone.
Then T1, T2, . . . , Tp have a common fixed point.

Proof Assume that T1 is (Tk)2≤k≤p-weakly isotone increasing, and let x ∈ M be fixed. We
define a sequence {xn} in M as follows:

x0 = x, xpn+1 ∈ T1(xpn), xpn+2 ∈ T2(xpn+1), . . . , xpn+p ∈ Tp(xpn+(p–1)),

n = 0, 1, 2, . . . .

Then, as in the proof of Theorem 3.10, it follows that

x1 ≤ x2 ≤ x3 ≤ · · · ≤ xn ≤ · · · .

Let A = {x0, x1, x2, . . .}, A is countable and

A ⊂ {x0} ∪
( p⋃

k=1

Tk(A)

)

,

or T1, T2, . . . , Tp satisfy the condition DM , so A is weakly compact. Then there exists a
subsequence {xσ (n)} ⊂ A and x∗ ∈ A such that

xσ (n) ⇀ x∗.

We refer to Lemma 3.5, we get xσ (n) → x∗. Since xpn+1 ∈ T1(xpn) for all n ∈ N and T1 is
monotone-closed, we obtain that x∗ ∈ T1(x∗). A similar argument yields x∗ ∈ Tk(x∗), k =
2, 3, . . . , p, and consequently, x∗ is a common fixed point for T1, T2, T3, . . . , Tp. The case
when T1 is (Tk)2≤k≤p-weakly isotone decreasing is similar. �

Remark 3.26 For p = 2, Theorem 3.25 was proved in [3].

The following corollary is a single-valued version of Theorem 3.25.

Corollary 3.27 Let X be an ordered Banach space with a normal cone. Let M be a
nonempty closed subset of X. Let p ≥ 2 and let T1, T2, . . . , Tp : M → M be p closed map-
pings satisfying the condition DM and T1 is (Tk)2≤k≤p-weakly isotone. Then T1, T2, . . . , Tp

have a common fixed point.
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Example 3.28 Let X = R
2, P = {x = (t, t) ∈R

2 : t ≥ 0} and

M =
{

x ∈ X : ‖x‖∞ ≤ 2
} ∪ {

(t, t) ∈ X : t > 2
}

.

(X,‖ · ‖∞) is an ordered Banach space with a normal order cone P, and M is a nonempty
closed subset of X.

Let T1, T2, T3 : M → 2M be defined by, for all x ∈ M,

T1(x) =

⎧
⎨

⎩

{(‖x‖∞,‖x‖∞)} if ‖x‖∞ ≤ 2,

{(2, 2)} if ‖x‖∞ > 2,

T2(x) =

⎧
⎨

⎩

{( ‖x‖∞+2
2 , ‖x‖∞+2

2 )} if ‖x‖∞ ≤ 2,

{( 3t
t+1 , 3t

t+1 ) : t ∈ [2,‖x‖∞]} if ‖x‖∞ > 2

and

T3(x) =

⎧
⎨

⎩

{(2, 2)} if ‖x‖∞ ≤ 2,

{( 3t
t+1 , 3t

t+1 ) : t ∈ [2,‖x‖∞]} if ‖x‖∞ > 2.

The multivalued mappings T1, T2, T3 are monotone-closed and satisfying the condition
DM , because the mappings T1, T2, T3 are bounded, and T1 is (T2, T3)-weakly-isotone. Be-
sides, the mappings T1, T2, T3 have the common fixed point (2, 2).

Remark 3.29 In Example 3.22 the mappings T1, T2, T3 are not satisfying the condition
DM .

4 Application
Let R be the real line and N be the set of positive integers, and p ∈ N with p ≥ 2. Let E
be a Banach space with norm ‖ · ‖E , and let C(E) denote the class of all nonempty closed
subsets of E. Given a closed and bounded interval J = [0, 1] ⊂ R, consider the system of
nonlinear integral inclusions of the form

x(t) ∈ q(t) +
∫ σ (t)

0
K(t, s)Fi

(
s, x(s)

)
ds for all i ∈ {1, 2, . . . , p}, (1)

where t ∈ [0, 1], and σ : [0, 1] → [0, 1], q : [0, 1] → E, K : [0, 1] × [0, 1] →R are continuous,
and Fi : [0, 1] × E → C(E) for all i ∈ {1, 2, . . . , p}.

By a common solution for the system of integral inclusions (1), we mean a continuous
function x : J → E such that

x(t) = q(t) +
∫ σ (t)

0
K(t, s)vi(s) ds for all i ∈ {1, 2, . . . , p},

for some vi ∈ B(J , E) satisfying vi(t) ∈ Fi(t, x(t)) for all t ∈ J , where B(J , E) is the space of all
E-valued Bochner integrable functions on J .
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Let C(J , E) denote the space of all continuous E-valued functions on J , define a norm
‖ · ‖C in C(J , E) by

‖x‖C = sup
∥
∥x(t)

∥
∥

E .

Clearly, C(J , E) is a Banach space with the norm ‖ · ‖C . We introduce an order relation “≤”
in C(J , E) with the help of the cone PC in C(J , E) defined by

PC =
{

x ∈ C(J , E) : x(t) ∈ PE for all t ∈ J
}

,

where PE is a normal cone in E.

Definition 4.1 A multivalued map F : J → 2E is said to be measurable if for any y ∈ E, the
function t → d(y, F(t)) = inf{‖y – x‖E : x ∈ F(t)} is measurable.

Let i ∈ {1, 2, . . . , p}. Denote

∥
∥Fi(t, x)

∥
∥ =

{‖u‖E : u ∈ Fi(t, x)
}

and
∣
∣
∣
∣
∣
∣Fi(t, x)

∣
∣
∣
∣
∣
∣ = sup

{‖u‖E : u ∈ Fi(t, x)
}

.

Definition 4.2 A multivalued function β : J × E → 2E is called Carathéodory if
1. t → β(t, x) is measurable for each x ∈ E, and
2. x → β(t, x) is an upper semicontinuous almost everywhere for t ∈ J .

Definition 4.3 A Carathéodory multifunction Fi(t, x) is called L1-Carathéodory if, for ev-
ery real number r > 0, there exists a function hi,r ∈ L1(J ,R) such

∣
∣
∣
∣
∣
∣Fi(t, x)

∣
∣
∣
∣
∣
∣ ≤ hi,r a.e. t ∈ J

for all x ∈ E with ‖x‖E ≤ r.

Denote

S1
Fi

(x) =
{

v ∈ B(J , E) : v(t) ∈ Fi
(
t, x(t)

)
a.e. t ∈ J

}
.

In the sequel, we also need the following lemmas from [13].

Lemma 4.4 If dim(E) < ∞ and Fi : J × E → 2E is L1-Carathéodory, then S1
Fi

(x) �= ∅ for each
x ∈ C(J , E).

Lemma 4.5 Let E be a Banach space, F be a Carathéodory multimap with S1
Fi

�= ∅, and let
L : L1(J , E) → C(J , E) be a continuous linear mapping. Then the operator L◦S1

Fi
: C(J , E) →

2C(J ,E) is a closed graph operator on C(J , E) × C(J , E).

Now we introduce the following definition.

Definition 4.6 A multifunction Fi(t, x) is said to be nondecreasing in x almost everywhere
for t ∈ J if, for any x, y ∈ E with x < y, we have that Fi(t, x) ≤ Fi(t, y) for almost everywhere
t ∈ J .
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Now we have the following condition.

Condition 2 Integral inclusions of system (1) are said to satisfy Condition 2 if there exist
a, b ∈ C(J , E) such that

a(t) ≤ q(t) +
∫ σ (t)

0
K(t, s)vi(s) ds ≤ b(t)

for all vi ∈ B(J , E) such that vi ∈ Fi(t, x(t)) with i ∈ {1, 2, . . . , p}.

We refer to [7] and we consider the following set of hypotheses in the following:
(H0) The function K is continuous and nonnegative on J × J , with

M = sup
t,s∈J

K(t, s).

(H1) The multivalued Fi is Carathéodry for all i ∈ {1, 2, . . . , p}.
(H2) For any bounded set A of E, ψ(Fi([0, 1] × A)) ≤ λψ(A) for some reals λ > 0, with

i ∈ {1, 2, . . . , p}.
(H3) Multivalued functions Fi are nondecreasing in x almost everywhere for t ∈ J , with

i ∈ {1, 2, . . . , p}.
(H4) S1

Fi
(x) �= ∅ for each x ∈ C(J , E) and for all i ∈ {1, 2, . . . , p}.

(H5) Integral inclusions of system (1) satisfy Condition 2.
(H6) For each i ∈ {1, 2, . . . , p}, the function

t → ∣
∣
∣
∣
∣
∣Fi(t, a(t)

∣
∣
∣
∣
∣
∣
E +

∣
∣
∣
∣
∣
∣Fi(t, b(t)

∣
∣
∣
∣
∣
∣
E

is Lebesgue integrable on J .
(H7) Fp(t, x) ≤ F1(t, y) for all v ∈ S1

Fp (x) and, for each i ∈ {1, 2, . . . , p – 1}, we have Fi(t, x) ≤
Fi+1(t, y) for all v ∈ S1

Fi
(x), where

y(t) = q(t) +
∫ σ (t)

0
K(t, s)v(s) ds.

The next theorem has been proved in [7] for p = 2.

Theorem 4.7 Let p ∈N with p ≥ 2, and assume that hypotheses (H0)–(H7) hold. If λM < 1,
then the system of integral inclusions (1) has a common solution in C([0, 1], E).

Proof Let X = C(J , E) and consider the ordered interval [a, b] ⊂ X, which will be defined
in view of (H5). Define p mappings T1, T2, . . . , Tp : [a, b] → X by

Ti(x) =
{

u : u(t) = q(t) +
∫ σ (t)

0
K(t, s)v(s) ds, v ∈ S1

Fi
(x)

}

for all i ∈ {1, 2, . . . , p}.

Our strategy is to show that Ti satisfies all the conditions of Theorem 3.15 for all i ∈
{1, 2, . . . , p}.
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First we show that the p-uplet (T1, T2, . . . , Tp) is weakly isotone on [a, b]. Let x, y ∈ [a, b],
then with a similar reasoning as in [7] we get, for each i ∈ {1, 2, . . . , p},

Ti(x) =
{

u1 : u1 = q(t) +
∫ σ (t)

0
K(t, s)v1(s) ds, v1 ∈ S1

Fi
(x)

}

=
{

u1 : u1 = q(t) +
∫ σ (t)

0
K(t, s)v1(s) ds, v1 ∈ {

v ∈ B(J , E) : v(t) ∈ Fi
(
t, x(t)

)}
}

≤
{

u2 : u2 = q(t) +
∫ σ (t)

0
K(t, s)v2(s) ds, v2 ∈ {

v ∈ B(J , E) : v(t) ∈ Fi+1
(
t, y(t)

)}
}

≤
{

for all y(t) = q(t) +
∫ σ (t)

0
K(t, s)v(s) ds and v ∈ S1

Fi
(x)

}

=
{

u2 : u2 = q(t) +
∫ σ (t)

0
K(t, s)v2(s) ds, v2 ∈ S1

Fi+1
(y)

}

≤
{

for all y(t) = q(t) +
∫ σ (t)

0
K(t, s)v(s) ds and v ∈ S1

Fi
(x)

}

= Ti+1(y), for all y(t) = q(t) +
∫ σ (t)

0
K(t, s)v(s) ds and v ∈ S1

Fi
(x)

= Ti+1(y), for all y ∈ Ti(x) =
{

u : u = q(t) +
∫ σ (t)

0
K(t, s)v(s) ds, v ∈ S1

Fi
(x)

}

.

Thus, Ti(x) ≤ Ti+1(y) for all y ∈ Ti(x). Similarly, we have Tp(x) ≤ T1(y) for all y ∈ Tp(x).
Hence, the p-uplet (T1, T2, . . . , Tp) is weakly isotone increasing.

Next, let x ∈ [a, b], by (H5) we have a ≤ Ti(x) ≤ b for all i ∈ {1, 2, . . . , p}. Hence
T1, T2, . . . , Tp : [a, b] → 2[a,b].

The following results are justified in [7]. Let A be a nonempty subset in [a, b].
1. The cone PC is normal in C(J , E).
2. For each t ∈ J and i ∈ {1, 2, . . . , p}, ψ(Ti(A(t))) ≤ λMψ(A).
3. For each i ∈ {1, 2, . . . , p}, Ti(A) is a uniformly bounded and equicontinuous set in

[a, b].
We obtain ψ(Ti(A)) ≤ λMψ(A), where λM < 1. Hence, Ti is a ψ-condensing multivalued
mapping on [a, b] for all i ∈ {1, 2, . . . , p}. In [7] and from Lemma 4.5, we can prove that Ti

is a closed graph for all i ∈ {1, 2, . . . , p}.
Thus, T1, T2, . . . , Tp satisfy all the conditions of Theorem 3.15, and therefore an applica-

tion of it yields that T1, T2, . . . , Tp have a common fixed point in [a, b]. This further implies
that system of integral inclusions (1) has a common solution on J . �

5 Conclusions
Dehage, BC proved in [14] some common fixed point theorems for pairs of weakly iso-
tone condensing mappings in an ordered Banach space. These results will be generalized
later by Hussain and Taoudi. The authors showed that these results can be obtained if we
replace the strong topology by the weaker one, and they used these results to solve the
existence problem for a system of integral inclusions.

In the present paper, we extend and generalize these results for a finite family of single
and multivalued functions on an ordered Banach space. And we prove the existence of
solutions for a system of integral inclusions.
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