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Abstract
In this paper, we introduce the concept of infinitely split Nash equilibrium in repeated
games in which the profile sets are chain-complete posets. Then by using a fixed
point theorem on posets in (J. Math. Anal. Appl. 409:1084–1092, 2014), we prove an
existence theorem. As an application, we study the repeated extended Bertrant
duopoly model of price competition.
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1 Introduction and preliminaries
1.1 Definitions and notations in game theory
In begin of this section, we review some concepts and notations in game theory that are
used by many authors. The reader is referred to [1–11] for more details. Let n be a positive
integer greater than 1. An n-person noncooperative strategic game, simply called an n-
person game, consists of the following elements:

1. the set of n players denoted by N with |N | = n;
2. the set of profiles SN =

∏
i∈N Si, where Si is the pure strategy set for player i ∈ N ;

3. the utility vector mapping f =
∏

i∈N fi : SN → Rn, where fi is the utility (payoff)
function of player i, for i ∈ N .

This game is denoted by G(N , SN , f ). Throughout this paper, we always assume that, in
the products

∏
i∈N Si,

∏
i∈N fi and

∏
i∈N\{i} Sk , the players appear in the same sequential

orders. As usual, for every i ∈ N , we often denote a profile of pure strategies for player i’s
opponents by

x–i = (x1, x2, . . . , xi–1, xi+1, xn).

The set of profiles of pure strategies for player i’s opponents is then denoted by

S–i =
∏

k∈N\{i}
Sk .
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Hence we may write x ∈ SN as

x = (xi, x–i) with x–i ∈ S–i, for i ∈ N . (1)

Moreover, for every x–i ∈ S–i, we denote

fi(Si, x–i) =
{

fi(zi, x–i) : zi ∈ Si
}

.

From f =
∏

i∈N fi in the game G(N , SN , f ), for any x ∈ S, we have

f (x) =
∏

i∈N

fi(x).

One of the most important topics in game theory is the study of Nash equilibrium prob-
lems. It has been widely studied by many authors and has been extensively applied to
economic theory, business and related industries (see [1, 2, 6, 7, 9–12]). We recall the def-
inition of Nash equilibrium in n-person noncooperative strategic games below.

Let G(N , SN , f ) be an n-person game. A profile of pure strategies �x = (�x1,�x2, . . . ,�xn) ∈ SN

is a Nash equilibrium of this game if and only if, it satisfies

fi(zi,
�x–i) ≤ fi(

�xi,
�x–i), for every i ∈ N and for every zi ∈ Si. (2)

It can be rewritten as

fi(zi,
�x–i) ≤ fi(

�xi,
�x–i), for every i ∈ N and for every z ∈ SN .

In an n-person game G(N , SN , f ), we define a mapping F : SN × SN → Rn by

F(z, x) =
∏

i∈N

fi(zi, x–i), for any x, z ∈ SN . (3)

F(z, x) is called the utility vector at profile x ∈ SN associated to z ∈ SN . It is clear that

F(x, x) = f (x), for any x ∈ SN . (4)

Let ≥n be the component-wise partial order on Rn satisfying that, for x, z ∈ SN ,

F(z, x) ≤n F(x, x) = f (x), if and only if, fi(zi, x–i) ≤ fi(xi, x–i), for all i ∈ N . (5)

From (2)–(5), the Nash equilibrium can be described thus: a profile �x ∈ SN is a Nash equi-
librium of G(N , SN , f ) if and only if,

F(z,�x) ≤n F(�x,�x) = f (�x), for all z ∈ SN . (6)
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1.2 n-person dual games
An n-person game G = (N , SN , f ) is static. Some games in the real world may not be static.
That is, it may not be one-shot nature. It is more realistic for this game to be repeatedly
played. The dynamic model of game based on an n-person game G = (N , SN , f ) is for-
mulized by the process that this static game is repeated infinite periods (times). It is called
an n-person repeated game, in which there is a discount factor involved for the utilities
(see [6]). The dynamic model for n-person repeated games will be studied in Sect. 3.

In this paper, we first consider a special model: n-person dual game. An n-person dual
game based on an n-person game G(N , SN , f ) is modeled as follows: At first, the players
play the game as a static n-person noncooperative strategic game. After this game is played
first time and before this game is played again, every player always considers the reaction
of its competitors to its strategy applied in the first time. To seek the optimization of the
player’s utilities, the players may make arrangements of strategies to use in the second play.
Suppose that this performance is represented by a mapping A on SN . Hence, if x ∈ SN is
the profile used by the players in the first time, then Ax ∈ SN will be the profile used by the
players in the second time. This n-person dual game is denoted by G(N , SN , f , A)2.

Then we ask: Is there a Nash equilibrium �x ∈ SN of the game G(N , SN , f ) (first play) such
that A�x ∈ SN is also a Nash equilibrium of this game in second play with respect to the
translated profiles? It raises the so called split Nash equilibrium problems for dual games.

In [3, 13–16] and [17], multitudinous of iterative algorithms have provided for the ap-
proximations of split Nash equilibria for two games. In all results about estimating Nash
equilibria in the listed papers, there is a common essential prerequisite: The existence of
a Nash equilibrium in the considered problem is assumed. It is indubitable that the exis-
tence of solutions for split Nash equilibrium problems is always the crux of the matter for
solving these problems.

In [4], the present author proved an existence theorem of split Nash equilibrium prob-
lems for related games by using the Fan–KKM Theorem. Since the present author has
studied the fixed point theory on posets for several years and has made some applications
to Nash equilibrium problems, so, in this paper, we will apply some fixed point theorems
on posets to study the solvability of split Nash equilibrium problems for dual games. To
this end, the profile sets of games must be equipped with partial orders that may be neither
linear spaces, nor topological spaces. The positive aspect of this research is that the utility
functions in the considered games are unnecessary to be continuous and the mapping A
that defines the split Nash equilibrium problems is unnecessary to be linear.

In Sect. 3, we extend the concept of split Nash equilibrium problems for dual games
to infinitely split Nash equilibrium problems for repeated games and prove an existence
theorem. As applications, in Sect. 4, we study the existence of infinitely split Nash equi-
librium and Nash equilibrium for the repeated extended Bertrant duopoly model of price
competition that is a special repeated game.

2 Split Nash equilibrium problems in dual games
2.1 Definitions and notations for split Nash equilibrium problems in dual games
Let G(N , SN , f ) be an n-person game. Throughout this paper, unless otherwise stated, we
assume that, for every player i ∈ N , his strategy set Si is nonempty and is equipped with
a partial order �i. That is, for every i ∈ N , player i’s strategy set is assumed to be a poset
(Si,�i). As the product partially ordered set of (Si,�i)’s, the profile set is also a poset (SN ,�)
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in which the partial order � is the component-wise partial order of �i’s. That is, for x =
(x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) ∈ SN , we have

y � x, if and only if, yi �i xi, for all i ∈ N .

For every i ∈ N , (S–i,�–i) is similarly defined to be the product poset of (Sj,�j)’s, j �= i, in
which �–i is the corresponding component-wise partial order of �j ’s, j �= i.

Definition 1 Let G(N , SN , f , A)2 be an n-person dual game. The split Nash equilibrium
problem associated with this dual game, denoted by NSNE(G(N , SN , f , A)2), is formalized
as: to find a profile �x ∈ SN satisfying

fi(zi,
�x–i) ≤ fi(

�xi,
�x–i), for every i ∈ N and z ∈ S, (7)

such that the profile A�x ∈ SN solves the following:

fi
(
(Az)i, (A�x)–i

) ≤ fi
(
(A�x)i, (A�x)–i

)
, for every i ∈ N and z ∈ S. (8)

From (6), a profile �x ∈ SN satisfying (7)–(8) can be rewritten as:

F(z,�x) ≤n F(�x,�x) = f (�x), for all z ∈ SN , (9)

and

F(Az, A�x) ≤n F(A�x, A�x) = f (�x), for all z ∈ SN . (10)

Such a profile �x in SN is called a split Nash equilibrium of this split Nash equilib-
rium problem NSNE(G(N , SN , f , A)2). The set of all split Nash equilibriums is denoted
by S(G(N , SN , f , A)2).

When looking at the equilibrium problems (5) and (6) separately, the problem (5) is
the classical Nash equilibriums problem of strategic games. When considering a spe-
cial case, A = I (A is unnecessary to be linear), that is, the identity mapping on SN ,
NSNE(G(N , SN , f , I)2) reduces to the classical Nash equilibrium problem for the game
G(N , SN , f ). In this view, split Nash equilibrium problems for dual games can be consid-
ered as the natural extensions of the classical Nash equilibrium problems.

A fixed point theorem on posets is proved in [1]. In this theorem, the underlying space
is a chain-complete poset and the considered mapping is just required to satisfy order-
increasing upward condition without any continuity condition (as a matter of fact, the
underlying space is just equipped with a partial order and it may not have any topological
structure). The values of the considered mapping are universally inductive that is a rela-
tively broad concept. Some properties and examples of universally inductive posets have
been provided in [1]. We recall this theorem below that will be used in the proof of the
main theorems in this paper.

Fixed Point Theorem A (Theorem 3.2 in [5]) Let (P, �P) be a chain-complete poset and
let � : P → 2P\{∅} be a set-valued mapping satisfying the following three conditions:
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A1. � is �P-increasing upward;
A2. (�(x),�P) is universally inductive, for every x ∈ P;
A3. There is an element y∗ in P and v∗ ∈ �(y∗) with y∗ �P v∗.

Let F (�) denote the set of fixed points of �. Then
(i) (F (�), �P) is a nonempty inductive poset;

(ii) (F (�) ∩ [y∗), �P) is a nonempty inductive poset; and � has an �P-maximal fixed
point x∗ with x∗ �P y∗.

2.2 An existence theorem for split Nash equilibrium in dual games
We need the following concept, order-positive, for mappings from posets to posets. It is
an important condition for the mapping A for the existence of split Nash equilibrium in
split Nash equilibrium problems.

Definition 2 Let (X, �X ), (Y , �Y ) and (U , �U ) be posets. Let C, D be nonempty subsets
of X and Y , respectively. A mapping g : X ×Y → U is said to be order-positive from X ×Y
to U whenever, for x, y ∈ D, if x �Y y, then

g(z, x) �U g(t, x) implies g(z, y) �U g(t, y), for any z, t ∈ X. (11)

In particular, if (U ,�U ) = (Rm,≥m), where m is a natural number, a mapping g is order-
positive from X × Y to (Rm,≥m) whenever, for x, y ∈ C, if x �X y, then

g(z, x) ≤m g(t, x) implies g(z, y) ≤m g(t, y), for any z, t ∈ X. (12)

Let G(N , SN , f , A)2 be an n-person dual game. To prove an existence theorem for split
Nash equilibrium problem NSNE(G(N , SN , f , A)2), we need to define a mapping π : SN →
2SN , for x ∈ SN , by

π (x) =
{

t ∈ SN : F(z, x) ≤n F(t, x) and F(Az, Ax) ≤n F(At, Ax), for all z ∈ SN
}

. (13)

π can be equivalently written, for x ∈ SN , as

π (x) =
{

t ∈ SN : fi(zi, x–i) ≤ fi(ti, x–i) and fi
(
(Az)i, (Ax)–i

) ≤ fi
(
(At)i, (Ax)–i

)
,

for every i ∈ N and for all z ∈ SN
}

.

Observation 1 In Theorem 1 given below, it is assumed that, for every x ∈ SN , π (x) �= ∅.
It means that, for any given profile x ∈ SN and for every player i ∈ N , when player i’s op-
ponents take x–i to play, there exists a strategy ti ∈ Si such that player i will optimize his
utility at the profile (ti, x–i). Hence, the condition that π (x) is nonempty is a reasonable
condition and it should not be too strong.

Now we prove one of the main theorems of this paper.

Theorem 1 Let G(N , SN , f , A)2 be an n-person dual game. Suppose that, for every i ∈ N ,
(Si,�i) is a nonempty chain-complete poset. Let (SN ,�) be the product poset of (Si,�i)’s
equipped with the component-wise partial order �. If f and A satisfy the following condi-
tions:
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(a) For every i ∈ N , fi is order-positive from (Si,�i) × (S–i,�–i) to (R,≥).
(b) For every x ∈ SN , π (x) is a universally inductive subset of SN .
(c) The operator A : SN → SN is �-increasing.
(d) There are elements x′ ∈ SN and u′ ∈ π (x′) satisfying x′ � u′;

then the dual game G(N , SN , f , A)2 has a split Nash equilibrium. Moreover
(i) (S(G(N , SN , f , A)2),�) is a nonempty inductive poset;
(ii) (S(G(N , SN , f , A)2) ∩ [x′),�) is a nonempty inductive poset.

Proof Since, for every i ∈ N , (Si,�i) is a nonempty chain-complete poset, then the profile
set, as a product space of chain-complete spaces (Si,�i)’s, (SN ,�) is a nonempty chain-
complete poset, where � is the component-wise partial order of �i’s. Define a set-valued
mapping � : SN → 2SN by

�(x) = π (x)

=
{

t ∈ SN : F(z, x) ≤n F(t, x)

and F(Az, Ax) ≤n F(At, Ax), for all z ∈ SN
}

, for x ∈ SN . (14)

From condition (b) in this theorem, it implies that, for every x ∈ SN , �(x) �= ∅. Hence the
mapping � : SN → 2SN \{∅} is a well-defined set-valued mapping with universally inductive
values in SN .

Next we show that � is �-increasing upward. Notice that the partial order � on SN is the
component-wise partial order of �i’s on Si’s, respectively. It implies that, for any x, y ∈ SN ,
x � y is equivalent to xi �i yi and x–i �–i y–i, for every i ∈ N . From condition (a), for every
i ∈ N , fi is order-positive from (Si,�i) × (S–i,�–i) to (R,≥). From (3), it implies that F is
order-positive from (SN ,�) × (SN ,�) to (Rn,≥n). Then, for arbitrary x, y ∈ SN with x � y,
it implies x–i �–i y–i, for every i ∈ N . From condition (a), we then have

fi(zi, x–i) ≤ fi(ti, x–i) implies fi(zi, y–i) ≤ fi(ti, y–i), for zi, ti ∈ Si.

It follows that

F(z, x) ≤n F(t, x) implies F(z, y) ≤n F(t, y), for any z, t ∈ SN . (15)

From condition (c), the operator A: SN → SN is �-increasing. It implies that if x � y,
then Ax � Ay. From condition (a) again, similar to (15), we have

F(Az, Ax) ≤n F(At, Ax) implies F(Az, Ay) ≤n F(At, Ay), for any z, t ∈ SN . (16)

(15) and (16) together imply that if x � y, then �(x) ⊆ �(y). Hence � is �-increasing up-
ward.

The elements x′ ∈ SN and u′ ∈ π (x′) given in condition (d) in this theorem satisfy u′ ∈
�(x′) such that x′ � u′. So � satisfies all conditions in the Fixed Point Theorem A. It follows
that F (�) �= ∅ and it satisfies the properties (i) and (ii) in Theorem A. From (9) and (10),
the definition of S(G(N , SN , f , A)2), and (14), the definition of �, we obtain

S
(
G(N , SN , f , A)2) = F (�). (17)
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By Applying Theorem A and (17), the proof of this theorem is completed immedi-
ately. �

2.3 Applications to partially ordered Banach spaces
In this subsection, we consider a special case of n-person dual games in which the strategy
set for every player is a nonempty and compact subset of a partially ordered Banach space.
This case should be very useful in the applications. In [1], it was proved that every par-
tially ordered compact Hausdorff topological space is both chain-complete and universally
inductive, as a consequence of Theorem 1, we have:

Corollary 1 Let G(N , SN , f , A)2 be an n-person dual game. Suppose that, for every i ∈ N , Si

is a nonempty compact subset of a partially ordered Banach space (Bi,�i). Let BN =
∏

i∈N Bi

equipped with the component-wise partial order � of �i’s. If f and A satisfy the following
conditions:

(a) For every i ∈ N , fi is order-positive from (Si,�i) × (S–i,�–i) to (R,≥).
(b) For every x ∈ SN , π (x) is a nonempty closed subset of SN .
(c) The operator A : SN → SN is �-increasing.
(d) There are elements x′ ∈ SN and u′ ∈ π (x′) satisfying x′ � u′,

then the dual game G(N , SN , f , A)2 has a split Nash equilibrium. Moreover, S(G(N , SN , f ,
A)2) has the properties (i) and (ii) listed in Theorem 1.

Remark 1 In Corollary 1, even though the profile set in the dual game G(N , SN , f , A)2 is a
subset of a Banach space, the operator A : SN → SN is not required to be linear. It may be
a nonlinear operator.

3 Infinitely split Nash equilibrium problems in repeated games
3.1 Definitions and notations of n-person repeated games
Let G(N , SN , f ) be an n-person game. Recall that, for every i ∈ N , player i’s strategy set is
assumed to be a poset (Si,�i). (SN ,�) is the product poset, where � is the component-wise
partial order of �i’s naturally equipped on SN .

For every natural number k, after the players repeated play the game k times and, for
each time, the game is played as a static n-person simultaneous-move game, before they
play this static game again, every player always considers the reaction of its competitors
to its strategy applied in the previous time. To optimize their utilities, the players may
make arrangements of strategies to use in the next play (the (k+1)th play). Suppose that
the profile of the arranged strategies is represented by the value of a mapping Ak : SN → SN ,
for k = 1, 2, 3, . . . . (Since (Sk , �k) is just a poset, it may not be equipped with any algebraic
structure. So the linearity of Ak is may not be defined.) To summarizing this process, if
x ∈ SN is the profile used by the players in the first time, then A1x ∈ SN will be the profile
used by the players in the second time; A2A1x ∈ SN will be the profile used by the players
in the third time. Hence, for k = 1, 2, 3, . . . , Ak · · ·A2A1x ∈ SN will be the profile used by the
players in the (k + 1)th play. For simplicity, we write

�k = AkAk–1 · · ·A1A0, for k = 0, 1, 2, . . . , (18)
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where A0 = I , that is, the identity operator on SN . Then �k : SN → SN is a single-valued
mapping. In particular, if Ak = Ak–1 = · · · = A1 = A, then we denote

�k = AkA0, for k = 1, 2, . . . .

Suppose that the utilities of this game are bounded. That is, there is a number M > 0 such
that

(M) |fi(x)| ≤ M, for every i ∈ N and for all x ∈ SN .
There is a discount factor 0 < ρ < 1. For every i ∈ N , player i’s discounted value of utility

at a profile x ∈ SN is

hi(x) =
∞∑

k=0

ρkfi(�kx). (19)

Player i’s discounted value of utility at the profile x associated with a profile z ∈ SN is

Hi(z, x) =
∞∑

k=0

ρkfi
(
(�kz)i, (�kx)–i

)
. (20)

It implies

Hi(x, x) = hi(x), for every i ∈ N and for all x ∈ SN .

The utility vector with discounted values for this repeated game at the profile x associated
with a profile z ∈ SN is

H(z, x) =
∏

i∈N

Hi(z, x)

=
∏

i∈N

( ∞∑

k=0

ρkfi
(
(�kz)i, (�kx)–i

)
)

.

Under the boundedness condition (M), for every i ∈ N , both of hi and Hi are well-defined
real valued functions on SN and SN ×SN , respectively. Then it forms an n-person dynamic
model based on an n-person game. It is called an n-person repeated game based on the
n-person static game G(N , SN , f ) and is denoted by

G(N , SN , f , Ak)∞k=0.

Definition 3 Let G(N , SN , f , Ak)∞k=0 be an n-person repeated game. A profile x̂ ∈ SN is
called a Nash equilibrium of this repeated game, if the following inequalities are satisfied:

Hi(z, x̂) ≤ Hi(x̂, x̂), for every i ∈ N and z ∈ SN . (21)

Definition 4 The infinitely split Nash equilibrium problem associated with the repeated
game G(N , SN , f , Ak)∞k=0, denoted by NSNE(G(N , SN , f , Ak)∞k=0), is formalized as: to find a
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profile �x ∈ SN satisfying

fi
(
(�kz)i, (�k

�x)–i
)

≤ fi
(
(�k

�x)i, (�k
�x)–i

)
, for every i ∈ N and z ∈ SN , for k = 0, 1, 2, . . . . (22)

Such a profile �x ∈ SN is called an infinitely split Nash equilibrium. The set of all infinitely
split Nash equilibriums of G(N , SN , f , Ak)∞k=0 is denoted by S(G(N , SN , f , Ak)∞k=0).

Proposition 1 Every infinitely split Nash equilibrium of an n-person repeated game is a
Nash equilibrium of this repeated game.

Proof Suppose that, for every i ∈ N , for k = 0, 1, 2, . . . , the following inequality holds:

fi
(
(�kz)i, (�k

�x)–i
) ≤ fi

(
(�k

�x)i, (�k
�x)–i

)
, for all z ∈ SN .

Since 0 < λ < 1, it implies

Hi(z,�x) =
∞∑

k=0

λkfi
(
(�kz)i, (�k

�x)–i
)

≤
∞∑

k=0

ρkfi
(
(�k

�x)i, (�k
�x)–i

)
= Hi(

�x,�x).

It completes the proof of this proposition. �

Similar to (13) for the definition of the mapping π , regarding G(N , SN , f , Ak)∞k=0, we need
to define a mapping ψ : SN → 2SN , for x ∈ SN , by

ψ(x) =
{

t ∈ SN : fi
(
(�kz)i, (�kx)–i

) ≤ fi
(
(�kt)i, (�kx)–i

)
,

for all i ∈ N , zi ∈ Si, and k = 0, 1, . . .
}

.

ψ can be rewritten, for x ∈ SN , as

ψ(x) =
{

t ∈ SN : F(�kz,�kx) ≤n F(�kt,�kx),

for k = 0, 1, 2, . . . and for all z ∈ SN
}

. (23)

Theorem 2 Let G(N , SN , f , Ak)∞k=0 be an n-person repeated game. Suppose that, for ev-
ery i ∈ N , (Si,�i) is a nonempty chain-complete poset. Let (SN ,�) be the product poset of
(Si,�i)’s equipped with the component-wise partial order �. Suppose that the following
conditions are satisfied:

(a) For every i ∈ N , fi is order-positive from (Si,�i) × (S–i,�–i) to (R,≥).
(b) For every x ∈ SN , ψ(x) is a nonempty universally inductive subset of SN .
(c) For every k = 1, 2, . . . , Ak : SN → SN is an �-increasing operator.
(d) There are elements x′ ∈ SN and u′ ∈ ψ(x′) satisfying x′ � u′.
Then the repeated game G(N , SN , f , Ak)∞k=0 has an infinitely split Nash equilibrium. More-

over
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(i) (S(G(N , SN , f , Ak)∞k=0),�) is a nonempty inductive poset;
(ii) (S(G(N , SN , f , Ak)∞k=0) ∩ [x′),�) is a nonempty inductive poset.

Proof The proof of this theorem is similar to the proof of Theorem 1. As a product space of
chain-complete posets (Si,�i)’s, the profile set (SN ,�) is also a nonempty chain-complete
poset, where � is the component-wise partial orders �i’s. By using (23), we define a set-
valued mapping � : SN → 2SN , for x ∈ SN , by

�(x) = ψ(x) =
{

t ∈ SN : F(�kz,�kx) ≤n F(�kt,�kx),

for k = 0, 1, 2, . . . and for all z ∈ SN
}

. (24)

From (3) and (24), �(x) can be rewritten as

�(x) = ψ(x)

=
{

t ∈ SN : fi
(
�kz)i, (�kx)–i

) ≤ fi
(
(�kt)i, (�kx)–i

)
,

for every i ∈ N , all zi ∈ Si, all k = 0, 1, . . .
}

.

From condition (b) in this theorem, the mapping � : SN → 2SN \{∅} is a well-defined
set-valued mapping with universally inductive values in SN . Next we show that � is �-
increasing upward. From condition (a), for every i ∈ N , fi is order-positive from (Si,�i) ×
(S–i,�–i) to (R,≥). From condition (c), it implies that, for every k = 0, 1, 2, . . .�k : SN → SN

is �-increasing. Then, for arbitrary x, y ∈ SN with x � y, similarly to (15) and (16), we can
show that

F(�kz,�kx) ≤n F(�kt,�kx) implies

F(�kz,�ky) ≤n F(�kt,�ky�), for z, t ∈ SN , k = 0, 1, . . . .
(25)

Then (25) implies that if x � y, then �(x) ⊆ �(y). Hence � is �-increasing upward. The
elements x′ ∈ SN and u′ ∈ ψ(x′) given in condition (d) in this theorem implies that u′ ∈
�(x′) with x′ � u′. So � satisfies all conditions of Fixed Point Theorem A. The rest of the
proof is the same as the proof of Theorem 1. �

Similar to Corollary 1, as an application of Theorem 2 to partially ordered Banach
spaces, we have

Corollary 2 Let G(N , SN , f , Ak)∞k=0 be an n-person repeated game. Suppose that, for ev-
ery i ∈ N , Si is a nonempty compact subset of a partially ordered Banach space (Bi, �i).
Let (BN ,�) be the product partially ordered Banach space of (Bi,�i)’s, where � is the
component-wise partial order of �i’s. Suppose that the following conditions are satisfied:

(a) For every i ∈ N , fi is order-positive from (Si,�i) × (S–i,�–i) to (R,≥);
(b) For every x ∈ SN , ψ(x) is a nonempty closed subset of SN ;
(c) For every k = 1, 2, . . . , Ak : SN → SN is an �-increasing operator;
(d) There are elements x′ ∈ SN and u′ ∈ ψ(x′) satisfying x′ � u′.
Then the repeated game G(N , SN , f , Ak)∞k=0 has an infinitely split Nash equilibrium. More-

over, S(G(N , SN , f , Ak)∞k=0) has the properties (i) and (ii) given in Theorem 2.
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By using Proposition 1, as applications of Theorem 2, or in Corollary 2, we obtain the
following existence results about Nash equilibrium of n-person repeated games.

Corollary 3 Let G(N , SN , f , Ak)∞k=0 be an n-person repeated game as given in Theorem 2 (or
in Corollary 2). If conditions (a)–(d) listed in Theorem 2 (or in Corollary 2) are satisfied,
then this repeated game has a Nash equilibrium.

Remark 2 Theorems 1, 2 and Corollaries 1, 2, 3 provide some conditions for the existence
of infinitely split Nash equilibrium or Nash equilibrium in repeated games. Notice that
these conditions are just necessary conditions and are not sufficient conditions. Hence, if
the conditions of these existence results do not hold for some repeated games, there still
may exist an infinitely split Nash equilibrium. It only means that it cannot be ensured that
there is one, if these conditions are not satisfied.

4 Applications to repeated extended Bertrant duopoly model of price
competition

In [4], the present author generalized the Bertrant duopoly model of price competition
with two firms from the same price model (see [6]) to the model with possibly different
prices. Then the dual extended Bertrant model is introduced and an existence theorem
of split Nash equilibrium for the Markov dual extended Bertrant duopoly model of price
competition is proved in [4]. We review this duopoly model below.

The extended Bertrant duopoly model of price competition is a model of oligopolistic
competition that deals with two profit-maximizing firms, named by 1 and 2, in a market.
In this model, it is assumed that the two firms have constant returns to scale technologies
with costs c1 > 0 and c2 > 0, per unit produced, respectively, where the costs c1 and c2 are
possibly different. Without loss of the generality, we assume

c1 ≤ c2. (26)

The inequality (26) means that the qualities of the products by these two firms may be
different. More precisely, the quality of the products in firm 1 may not be as good as the
quality of the products in firm 2.

Let pj be the price of the products by firm j, for j = 1, 2. Let δ(p1, p2) be the demand
function in this duopoly market. Let δj(p1, p2) be the sale function for firm j, for j = 1, 2.
f and δj are assumed to be continuous functions of two variables and strictly decreasing
with respect to every given variable. Suppose that there are positive numbers p̄j, for j = 1, 2,
such that, for all pk

δj(pj, pk) ≥ 0, for all pj ∈ [0, p̄j) and δj(pj, pk) = 0, for all pj ≥ p̄j. (27)

Suppose that the socially optimal (competitive) output level in this market is strictly
positive and finite for every firm

0 < δ(c1, c2) < ∞.
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For given prices p1, p2, set by firms 1 and 2, respectively, the market is assumed to be clear.
That is,

δ(p1, p2) = δ1(p1, p2) + δ2(p1, p2).

Let λ = c1/c2, that defines the ratio of the qualities of the products by firm 1 to firm 2. From
the assumption (17), we have λ ∈ (0, 1]. Considered as a noncooperative strategic game,
the competition takes place as follows: The two firms simultaneously name their prices
p1, p2, respectively. The sales δ1(p1, p2) and δ2(p1, p2) are then satisfied

δ1(p1, p2)
δ(p1, p2)

=

⎧
⎪⎪⎨

⎪⎪⎩

0, if p1 > λp2,
c1

c1+c2
, if p1 = λp2,

1, if p1 < λp2,

(28)

and

δ2(p1, p2)
δ(p1, p2)

=

⎧
⎪⎪⎨

⎪⎪⎩

1, if p1 > λp2,
c2

c1+c2
, if p1 = λp2,

0, if p1 < λp2.

(29)

We assume that the firms produce to order and so they incur production costs only for
an output level equal to their actual sales. Therefore, for given prices p1, p2, the firm j has
profits

uj(p1, p2) = (pj – cj)δj(p1, p2), for j = 1, 2. (30)

In [4], an existence theorem for Nash equilibrium of the extended Bertrant duopoly model
is proved. We recalled it below for easy reference.

Theorem 6.1 in [4] In the extended Bertrant duopoly model, there is a unique Nash equi-
librium (p̂1, p̂2). In this equilibrium, both firms set their prices equal to their costs, respec-
tively: p̂1 = c1, p̂2 = c2.

This extended Bertrant duopoly model of price competition with two firms is a 2-person
static game. It is denoted by G(N , SN , u), where N = {1, 2}, Sj ∈ [0, p̄j], u = (u1, u2), and uj is
defined by (30), for j = 1, 2, respectively.

For every natural number k, after the two firms repeated play the game k times and, for
each time, the game is played as a static 2-person simultaneous-move game and before
they name their prices to play again, every firm always considers the reaction of its com-
petitor to its strategy (price) applied in the previous time. Suppose that when this game
is played in the kth time, the two firms names their prices as pk–1

j , for j = 1, 2, respec-
tively. To optimize their utilities, for example, firm 1 could try to increase its profits by
increasing the price from pk–1

1 to pk
1 (never excess pk–1

2 ), even though decreasing its sales.
Meanwhile, firm 2 could try to increase its profits by decreasing the price from pk–1

2 to pk
2

(never lower than pk–1
1 ) for increasing its sales. Suppose that such performance is defined

by a linear transformation Ak from (pk–1
1 , pk–1

2 ) to (pk
1, pk

2). Here we assume p0
1 = p1, and
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p0
2 = p2, which are the prices set by the two firms in the very first time. So, for k = 1, 2, . . . ,

there is a 2 × 2 matrix Mk :

Mk =

(
αk 1 – βk

1 – αk βk

)

, (31)

where 0 ≤ αk , βk ≤ 1, such that

(
pk

1, pk
2
)

= Ak
((

pk–1
1 , pk–1

2
))

=

(
αk 1 – βk

1 – αk βk

)
(
pk–1

1 , pk–1
2

)
. (32)

It implies

0 ≤ pk–1
1 ≤ pk

1 and 0 ≤ pk
2 ≤ pk–1

2 , for k = 1, 2, . . . . (33)

Hence the process of repeatedly playing the static game G(N , SN , u) with the sequence of
linear transformations {Ak}∞k=0 defined by (32) is a dynamic game, that is, the repeated ex-
tended Bertrant duopoly model of price competition. It is a special repeated game denoted
by G(N , SN , u, Ak)∞k=0.

From Definition 4, �p = (�p1, �p1) ∈ SN is an infinitely split Nash equilibriums of the re-
peated game G(N , SN , u, Ak)∞k=0, if it satisfies

ui
(
(�kp)i, (�k

�p)–i
)

≤ ui
(
(�k

�p)i, (�k
�p)–i

)
, for every i = 1, 2, all p ∈ SN , and k = 0, 1, 2, . . . . (34)

Theorem 3 For the infinitely split Nash equilibrium problem of the repeated extended
Bertrant duopoly model G(N , SN , u, Ak)∞k=0, we have

(i) If c1 = c2 = c, then, for any sequence of linear transformations {Ak}∞k=0 defined in (32),
�p = (�p1, �p1) = (c, c) is the unique infinitely split Nash equilibrium;

(ii) If c1 < c2, then there exists a unique infinitely split Nash equilibrium
�p = (�p1, �p1) = (c1, c2), only if all linear transformations Ak ’s equal to the identity, that
is,

Ak =

(
1 0
0 1

)

, for k = 0, 1, 2, . . . . (35)

Proof Part (i) is an immediate consequence of Theorem 6.1 in [4]. To prove part (ii), notice
that every infinitely split Nash equilibrium of the repeated game G(N , SN , u, Ak)∞k=0 is a split
Nash equilibrium of the dual game G(N , SN , u, A1)2 studied in [4]. From Theorem 6.2 in
[4], (�p1, �p1) = (c1, c2) is the unique split Nash equilibrium of the dual game G(N , SN , u, A1)2,
only if

A1 =

(
1 0
0 1

)

.
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It implies �2 = A2. Applying Theorem 6.1 in [4] again, it follows that (�p1, �p1) = (c1, c2) is
the unique split Nash equilibrium of the triple game G(N , SN , u, I, A2)3, only if

A2 =

(
1 0
0 1

)

.

Then (35) is proved by induction. �

Since δ1 and δ2 are continuous functions, from the condition (27) and the definition (30)
of the utility functions, it implies that there exists M > 0, such that

(M) |ui(p)| ≤ M, for i = 1, 2 and for all p ∈ SN .
Let ρ be the discount factor of this dynamic game. By Proposition 1, as a consequence

of Theorem 3, we have:

Corollary 4 In the repeated extended Bertrant duopoly model G(N , SN , u, Ak)∞k=0, there is a
Nash equilibrium (�p1, �p1) = (c1, c2) at which, every firm has zero discounted value of utility,
that is,

hi(
�p1, �p1) =

∞∑

k=0

ρkui
(
�k(�p1, �p1)

)
=

∞∑

k=0

ρkui(c1, c2) = 0, for i = 1, 2.

5 Conclusions and open problems
Nash equilibrium problems in static games has been extensively studied by many authors
and the equilibrium theory has become an important branch in both of mathematics and
economic theory. The concept of split Nash equilibrium problems was introduced for
studying two related static games or a static game repeated twice.

In the real world, a strategic game may be infinitely repeated to play that arises a repeated
game of dynamic model. For every natural number k, after the players repeated the static
game k times and before they play this static game again, every player always considers
the reaction of its competitors to its strategy applied in the previous time. The players
may make arrangements of strategies to use in the next play to optimize their utilities.
If the profile of the arranged strategies is represented by a mapping on the profile set, it
arises the infinitely split Nash equilibrium problems for repeated games.

In this paper, we prove the solvability of some infinitely split Nash equilibrium problems
for repeated games by applying a fixed point theorem on posets, in which the considered
utility functions are not required to have any continuity conditions.

To conclude this paper, we list the following problems below for consideration:
1. Prove the existence of infinitely split Nash equilibrium for repeated games by

applying fixed point theorems on topological vector spaces, in which the considered
utility functions may be required to satisfy some continuity conditions.

2. Construct some iterated algorithms to approximate infinitely split Nash equilibriums
for repeated games.

3. Introduce the concept of infinitely split variational inequality problems and prove the
solvability of some infinitely split variational inequality problems.

4. Construct some iterated algorithms to approximate the solutions to some infinitely
split variational inequality problems.
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5. Similarly, to Theorem 3 in this paper about the repeated extended Bertrant duopoly
model, prove the existence of infinitely split Nash equilibrium for Cournot model of
repeated pricing games.

6. Extend the competitive equilibrium growth models (see [7]) to dynamic model of
repeated games and prove the existence of infinitely split equilibrium. That may be
considered as some new methods in recursive macroeconomic theory.
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