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Abstract
In this paper, we discuss the existence and multiplicity of positive solutions for a
system of fractional differential equations with boundary condition and advanced
arguments. The existence result is proved via Leray–Schauder’s fixed point theorem
type in a vector Banach space. Further, by using a new fixed point theorem in order
Banach space, we study the multiplicity of positive solutions. Finally, some examples
are given to illustrate our results.
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1 Introduction
Fractional calculus and differential equations have now proved to be important tools mod-
eling many real world phenomena like chemistry and physics [11, 22, 23, 25]). For the
description of hereditary properties of fractional calculus, see [20, 24, 32, 37] and the ref-
erences therein.

Recently, there have been some papers dealing with the existence and multiplicity of
solution (or positive solution) of nonlinear initial fractional differential equation by the
use of techniques of nonlinear analysis, see [2–7, 9, 33, 35, 38].

For example, Chai obtained in [10] the existence of at least one nonnegative solution and
two positive solutions by using fixed point theorem on cone for the following problem:

⎧
⎨

⎩

(ϕp(u′(t))′ + a(t)f (u(t)) = 0, 0 < t < 1,

u(0) = u′(1) = 0.
(1.1)

Su et al. [31] studied the existence of one and two positive solutions by using the fixed
point index theory of the following boundary values problems:

⎧
⎨

⎩

(ϕp(u′(t))′ + a(t)f (u(t)) = 0, 0 < t < 1,

αϕp(u(0)) – βϕp(u′(ξ )) = 0, γ ϕp(u(1)) + δϕp(u′(η)) = 0.
(1.2)
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Tang et al. [34] studied the existence of positive solutions of fractional differential equation
with p-Laplacian of the following type (1.3) by using the coincidence degree theory.

⎧
⎨

⎩

Dα
0+ (φ(Dβ

0+ u(t)))(t) = f (t, u(t), Dβ

0+ u(t)), 0 < t < 1,

Dα
0+ u(0) = 0, Dβ

0+ u(1) = γ Dβ

0+ u(1).
(1.3)

In this work, we study the existence and multiplicity of positive solutions of the following
problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(ϕp(Dα
0+ u(t)))′ + a1(t)f (u(θ1(t)), v(θ2(t))) = 0, 0 < t < 1,

(ϕp̃(Dα
0+ v(t)))′ + a2(t)g(u(θ1(t)), v(θ2(t))) = 0, 0 < t < 1,

Dα
0+ u(0) = u(0) = u′(0) = 0, Dβ

0+ u(1) = γ Dβ

0+ u(η),

Dα
0+ v(0) = v(0) = v′(0) = 0, Dβ

0+ v(1) = γ Dβ

0+ v(η),

(1.4)

where η ∈ (0, 1),γ ∈ (0, 1
ηα–β–1 ), Dα

0+ , Dβ

0+ are the standard Riemann–Liouville fractional
derivatives with α ∈ (2, 3),β ∈ (1, 2) such that α ≥ β + 1, p-Laplacian operator is defined
as ϕp(s) = |s|p–2s, p > 1, and the functions f , g ∈ C(R2,R).

In recent years, many authors studied the existence of solutions for systems of difference
and differential equations with and without fractional derivative by using the vector ver-
sion of the fixed point theorem (see [1, 8, 13, 15–19, 21, 26–28], the monograph of Graef
et al. [12], and the references therein).

For establishing the existence and multiplicity of positive solutions of problem (1.4), let
us list the following assumptions:

(H1) ai ∈ L1[0, 1] is nonnegative and ai(t) �≡ 0 on any subinterval of [0, 1] for i = 1, 2.
(H2) The advanced argument θ ∈ C((0, 1), (0, 1]) and 0 ≤ θ (t) ≤ 1,∀t ∈ (0, 1).
This work is organized as follows: In Sect. 2, we introduce all the background material

used in this paper such as fractional calculus analysis and some results from fixed point
theory. In Sects. 3, 4, the existence and multiplicity results of solutions for a system of
fractional p-Laplace differential equations (1.4) are discussed by using the fixed point the-
orems in the generalized Banach space. We end the paper with two examples to illustrate
our main results.

2 Preliminaries
In this section, we introduce some preliminary facts which are used throughout this paper.

Definition 2.1 ([14]) Let X be a real Banach space. A nonempty closed convex set P ⊂ X
is called cone if

(1) x ∈ P,λ ≥ 0, then λx ∈ P;
(2) x ∈ P, –x ∈ P, then x = 0.

If x, y ∈ R
n with x = (x1, . . . , xn) and y = (y1, . . . , yn), then by x ≤ y we mean xi ≤ yi for

all i = 1, . . . , n. Also we set |x| = (|x1|, . . . , |xn|), max(x, y) = (max(x1, y1), . . . , max(xn, yn)), and
R

n
+ = {x ∈R

n : xi > 0}. If c ∈R, then x ≤ c means xi ≤ c for each i = 1, . . . , n.

Definition 2.2 Let X be a nonempty set, and consider the space R
m
+ endowed with the

usual component-wise partial order. The mapping d : X × X →R
m
+ , which satisfies all the
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usual axioms of the metric, is called a generalized metric in Perov’s sense and (X, d) is
called a generalized metric space.

Let (X, d) be a generalized metric space in Perov’s sense. For r := (r1, . . . , rm) ∈ R
m
+ , we

will denote by

B(x0, r) =
{

x ∈ X : d(x0, x) < r
}

the open ball centered in x0 with radius r, and by

B(x0, r) =
{

x ∈ X : d(x0, x) ≤ r
}

the closed ball centered at x0 with radius r.

Theorem 2.1 ([12, 36]) Let X be a generalized Banach space, and let N : X → X be a
completely continuous operator. Then either

(i) the equation N(x) = x has at least one solution, or
(ii) the set M = {x ∈ X|μN(x) = x,μ ∈ (0, 1)} is unbounded.

Theorem 2.2 ([30]) Let (X,‖ · ‖) be a normed space, P1, P2 ⊂ X be two cones; P :=
P1 × P2; r, R ∈ R

2
+, Pr,R := {u ∈ Pi : ri ≤ ‖ui‖ ≤ Ri} with 0 < r < R; and let N : Pr,R → P, N =

(N1, N2) be a compact map. Assume that, for each i ∈ {1, 2}, one of the following conditions
is satisfied in Pr,R:

(1) Ni(ui) ⊀ ui if ‖ui‖ = ri, and Ni(ui) � ui if ‖ui‖ = Ri;
(2) Ni(ui) � ui if ‖ui‖ = ri, and Ni(ui) ⊀ ui if ‖ui‖ = Ri.

Then N has a fixed point u in P with ri ≤ ‖ui‖ ≤ Ri for i ∈ {1, 2}, where �, namely u � v if
and only if v – u ∈ P. We shall say that u ≺ v if v – u ∈ P \ {0}.

Remark 2.1 ([30]) In Theorem (2.2) four cases are possible for u ∈ pr,R:
(c1) N1(u) ⊀ u1 if ‖u1‖ = r1, and N1(u) � u1 if ‖u1‖ = R1, N2(u) ⊀ u2 if ‖u2‖ = r2, and

N2(u) � u2 if ‖u2‖ = R2;
(c2) N1(u) ⊀ u1 if ‖u1‖ = r1, and N1(u) � u1 if ‖u1‖ = R1, N2(u) � u2 if ‖u2‖ = r2, and

N2(u) ⊀ u2 if ‖u2‖ = R2;
(c3) N1(u) � u1 if ‖u1‖ = r1, and N1(u) ⊀ u1 if ‖u1‖ = R1, N2(u) ⊀ u2 if ‖u2‖ = r2, and

N2(u) � u2 if ‖u2‖ = R2;
(c4) N1(u) � u1 if ‖u1‖ = r1, and N1(u) ⊀ u1 if ‖u1‖ = R1, N2(u) � u2 if ‖u2‖ = r2, and

N2(u) ⊀ u2 if ‖u2‖ = R2.

Theorem 2.3 ([29]) Let (X,‖ · ‖) be a Banach space, P1, P2 ⊂ X be two cones, and P :=
P1 × P2 be the corresponding cone of X2 = X × X, and let αi,βi > 0. We denote

Uαi =
{

u ∈ Pi : ‖u‖ < αi
}

and Vβi =
{

u ∈ Pi : ‖u‖ < βi
}

,

with αi �= βi, ri = min{αi,βi} and Ri = max{αi,βi} for i = 1, 2. Assume that N : W1 × W2 →
P, N = (N1, N2) is a compact map (where Wi = Uαi ∪ Vβi for i = 1, 2) and there exist hi ∈
Pi \ {0}, i = 1, 2, such that for each i ∈ {1, 2} the following condition is satisfied in W1 × W2:

λui �= Niu for ‖ui‖ = αi and λ ≥ 1; (2.1)
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ui �= Niu + μhi for ‖ui‖ = βi and μ ≥ 0. (2.2)

Then
(1) N has at least one fixed point u = (u1, u2) in P such that ui ∈ Uαi \ Vβi for i = 1, 2 if

αi > βi for i = 1, 2;
(2) N has at least two fixed points located in (Uα1 \ Vβ1 ) × Uα2 and

(Uα1 \ Vβ1 ) × (Vβ2 \ Uα2 ) if β1 < α1 and β2 > α2;
(3) N has at least two fixed points located in Uα1 × (Uα2 \ Vβ2 ) and

(Vβ1 \ Uα1 ) × (Uα2 \ Vβ2 ) if β1 > α1 and β2 < α2;
(4) N has at least four (three nontrivial) fixed points in

Uα1 × Uα2 , Uα1 × (Vβ2 \ Uα2 ), (Vβ1 \ Uα1 ) × Uα2 , and (Vβ1 \ Uα1 ) × (Vβ2 \ Uα2 ) if
αi < βi for i = 1, 2.

Remark 2.2 ([29]) Our previous results can be easily generalized to systems of n operator
equations.

Definition 2.3 ([7]) The fractional integral of Riemann–Liouville of the function h ∈
L1((0,∞),R) of order α > 0 is defined by

Iα
0+ h(t) =

1
�(α)

∫ t

0
(t – s)α–1h(s) ds,

where �(α) is the Euler gamma function defined by

�(α) =
∫ ∞

0
tα–1e–t dt.

Definition 2.4 For a function h ∈ ACn(J), the Riemann–Liouville fractional order deriva-
tive of order α > 0 of h is defined by

Dα
0+ h(t) =

1
�(n – α)

dn

dtn

∫ t

0

h(s)
(t – s)α–n+1 ds,

where n = [α] + 1 and [α] denotes the integer part of the real number α.

Remark 2.3 ([7])
(1) If λ > –1

Dα
0+ tλ =

�(λ + 1)
�(λ – α + 1

tλ–α ,

and Dα
0+ tα–m = 0, m = 1, 2, . . . , n, where n = [α] + 1.

(2) Dα
0+ Iα

0+ u(t) = u(t) for all u ∈ C(0, 1) ∩ L1(0, 1).
(3) If u ∈ L1(0, 1),α > β > 0, then

Dβ

0+ Iα
0+ u(t) = Iα–β

0+ u(t).

Lemma 2.1 ([7]) If we assume that u ∈ C(0, 1) ∩ L1(0, 1), then the fractional differential
equation

Dα
0+ u(t) = 0, α > 0
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has u(t) = C1tα–1 + C2tα–2 + · · · + Cntα–n, Ci ∈ R, i = 1, 2, . . . , n, as a unique solution, where
n = [α] + 1.

Lemma 2.2 ([7]) Suppose that u ∈ C(0, 1) ∩ L1(0, 1) is such that Dα
0+ u ∈ C(0, 1) ∩ L1(0, 1).

Then

Iα
0+ Dα

0+ u(t) = u(t) + C1tα–1 + C2tα–2 + · · · + Cntα–n

for some Ci ∈R, i = 1, 2, . . . , n, where n = [α] + 1.

Lemma 2.3 ([10]) If x, y ≥ 0,γ > 0, then

(x + y)γ ≤ max
{

2γ –1, 1
}(

xγ + yγ
)
.

Lemma 2.4 ([10]) Let c > 0,γ > 0. For any x, y ∈ [0, c], we have that
(1) if γ > 1, then |xγ – yγ | ≤ γ cγ –1|x – y|;
(2) if 0 < γ ≤ 1, then |xγ – yγ | ≤ |x – y|γ .

3 Existence result
Denote by C([0, 1]) the Banach space of all continuous functions from [0, 1] into R with
the norm

‖u‖ = max
{∣
∣u(t)

∣
∣ : t ∈ [0, 1]

}
.

Define the cone P in C([0, 1]2) as P = {u ∈ C([0, 1]) : u(t) ≥ 0, t ∈ [0, 1]}. Let q > 1 and q̃ > 1
satisfy the relation 1

p + 1
q = 1, 1

p̃ + 1
q̃ = 1, where p, p̃ are given by (1.4).

To prove the existence of solutions to (1.4), we need the following auxiliary lemma.

Lemma 3.1 Given h1, h2 ∈ C[0, 1],η ∈ (0, 1),γ ∈ (0, 1
ηα–β–1 ), and α ≥ β + 1, the unique so-

lution of C boundary value problem for a coupled system

(
ϕp

(
Dα

0+ u(t)
))′ + h1(t) = 0, 0 < t < 1, (3.1)

(
ϕp̃

(
Dα

0+ v(t)
))′ + h2(t) = 0, 0 < t < 1, (3.2)

Dα
0+ u(0) = u(0) = u′(0) = 0, Dβ

0+ u(1) = γ Dβ

0+ u(η), (3.3)

Dα
0+ v(0) = v(0) = v′(0) = 0, Dβ

0+ v(1) = γ Dβ

0+ v(η), (3.4)

is

u(t) =
∫ 1

0
G1(t, s)ϕq

(∫ s

0
h1(τ ) dτ

)

ds

+
γ tα–1

1 – γ ηα–β–1

∫ 1

0
G2(η, s)ϕq

(∫ s

0
h1(τ ) dτ

)

ds (3.5)
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and

v(t) =
∫ 1

0
G1(t, s)ϕq̃

(∫ s

0
h2(τ ) dτ

)

ds

+
γ tα–1

1 – γ ηα–β–1

∫ 1

0
G2(η, s)ϕq̃

(∫ s

0
h2(τ ) dτ

)

ds, (3.6)

where

G1(t, s) =

⎧
⎨

⎩

tα–1(1–s)α–β–1–(t–s)α–1

�(α) , 0 ≤ s ≤ t ≤ 1,
tα–1(1–s)α–β–1

�(α) , 0 ≤ t ≤ s ≤ 1,

G2(η, s) =

⎧
⎨

⎩

[η(1–s)]α–β–1–(η–s)α–β–1

�(α) , 0 ≤ s ≤ η ≤ 1,
[η(1–s)]α–β–1

�(α) , 0 ≤ η ≤ s ≤ 1.

Proof Integrating equation (3.1) from 0 to t, we have

ϕp
(
Dα

0+ u(t)
)

– ϕp
(
Dα

0+ u(0)
)

=
∫ t

0
h1(s) ds

and so,

Dα
0+ u(t) = –ϕq

(∫ t

0
h1(s) ds

)

.

From Lemma 2.2,

u(t) = –Iα
0+ϕq

(∫ t

0
h1(s) ds

)

+ Atα–1 + Btα–2 + Ctα–3

= –
1

�(α)

∫ t

0
(t – s)α–1ϕq

(∫ s

0
h1(τ ) dτ

)

ds + Atα–1 + Btα–2 + Ctα–3.

From (3.3), B = C = 0, and so

u(t) = –Iα
0+ϕq

(∫ t

0
h1(s) ds

)

+ Atα–1. (3.7)

Now, from Remark 2.3

Dβ

0+ u(t) = –Iα–β

0+ ϕq

(∫ t

0
h1(s) ds

)

+ A
�(α)

�(α – β)
tα–β–1

= –
1

�(α – β)

∫ t

0
(t – s)α–β–1ϕq

(∫ s

0
h1(τ ) dτ

)

ds + A
�(α)

�(α – β)
tα–β–1.

Therefore

Dβ

0+ u(1) = –
1

�(α – β)

∫ 1

0
(1 – s)α–β–1ϕq

(∫ s

0
h1(τ ) dτ

)

ds + A
�(α)

�(α – β)
,

γ Dβ

0+ u(η) = –
γ

�(α – β)

∫ η

0
(η – s)α–β–1ϕq

(∫ s

0
h1(τ ) dτ

)

ds + A
�(α)γ

�(α – β)
tα–β–1ηα–β–1.
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By boundary condition (3.3), we have

A =
1

1 – γ ηα–β–1

∫ 1

0

(1 – s)α–β–1

�(α)
ϕq

(∫ s

0
h1(τ ) dτ

)

ds

–
γ

1 – γ ηα–β–1

∫ η

0

(η – s)α–β–1

�(α)
ϕq

(∫ s

0
h1(τ ) dτ

)

ds,

and replacing in (3.7), we obtain

u(t) = –
1

�(α)

∫ t

0
(t – s)α–1ϕq

(∫ s

0
h1(τ ) dτ

)

ds

+
tα–1

1 – γ ηα–β–1

∫ 1

0

(1 – s)α–β–1

�(α)
ϕq

(∫ s

0
h1(τ ) dτ

)

ds

+
γ tα–1

1 – γ ηα–β–1

∫ 1

0

(η – s)α–β–1

�(α)
ϕq

(∫ s

0
h1(τ ) dτ

)

ds.

Splitting the second integral in two parts of the form

tα–1 +
k

1 – γ ηα–β–1 =
tα–1

1 – γ ηα–β–1 ,

we have k = γ ηα–β–1tα–1, and thus

u(t) = –
1

�(α)

∫ t

0
(t – s)α–1ϕq

(∫ s

0
h1(τ ) dτ

)

ds

+ tα–1
∫ 1

0

(1 – s)α–β–1

�(α)
ϕq

(∫ s

0
h1(τ ) dτ

)

ds

+
γ ηα–β–1tα–1

1 – γ ηα–β–1

∫ 1

0

(1 – s)α–β–1

�(α)
ϕq

(∫ s

0
h1(τ ) dτ

)

ds

–
γ tα–1

1 – γ ηα–β–1

∫ η

0

(η – s)α–β–1

�(α)
ϕq

(∫ s

0
h1(τ ) dτ

)

ds

=
∫ t

0

tα–1(1 – s)α–β–1 – (t – s)α–1

�(α)
ϕq

(∫ s

0
h1(τ ) dτ

)

ds

+
∫ 1

t

tα–1(1 – s)α–β–1

�(α)
ϕq

(∫ s

0
h1(τ ) dτ

)

ds

+
γ tα–1

1 – γ ηα–β–1

∫ η

0

[η(1 – s)]α–β–1 – (η – s)α–β–1

�(α)
× ϕq

(∫ s

0
h1(τ ) dτ

)

ds

+
γ tα–1

1 – γ ηα–β–1

∫ η

0

[η(1 – s)]α–β–1

�(α)
× ϕq

(∫ s

0
h1(τ ) dτ

)

ds

=
∫ 1

0
G1(t, s)ϕq

(∫ s

0
h1(τ ) dτ

)

ds +
γ tα–1

1 – γ ηα–β–1

×
∫ 1

0
G2(η, s)ϕq

(∫ s

0
h1(τ ) dτ

)

ds.

This completes the proof. �
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Lemma 3.2 ([35]) Let ρ ∈ (0, 1) be fixed. The kernel G1(t, s) satisfies the following proper-
ties:

(1) G1(t, s) ∈ C([0, 1] × [0, 1]) and G1(t, s) > 0 for all s, t ∈ (0, 1);
(2) G1(t, s) ≤ G1(1, s) for all s ∈ (0, 1);
(3) minρ≤t≤1 G1(t, s) ≥ ρα–1G1(1, s) for all s ∈ [0, 1].

We are now ready to present our main result. In this section we give an existence result
based on the nonlinear alternative of Leray–Schauder type.

Theorem 3.1 Assume (H1)–(H2) and that the following condition holds:
(H3) There exist functions p, q, h, p̆, q̆, and h̄ ∈ L1([0, 1],R+) and constants α1,α2,α3, and

α4 ∈ [0, 1) such that

∣
∣f (u, v)

∣
∣ ≤ p(t)|u|α1 + q(t)|v|α2 + h(t) for each t ∈ [0, 1] and u, v ∈R

and

∣
∣g(u, v)

∣
∣ ≤ p̆(t)|u|α3 + q̆(t)|v|α4 + h̆(t) for each t ∈ [0, 1] and u, v ∈R.

If α1p,α2p,α3q, and α4q ∈ [0, 1), then system (1.4) has at least one solution.

Proof Let N be the operator

N : C(0, 1) × C(0, 1) → C(0, 1) × C(0, 1)

defined by

N(u, v) =
(
N1(u, v), N2(u, v)

)
,

where

N1(u, v)(t)

=
∫ 1

0
G1(t, s)ϕq

(∫ s

0
a1(τ )f

(
u
(
θ1(τ )

)
, v

(
θ2(τ )

))
dτ

)

ds

+
γ tα–1

1 – γ ηα–β–1

∫ 1

0
G2(η, s)ϕq

(∫ s

0
a1(τ )f

(
u
(
θ1(τ )

)
, v

(
θ2(τ )

))
dτ

)

ds, (3.8)

and

N2(u, v) =
∫ 1

0
G1(t, s)ϕq̃

(∫ s

0
a2(τ )g

(
u
(
θ1(τ )

)
, v

(
θ2(τ )

))
dτ

)

ds

+
γ tα–1

1 – γ ηα–β–1

∫ 1

0
G2(η, s)ϕq̃

(∫ s

0
a2(τ )g

(
u
(
θ1(τ )

)
, v

(
θ2(τ )

))
dτ

)

ds. (3.9)

We shall use the Leray–Schauder fixed point theorem to prove that N has a fixed point.
The proof will be given in several steps.
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Step 1. To show that N is continuous, let (un, vn) be a sequence such that (un, vn) →
(u, v) ∈ C[0, 1] × C[0, 1] as n → ∞. Then we have

∣
∣N1(un, vn)(t) – N1(u, v)(t)

∣
∣

=
∣
∣
∣
∣

∫ 1

0
G1(t, s)ϕq

(∫ s

0
a1(τ )f

(
un

(
θ1(τ )

)
, vn

(
θ2(τ )

))
dτ

)

ds

+
γ tα–1

1 – γ ηα–β–1

∫ 1

0
G2(η, s)ϕq

(∫ s

0
a1(τ )f

(
un

(
θ1(τ )

)
, vn

(
θ2(τ )

))
dτ

)

ds

–
[∫ 1

0
G1(t, s)ϕq

(∫ s

0
a1(τ )f

(
u
(
θ1(τ )

)
, v

(
θ2(τ )

))
dτ

)

ds

+
∫ 1

0

γ tα–1G2(η, s)
1 – γ ηα–β–1 ϕq

(∫ s

0
a1(τ )f

(
u
(
θ1(τ )

)
, v

(
θ2(τ )

))
dτ

)

ds
]∣
∣
∣
∣.

By Lemma 3.2 and t ∈ [0, 1],

∣
∣N1(un, vn)(t) – N1(u, v)(t)

∣
∣

≤
∫ 1

0
G1(1, s)

(∫ s

0

∣
∣a1(τ )f

(
un

(
θ1(τ )

)
, vn

(
θ2(τ )

))∣
∣q–1

–
∣
∣a1(τ )f

(
u
(
θ1(τ )

)
, v

(
θ2(τ )

))∣
∣q–1 dτ

)

ds

+
γ

1 – γ ηα–β–1

∫ 1

0
G2(η, s)

(∫ s

0

∣
∣a1(τ )f

(
un

(
θ1(τ )

)
, vn

(
θ2(τ )

))
dτ

∣
∣q–1

–
∣
∣a1(τ )f

(
u
(
θ1(τ )

)
, v

(
θ2(τ )

))∣
∣q–1 dτ

)

ds.

On the other hand, since f is a continuous function combined with the fact that

‖un – u‖ → 0, as n → ∞,

then there exists N ≥ 1 such that for all τ ∈ [0, 1] the following estimate

∣
∣f

(
un

(
θ1(τ )

)
, vn

(
θ2(τ )

))
dτ ) – f

(
u
(
θ1(τ )

)
, v

(
θ2(τ )

))∣
∣ < ε,

holds for n ≥ N . By the Lebesgue dominated convergence theorem, we have

∥
∥N1(un, vn) – N1(u, v)

∥
∥ → 0, as n → ∞.

Similarly,

∥
∥N2(un, vn) – N2(u, v)

∥
∥ → 0, as n → ∞.

Consequently, N is continuous.
Step 2. N maps bounded sets into bounded sets in C[0, 1] × C[0, 1], it suffices to show

that for any r > 0 there exists a positive constant vector l = (l1, l2) such that, for each (u, v) ∈
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Br = {(u, v) ∈ C[0, 1] × C[0, 1] : ‖u‖ ≤ r,‖v‖ ≤ r}, we have

∥
∥N(u, v)

∥
∥ ≤ l.

For each t ∈ [0, 1], we have

∣
∣N1(u, v)(t)

∣
∣

≤
∫ 1

0

∣
∣G1(t, s)

∣
∣ϕq

(∫ s

0

∣
∣a1(τ )f

(
u
(
θ1(τ )

)
, v

(
θ2(τ )

))
dτ

∣
∣

)

ds

+
γ tα–1

1 – γ ηα–β–1

∫ 1

0

∣
∣G2(η, s)

∣
∣ϕq

(∫ s

0

∣
∣a1(τ )f

(
u
(
θ1(τ )

)
, v

(
θ2(τ )

))
dτ

∣
∣

)

ds

≤ max
{

2q–1, 1
}
∫ 1

0
G1(1, s)

∫ s

0

∣
∣a1(τ )

∣
∣q–1∣∣p(τ )

∣
∣q–1∣∣u

(
θ1(τ )

)∣
∣α1(q–1)

+
∣
∣a1(τ )

∣
∣q–1∣∣q(τ )

∣
∣q–1∣∣v

(
θ2(τ )

)∣
∣α2(q–1) +

∣
∣a1(τ )

∣
∣q–1∣∣h(τ )

∣
∣q–1 dτ ds

+ max
{

2q–1, 1
} γ tα–1

1 – γ ηα–β–1

∫ 1

0

∣
∣G2(η, s)

∣
∣
∫ s

0

∣
∣a1(τ )

∣
∣q–1∣∣p(τ )

∣
∣q–1∣∣u

(
θ1(τ )

)∣
∣α1(q–1)

+
∣
∣a1(τ )

∣
∣q–1∣∣q(τ )

∣
∣q–1∣∣v

(
θ2(τ )

)∣
∣α2(q–1) +

∣
∣a1(τ )

∣
∣q–1∣∣h(τ )

∣
∣q–1 dτ ds

≤ max
{

2q–1, 1
}(‖u‖α1(q–1)‖a1‖q–1

L1
‖p‖q–1

L1
+ ‖v‖α2(q–1)‖a1‖q–1

L1
‖q‖q–1

L1

+ ‖a1‖q–1
L1

‖h‖q–1
L1

)
∫ 1

0

(1 – s)α–β–1

�(α)
+

γ tα–1

1 – γ ηα–β–1

(‖u‖α1(q–1)‖a1‖q–1
L1

‖p‖q–1
L1

+ ‖v‖α2(q–1)‖a1‖q–1
L1

‖q‖q–1
L1

+ ‖a1‖q–1
L1

‖h‖q–1
L1

)
∫ 1

0

ηα–β–1(1 – s)α–β–1

�(α)

≤ max{2q–1, 1}
(α – β)�(α)

(
rα1(q–1)‖a1‖q–1

L1
‖p‖q–1

L1
+ rα2(q–1)‖a1‖q–1

L1
‖q‖q–1

L1
+ ‖a1‖q–1

L1
‖h‖q–1

L1

)

+
max{2q–1, 1}ηα–β–1γ

(1 – γ ηα–β–1)(α – β)�(α)
(
rα1(q–1)‖a1‖q–1

L1
‖p‖q–1

L1
+ rα2(q–1)‖a1‖q–1

L1
‖q‖q–1

L1

+ ‖a1‖q–1
L1

‖h‖q–1
L1

)
.

Hence

∥
∥N1(u, v)

∥
∥

≤ max{2q–1, 1}
(α – β)�(α)

(
rα1(q–1)‖a1‖q–1

L1
‖p‖q–1

L1
+ rα2(q–1)‖a1‖q–1

L1
‖q‖q–1

L1
+ ‖a1‖q–1

L1
‖h‖q–1

L1

)

+
max{2q–1, 1}ηα–β–1γ

(1 – γ ηα–β–1)(α – β)�(α)
(
rα1(q–1)‖a1‖q–1

L1
‖p‖q–1

L1
+ rα2(q–1)‖a1‖q–1

L1
‖q‖q–1

L1

+ ‖a1‖q–1
L1

‖h‖q–1
L1

)
:= l1.

Similarly, we have

∥
∥N2(u, v)

∥
∥

≤ max{2q̃–1, 1}
(α – β)�(α)

(
rα3(q̃–1)‖a2‖q̃–1

L1
‖p̆‖q̃–1

L1
+ rα4(q̃–1)‖a2‖q̃–1

L1
‖q̆‖q̃–1

L1
+ ‖a2‖q̃–1

L1
‖h̆‖q̃–1

L1

)
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+
max{2q̃–1, 1}ηα–β–1γ

(1 – γ ηα–β–1)(α – β)�(α)
(
rα3(q̃–1)‖a2‖q̃–1

L1
‖p̆‖q̃–1

L1
+ rα4(q̃–1)‖a2‖q̃–1

L1
‖q̆‖q̃–1

L1

+ ‖a2‖q̃–1
L1

‖h̆‖q̃–1
L1

)
:= l2.

Step 3. N maps bounded sets into equicontinuous. Let u ∈ Br be a bounded set as in Step
2, t1, t2 ∈ [0, 1] with t1 < t2, from (3.5) and Lemma 2.3, we have

∣
∣N1(u, v)(t2) – N1(u, v)(t1)

∣
∣

≤
∫ 1

0

∣
∣G1(t2, s) – G1(t1, s)

∣
∣ϕq

(∫ s

0
|a1(τ )f

(
u
(
θ1(τ )

)
, v

(
θ2(τ )

))
dτ

)

|ds

+
γ |t2 – t1|α–1

1 – γ ηα–β–1

∫ 1

0

∣
∣G2(η, s)

∣
∣

× ϕq

(∫ s

0
|a1|(τ )f

(
u
(
θ1(τ )

)
, v

(
θ2(τ )

))
dτ

)

|ds

≤
∫ 1

0

∣
∣G1(t2, s) – G1(t1, s)

∣
∣
∫ s

0
|a1(τ )

[
p(τ )

∣
∣u(θ1

∣
∣α1 +q(τ )

∣
∣v

(
θ2(τ )

)∣
∣α2

+ h(τ ) dτ ds
]|q–1 +

γ |t2 – t1|α–1

1 – γ ηα–β–1

∫ 1

0

∣
∣G2(η, s)

∣
∣

×
∫ s

0

∣
∣a1(τ )

[
p(τ )

∣
∣u(θ1

∣
∣α1 +q(τ )

∣
∣v

(
θ2(τ )

)∣
∣α2 + h(τ ) dτ ds

]∣
∣q–1

≤ max
{

2q–1, 1
}
∫ 1

0

∣
∣G1(t2, s) – G1(t1, s)

∣
∣
∫ s

0

∣
∣a1(τ )

∣
∣q–1∣∣p(τ )

∣
∣q–1

× ∣
∣u

(
θ1(τ )

)∣
∣α1(q–1) +

∣
∣a1(τ )

∣
∣q–1∣∣q(τ )

∣
∣q–1∣∣v

(
θ2(τ )

)∣
∣α2(q–1) +

∣
∣a1(τ )

∣
∣q–1

× ∣
∣h(τ )

∣
∣q–1 dτ ds + max

{
2q–1, 1

}γ |t2 – t1|α–1

1 – γ ηα–β–1

∫ 1

0

∣
∣G2(η, s)

∣
∣

×
∫ s

0

∣
∣a1(τ )

∣
∣q–1∣∣p(τ )

∣
∣q–1u

(
θ1(τ )

)|α1(q–1)

+
∣
∣a1(τ )

∣
∣q–1∣∣q(τ )

∣
∣q–1∣∣v

(
θ2(τ )

)∣
∣α2(q–1) +

∣
∣a1(τ )

∣
∣q–1∣∣h(τ )

∣
∣q–1 dτ ds.

By Lemma 2.4 we obtain

≤ max
{

2q–1, 1
}(

rα1(q–1)‖a1‖q–1
L1

‖p‖q–1
L1

+ rα2(q–1)‖a1‖q–1
L1

‖q‖q–1
L1

+ ‖a1‖q–1
L1

‖h‖q–1
L1

)
∫ 1

0

∣
∣G1(t1, s) – G1(t2, s)

∣
∣ds

+
max{2q–1, 1}γ (α – 1)|t2 – t1|

(1 – γ ηα–β–1)
(
rα1(q–1)‖a1‖q–1

L1
‖p‖q–1

L1

+ rα2(q–1)‖a1‖q–1
L1

‖q‖q–1
L1

+ ‖a1‖q–1
L1

‖h‖q–1
L1

)
∫ 1

0

∣
∣G2(η, s)

∣
∣ds.

Similarly, we have

∣
∣N2(u, v)(t1) – N2(u, v)(t2)

∣
∣

≤ max
{

2q̃–1, 1
}(

rα3(q–1)‖a2‖q̃–1
L1

‖p̆‖q̃–1
L1

+ rα4(q̃–1)‖a2‖q̃–1
L1

‖q̆‖q̃–1
L1
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+ ‖a2‖q̃–1
L1

‖h̆‖q̃–1
L1

)
∫ 1

0

∣
∣G1(t1, s) – G1(t2, s)

∣
∣ds

+
max{2q̃–1, 1}γ (α – 1)|t2 – t1|

(1 – γ ηα–β–1)
(
rα3(q̃–1)‖a2‖q̃–1

L1
‖p̆‖q̃–1

L1

+ rα4(q̃–1)‖a2‖q̃–1
L1

‖q̆‖q̃–1
L1

+ ‖a2‖q̃–1
L1

‖h̆‖q̃–1
L1

)
∫ 1

0

∣
∣G2(η, s)

∣
∣ds.

The continuity of G1 implies that the right-hand side of the above inequality tends to zero
if t2 → t1. Therefore, by Arzela–Ascoli N is completely continuous.

Step 4. A priori bounds. Now it remains to show that the set

M =
{

(u, v)C
(
[0, 1],R

) × C
(
[0, 1],R

)
: (u, v) = λN(u, v) < λ < 1

}

is bounded. Let (u, v) ∈ M, then there exists 0 < λ < 1 such that u = λN1(u, v) and v =
λN2(u, v). Thus, for t ∈ [0, 1], we have

∣
∣u(t)

∣
∣ ≤

∫ 1

0

∣
∣G1(t, s)

∣
∣ϕq

(∫ s

0
|a1(τ )f

(
u
(
θ1(τ )

)
, v

(
θ2(τ )

))
dτ

)

|ds

+
γ tα–1

1 – γ ηα–β–1

∫ 1

0

∣
∣G2(η, s)

∣
∣ϕq

(∫ s

0
|a1(τ )f

(
u
(
θ1(τ )

)
, v

(
θ2(τ )

))
dτ

)

|ds

≤ max
{

2q–1, 1
}[‖p‖q–1

L1 ‖a1‖q–1
L1 ‖u‖α1(q–1) + ‖q‖q–1

L1 ‖a1‖q–1
L1 ‖v‖α2(q–1)

+ ‖a1‖q–1
L1 ‖h‖q–1

L1

]

×
∫ 1

0
G1(1, s) ds +

γ

1 – γ ηα–β–1

[‖p‖q–1
L1 ‖a1‖q–1

L1 ‖u‖α1(q–1)

+ ‖q‖q–1
L1 ‖a1‖q–1

L1 ‖v‖α2(q–1)

+ ‖a1‖q–1
L1 ‖h‖q–1

L1

]
∫ 1

0

∣
∣G2(η, s)

∣
∣ds,

‖u‖ ≤ max
{

2q–1, 1
}[‖p‖q–1

L1 ‖a1‖q–1
L1 ‖u‖α1(q–1) + ‖q‖q–1

L1 ‖a1‖q–1
L1 ‖v‖α2(q–1)

+ ‖a1‖q–1
L1 ‖h‖q–1

L1

]
[∫ 1

0

(1 – s)α–β–1

�(α)
+

γ

1 – γ ηα–β–1
ηα–β–1(1 – s)α–β–1

�(α)
ds

]

,

‖u‖ ≤ max
{

2q–1, 1
}[‖p‖q–1

L1 ‖a1‖q–1
L1 ‖u‖α1(q–1) + ‖q‖q–1

L1 ‖a1‖q–1
L1 ‖v‖α2(q–1)

+ ‖a1‖q–1
L1 ‖h‖q–1

L1

] 1
(1 – γ ηα–β–1)�(α)

∫ 1

0
(1 – s)α–β–1 ds.

Hence,

‖u‖ ≤ max{2q–1, 1}
(α – β)(1 – γ ηα–β–1)�(α)

[‖p‖q–1
L1 ‖a1‖q–1

L1 ‖u‖α1(q–1) + ‖q‖q–1
L1 ‖a1‖q–1

L1 ‖v‖α2(q–1)

+ ‖a1‖q–1
L1 ‖h‖q–1

L1

]
.

Similarly, we obtain

‖v‖ ≤ max{2q–1, 1}
(α – β)(1 – γ ηα–β–1)�(α)

[‖p̆‖q̃–1
L1 ‖a2‖q̃–1

L1 ‖u‖α3(q̃–1) + ‖q̆‖q̃–1
L1 ‖a2‖q̃–1

L1 ‖v‖α4(q̃–1)
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+ ‖a2‖q̃–1
L1 ‖h̆‖q̃–1

L1

]
.

Notice that if ε ≤ δ and ‖u‖ > 1, then ‖u‖ε ≤ ‖u‖δ Thus, ‖u‖ε ≤ 1 +‖u‖δ for all u. We then
have

‖u‖ + ‖v‖

≤ max{2q–1, 1}
(α – β)(1 – γ ηα–β–1)�(α)

[‖p‖q–1
L1 ‖a1‖q–1

L1 ‖u‖α1(q–1) + ‖q‖q–1
L1 ‖a1‖q–1

L1 ‖v‖α2(q–1)

+ ‖a1‖q–1
L1 ‖h‖q–1

L1

]
+

max{2q–1, 1}ϕq(
∫ 1

0 a1(τ ) dτ )
(α – β)(1 – γ ηα–β–1)�(α)

[‖p̆‖q̃–1
L1 ‖a2‖q̃–1

L1 ‖u‖α3(q̃–1)

+ ‖q̆‖q̃–1
L1 ‖a2‖q̃–1

L1 ‖v‖α4(q̃–1) + ‖a2‖q̃–1
L1 ‖h̆‖q̃–1

L1

]

≤ max{2q–1, 1}
(α – β)(1 – γ ηα–β–1)�(α)

(‖p‖q–1
L1 ‖a1‖q–1

L1 + ‖a2‖q̃–1
L1 ‖q̆‖q̃–1

L1

)

× (‖u‖α1(q–1) + ‖v‖α4(q̃–1))

+
(‖a2‖q̃–1

L1 ‖p̆‖q̃–1
L1 + ‖a1‖q–1

L1 ‖q‖q–1
L1

)(‖u‖α3(q̃–1) + ‖v‖α2(q–1))

+
(‖a1‖q–1

L1 ‖h‖q–1
L1 + ‖a2‖q̃–1

L1 ‖h̆‖q̃–1
L1

)

≤ max{2q–1, 1}
(α – β)(1 – γ ηα–β–1)�(α)

(‖a1‖q–1
L1 ‖p‖q–1

L1 + ‖a2‖q̃–1
L1 ‖q̆‖q̃–1

L1 + ‖a2‖q̃–1
L1 ‖p̆‖q̃–1

L1

+ ‖a1‖q–1
L1 ‖q‖q–1

L1

)(‖u‖α� + ‖v‖α�
)

+
(‖a1‖q–1

L1 ‖h‖q–1
L1 + ‖a2‖q̃–1

L1 ‖h̆‖q̃–1
L1

)

≤ max{2q–1, 1}
(α – β)(1 – γ ηα–β–1)�(α)

× (‖p‖q–1
L1 ‖a1‖q–1

L1 + ‖q̆‖q̃–1
L1 ‖a2‖q̃–1

L1 + ‖p̆‖q̃–1
L1 + ‖a1‖q–1

L1 ‖q‖q–1
L1

)

× (‖u‖ + ‖v‖)α� +
(‖a1‖q–1

L1 ‖h‖q–1
L1 + ‖a2‖q̃–1

L1 ‖h̆‖q̃–1
L1

)
,

where

α� = max
{
α1(q – 1),α2(q – 1),α3(q̃ – 1),α4(q̃ – 1)

}
.

If ‖u‖ + ‖v‖ > 1, then

‖u‖ + ‖v‖
(‖u‖ + ‖v‖)α�

≤ max{2q–1, 1}
(α – β)(1 – γ ηα–β–1)�(α)

(‖a1‖q–1
L1 ‖p‖q–1

L1 + ‖a2‖q̃–1
L1 ‖q̆‖q̃–1

L1 + ‖a2‖q̃–1
L1 ‖p̆‖q̃–1

L1

+ ‖a1‖q–1
L1 ‖q‖q–1

L1

)
+

(‖a1‖q–1
L1 ‖h‖q–1

L1 + ‖a2‖q̃–1
L1 ‖h̆‖q̃–1

L1 )
(‖u‖ + ‖v‖)α�

or

(‖u‖ + ‖v‖)1–α�

≤ max{2q–1, 1}
(α – β)(1 – γ ηα–β–1)�(α)

(‖a1‖q–1
L1 ‖p‖q–1

L1 + ‖a2‖q̃–1
L1 ‖q̆‖q̃–1

L1 + ‖a2‖q̃–1
L1 ‖p̆‖q̃–1

L1
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+ ‖a1‖q–1
L1 ‖q‖q–1

L1

)
+

(‖a1‖q–1
L1 ‖h‖q–1

L1 + ‖a2‖q̃–1
L1 ‖h̆‖q̃–1

L1

)
.

This implies that

‖u‖ + ‖v‖ ≤ [
A

(‖a1‖q–1
L1 ‖p‖q–1

L1 + ‖a2‖q̃–1
L1 ‖q̆‖q̃–1

L1 + ‖a2‖q̃–1
L1 ‖p̆‖q̃–1

L1 + ‖a1‖q–1
L1 ‖q‖q–1

L1

)

+
(‖a1‖q–1

L1 ‖h‖q–1
L1 + ‖a2‖q̃–1

L1 ‖h̆‖q̃–1
L1

)]1–α� ,

then

‖u‖ + ‖v‖ ≤ [AB + C]1–α� := M2,

where

A =
max{2q–1, 1}

(α – β)(1 – γ ηα–β–1)�(α)
,

B = ‖a1‖q–1
L1 ‖p‖q–1

L1 + ‖a2‖q̃–1
L1 ‖q̆‖q̃–1

L1 + ‖a2‖q̃–1
L1 ‖p̆‖q̃–1

L1 + ‖a1‖q–1
L1 ‖q‖q–1

L1

and

C = ‖a1‖q–1
L1 ‖h‖q–1

L1 + ‖a2‖q̃–1
L1 ‖h̆‖q̃–1

L1 .

As a consequence of Theorem 2.1, the operator N has a fixed point that is a solution of
system (1.4). This completes the proof of the theorem. �

4 Multiplicity of positive solutions
In this section, our goal is to establish positive solutions and multiplicity of solutions for
the problem to system (1.4). To this end, first in this section we assume the functions f , g ∈
C(R2,R+) and define the operator on P as N : P2 → P2 to be the completely continuous
map N = (N1, N2) given in the proof of Theorem 3.1. Then (3.5) and (3.6) are equivalent
to the fixed point problem

u = N(u), u ∈ P2.

If v ∈ P and

ui(t) =
∫ 1

0
G1(t, s)ϕq

(∫ s

0
a1(τ )v(τ ) dτ

)

ds

+
γ tα–1

1 – γ ηα–β–1

∫ 1

0
G2(η, s)ϕq

(∫ s

0
a1(τ )v(τ ) dτ

)

ds, i = 1, 2,

and ui(ti) = ‖ui‖, by Lemma 3.2 this implies that, for any t ∈ [ρ, 1],

ui(t) =
∫ 1

0
G1(t, s)ϕq

(∫ s

0
a1(τ )v(τ ) dτ

)

ds

+
γ tα–1

1 – γ ηα–β–1

∫ 1

0
G2(η, s)ϕq

(∫ s

0
a1(τ )v(τ ) dτ

)

ds
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ui(t) ≥
∫ 1

0
min G1(t, s)ϕq

(∫ s

0
a1(τ )v(τ ) dτ

)

ds

+
γ tα–1

1 – γ ηα–β–1

∫ 1

0
G2(η, s)ϕq

(∫ s

0
a1(τ )v(τ ) dτ

)

ds

≥
∫ 1

0
ρα–1G1(1, s)ϕq

(∫ s

0
a1(τ )v(τ ) dτ

)

ds

+
γρα–1

1 – γ ηα–β–1

∫ 1

0
G2(η, s)ϕq

(∫ s

0
a1(τ )v(τ ) dτ

)

ds

≥ ρα–1
[∫ 1

0
G1(1, s)ϕq

(∫ s

0
a1(τ )v(τ ) dτ

)

ds

+
γ

1 – γ ηα–β–1

∫ 1

0
G2(η, s)ϕq

(∫ s

0
a1(τ )v(τ ) dτ

)

ds
]

≥ ρα–1
[∫ 1

0
G1(t, s)ϕq

(∫ s

0
a1(τ )v(τ ) dτ

)

ds

+
γ

1 – γ ηα–β–1

∫ 1

0
G2(η, s)ϕq

(∫ s

0
a1(τ )v(τ ) dτ

)

ds
]

.

Hence

ui(t) ≥ ρα–1‖ui‖, i = 1, 2.

Define the cone Pi for i = 1, 2 in P by

Pi =
{

ui ∈ P : ui(t) ≥ ρα–1‖ui‖ for all t ∈ [ρ, 1]
}

,

and the product cone P = P1 × P2 in P2, then N(P) ⊂ P. Before we state our main result,
we introduce the following notations: αi,βi > 0 with αi �= βi, we let ri = min{αi,βi}, Ri =
max{αi,βi}i = 1, 2.

γ1 = min
{

f
(
u1

(
θ1(t)

)
, u2

(
θ1(t)

))
: ρ ≤ t ≤ 1,ρα–1β1 ≤ u1 ≤ β1,ρα–1r2 ≤ u2 ≤ R2

}
,

γ2 = min
{

g
(
u1

(
θ1(t)

)
, u2

(
θ1(t)

))
: ρ ≤ t ≤ 1,ρα–1r1 ≤ u1 ≤ R1,ρα–1β2 ≤ u2 ≤ β2

}
,

�1 = max
{

f
(
u1

(
θ1(t)

)
, u2

(
θ1(t)

))
: ρ ≤ t ≤ 1,ρα–1α1 ≤ u1 ≤ α1,ρα–1r2 ≤ u2 ≤ R2

}
,

�2 = max
{

g
(
u1

(
θ1(t)

)
, u2

(
θ1(t)

))
: ρ ≤ t ≤ 1,ρα–1r1 ≤ u1 ≤ R1,ρα–1α2 ≤ u2 ≤ α2

}
.

Also, let

A = min
{

G1(t, s) : ρ ≤ t ≤ 1, 0 ≤ s ≤ 1
}

and

B = max
{

G1(t, s) : ρ ≤ t ≤ 1, 0 ≤ s ≤ 1
}

.
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Theorem 4.1 Assume that there exist αi,βi > 0 with αi �= βi, i = 1, 2, such that

B�
q–1
1 ≤ α1, Aγ

q–1
1 ≥ β1,

B�
q–1
2 ≤ α2, Aγ

q–1
2 ≥ β2.

(4.1)

Then (1.4) has a positive solution u = (u1, u2) with ri ≤ ‖ui‖ ≤ Ri, i = 1, 2, where ri =
min{αi,βi}, Ri = max{αi,βi}. Moreover, the corresponding orbit of u is included in the rect-
angle [ρr1, R1] × [ρr2, R2].

Proof First note that if u ∈ Pr,R, then r1 ≤ ‖|u1‖ ≤ R1 and r2 ≤ ‖u2‖ ≤ R2, and by the defi-
nition of P,

{
ρα–1r1 ≤ u1(t) ≤ R1 and ρα–1r2 ≤ u2(t) ≤ R2

}

for all t, showing that the orbit of u for t ∈ [ρ, 1] is included in the rectangle [ρr1, R1] ×
[ρr2, R2].

Also, if we know for example that ‖u1‖ = α1, then

ρα–1α1 ≤ u1(t) ≤ α1.

We now prove that, for every u ∈ Pr,R and i ∈ {1, 2}, the following properties hold:

‖ui‖ = αi implies ui ⊀ Ni(u),

‖ui‖ = βi implies ui � Ni(u),
(4.2)

guaranteeing the applicability of Theorem 2.2. Indeed, if ‖u1‖ = α1 and we would have
u1 ≺ N1(u), then

u1(t) < N1(u)(t)

≤
∫ 1

0
max G1(t, s) max

∣
∣a1(t)f

(
u
(
θ1(t)

)
, v

(
θ2(t)

))∣
∣q–1 dt

+
γ tα–1

1 – γ ηα–β–1

∫ 1

0
G2(η, s) max

∣
∣a1(t)f

(
u
(
θ1(t)

)
, v

(
θ2(t)

))∣
∣q–1 dt

≤ B�
q–1
1 + �

q–1
1

γ

1 – γ ηα–β–1

∫ 1

0
G2(η, s)

≤ B�
q–1
1

≤ α1

for all t. This yields the contradiction α1 < α1.
Now, if ‖u1‖ = β1 and u1 � N1(u), then for t ∈ [ρ, 1] we obtain

u1(t) > N1(u)(t)

≥
∫ 1

0
min G1(t, s) min

∣
∣a1(t)f

(
u
(
θ1(t)

)
, v

(
θ2(t)

))∣
∣q–1 dt
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+
γ tα–1

1 – γ ηα–β–1

∫ 1

0
G2(η, s) min

∣
∣a1(t)f

(
u
(
θ1(t)

)
, v

(
θ2(t)

))∣
∣q–1 dt

≥ Aγ
q–1
1

≥ β1.

Then we deduce that β1 > β1, which is a contradiction. Hence (4.2) holds for i = 1. Similarly,
(4.2) is true for i = 2. By Theorem 2.2, we see that N has at least one fixed point in P.
Therefore, system (1.4) has at least one positive solution. �

Now we study the existence of multiple positive solutions for the systems of fractional
boundary value problem with p-Laplacian boundary conditions.

(H4) f , g are positive and increasing, i.e.,

0 ≤ u ≤ x, 0 ≤ v ≤ y imply 0 ≤ f (u, v) ≤ f (x, y), 0 ≤ g(u, v) ≤ g(x, y).

We present the following general existence, multiplicity, and localization result.

Theorem 4.2 Let conditions (H1) – (H2) – (H4) hold, and assume that the norm ‖ · ‖ is
monotone with respect to each cone Pi(i = 1, 2). Moreover, suppose that there exist αi,βi > 0,
with αi �= βi, i = 1, 2, such that

∥
∥N1

(
α1ρ

α–1, R2ρ
α–1)∥∥ < α1,

∥
∥N2

(
R1ρ

α–1,α2ρ
α–1)∥∥ < α2, (4.3)

∥
∥N1

(
β1ρ

α–1, 0
)∥
∥ > β1,

∥
∥N2

(
0,β2ρ

α–1)∥∥ < β2, (4.4)

where Ri = max{αi,βi}(i = 1, 2).
Then problem (1.4) has at least
(1) one solution u = (u1, u2) such that βi < ‖ui‖ < αi for i = 1, 2, if αi > βi for i = 1, 2;
(2) two solutions (u1, u2) and (v1, v2) such that β1 < ‖u1‖ < α1, β2 < ‖u2‖ < α2,

β1 < ‖v1‖ < α1, and ‖v2‖ < α2 if α1 > β1 and α2 < β2;
(3) two solutions (u1, u2) and (v1, v2) such that α1 < ‖u1‖ < β1, α2 < ‖u2‖ < β2, ‖v1‖ < α1,

and β2 < ‖v2‖ < α2 if α1 < β1 and α2 > β2;
(4) four solutions (u1, u2), (v1, v2), (w1, w2), and (z1, z2) such that

βi < ‖ui‖ < αi,α1 < ‖v1‖ < β1, and ‖v2‖ < α2,‖w1‖ < α1,α2 < ‖w1‖ < β2, and ‖zi‖ < αi,
if αi < βi for i = 1, 2.

Proof We shall apply Theorem 2.3 to the operator N = (N1, N2) defined as in (3.8) and
(3.9). Let us see that it satisfies conditions (2.1)(2.2).

First we prove that

λu1 �= N1(u) for every u ∈ k with ‖u1‖ = α1,‖u2‖ ≤ R2 and all λ ≥ 1. (4.5)

Indeed, if not,

λ‖u1‖ = λα1 =
∥
∥N1(u)

∥
∥.
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From 0 ≤ u1 ≤ α1ρ
α–1 and 0 ≤ u2 ≤ R2ρ

α–1, by (H1), (H4) it follows that

0 ≤ f (u1, u2) ≤ f
(
α1ρ

α–1, R2ρ
α–1),

0 ≤ ϕq

(∫ s

0
a1(τ )f (u1, u2) dτ

)

≤ ϕq

(∫ s

0
a1(τ )f

(
α1ρ

α–1, R2ρ
α–1)dτ ds

)

.

By Lemma (3.2) we obtain

0 ≤ N1(u1, u2) ≤ N1
(
α1ρ

α–1, R2ρ
α–1),

and the norm of X being monotone,

∥
∥N1(u1, u2)

∥
∥ ≤ ∥

∥N1
(
α1ρ

α–1, R2ρ
α–1)∥∥.

By assumption (4.3),

∥
∥N1

(
α1ρ

α–1, R2ρ
α–1)∥∥ < α1,

so we obtain the contradiction

λα1 < α1 for some λ ≥ 1.

Hence (4.5) holds.
Now, we prove that u1 �= N1(u) + μρα–1 for every u ∈ P with ‖u1‖ = β1,‖u2‖ ≤ R2 and all

μ ≥ 0.
Assume the contrary, i.e., u1 = N1(u) + μρα–1 for some u ∈ P with ‖u1‖ = β1,‖u2‖ ≤

R2 and some μ ≥ 0. Then u1 – N1(u) ∈ P1, so 0 ≤ N1(u) ≤ u1, and the norm of X being
monotone

∥
∥N1(u)

∥
∥ ≤ ‖u1‖ = β1. (4.6)

Also, from condition (H4), 0 ≤ β1ρ
α–1 ≤ u1 and 0 ≤ u2, so we obtain

0 ≤ f1
(
β1ρ

α–1, 0
) ≤ f (u1, u2),

then by (H1) we obtain

0 ≤ ϕq

(∫ s

0
a1(τ )f1

(
β1ρ

α–1, 0
)

dτ

)

≤ ϕq

(∫ s

0
a1(τ )f (u1, u2) dτ

)

,

and by Lemma 3.2 we conclude 0 ≤ N1(β1ρ
α–1, 0) ≤ N1(u1, u2). Hence, by monotonicity of

the norm,

∥
∥N1

(
β1ρ

α–1, 0
)∥
∥ ≤ ∥

∥N1(u1, u2)
∥
∥.

Now, from (4.6) we have

∥
∥N1

(
β1ρ

α–1, 0
)∥
∥ ≤ β1,
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which contradicts assumption (4.4). Therefore, conditions (2.1)–(2.2) hold for i = 1. Sim-
ilarly, they can be verified for i = 2. �

5 Applications
Example 5.1 Consider the fractional differential equation with advanced argument for
p-Laplacian:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ϕ3/2(D5/2
0+ u(t))′ + t–1/2

4
t

1+t (|u(θ (t))| 1
4 + |v(θ (t))| 1

5 ) = 0, 0 < t < 1,

ϕ3/2(D5/2
0+ v(t))′ + 7t–1/2

2
t2

1+t2 (13 + |v(θ (t))|1/4 + |u(θ (t))| 1
6 ) = 0, 0 < t < 1,

D5/2
0+ u(0) = u(0) = u′(0) = 0, D7/6

0+ u(1) = 7
10 D7/6

0+ u( 1
2 ),

D5/2
0+ v(0) = v(0) = v′(0) = 0, D7/6

0+ v(1) = 7
10 D7/6

0+ v( 1
2 ),

(5.1)

where α = 5
2 ,β = 7

6 ,η = 7
10 , p = p̃ = 3

2 , q = q̃ = 3, a1(t) = t–1/2

4 , a2(t) = 7t–1/2

2 ,ϕ3(
∫ 1

0 a1(t) dt) =
1
4 ,ϕ3(

∫ 1
0 a2(t) dt) =

√
7

2 ,α1p = α3p̃ = 3
8 ∈ (0, 1), α2p = 3

10 ∈ (0, 1),α4p̃ = 3
12 ∈ (0, 1)

f
(
u
(
θ (t)

)
, v

(
θ (t)

))
=

t
1 + t

(∣
∣u

(
θ (t)

)∣
∣

1
4 +

∣
∣v

(
θ (t)

)∣
∣

1
5
)
, θ (t) = tγ ,γ ∈ (0, 1),

and

g
(
u
(
θ (t)

)
, v

(
θ (t)

))
=

t2

1 + t2

(
13 +

∣
∣v

(
θ (t)

)∣
∣1/4 +

∣
∣u

(
θ (t)

)∣
∣

1
6
)
, θ (t) = tγ ,γ ∈ (0, 1).

It is clear that, for all (t, u, v) ∈ [0, 1] ×R
2,

⎧
⎨

⎩

|f (u, v)| ≤ t(|u| 1
4 + |v| 1

5 ),

|g(u, v)| ≤ t2(13 + |v|1/4 + |u| 1
6 ).

Hence all the conditions of Theorem 3.1 hold, this implies that problem (5.1) has at least
one solution.

Example 5.2 Consider the fractional differential equation with advanced argument for
p-Laplacian:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ϕ3/2(D5/2
0+ u(t))′ + t–1/2

4 f (u(θ (t)), v(θ (t))) = 0, 0 < t < 1,

ϕ3/2(D5/2
0+ v(t))′ + 7t–1/2

2 g(u(θ (t)), v(θ (t))) = 0, 0 < t < 1,

D5/2
0+ u(0) = u(0) = u′(0) = 0, D7/6

0+ u(1) = 7
10 D7/6

0+ u( 1
2 ),

D5/2
0+ v(0) = v(0) = v′(0) = 0, D7/6

0+ v(1) = 7
10 D7/6

0+ v( 1
2 ),

(5.2)

where f , g ∈ C(R2,R+) are nondecreasing in u and v, θ (t) = tγ ,γ ∈ (0, 1). Assume that

lim
z→∞

f (z, z)
z

= lim
z→∞

g(z, z)
z

= 0 (5.3)

and

lim
z→0

f (z, z)
z

= lim
z→∞

g(z, z)
z

= ∞. (5.4)
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From conditions (5.3) and (5.4), we can prove that there exist α1,α2,β1,β2 > 0,α1 < β1,α2 =
β1, and β2 = α1 such that

f (ρα–1β1,ρα–1α1)
ρα–1β1

≥ 1
ρα–1A

,

g(ρα–1α1,ρα–1α1)
ρα–1β2

≥ 1
ρα–1A

(5.5)

and

f (α1,β1)
α1

≤ 1
B

,
g(β1,β1)

α2
≤ 1

B
. (5.6)

Then we set

ri = α1, Ri = β1 for i ∈ {1, 2},
�1 = f (α1,β1), �2 = g(β1,β1),

and

γ1 = f
(
ρα–1β1,ρα–1α1

)
, γ2 = g

(
ρα–1α1,ρα–1α1

)
.

We concluded that (5.5) and (5.6) guarantee (4.1). Hence, by Theorem 4.2, problem (5.2)
has a positive solution.

Since f , g are positive and increasing, we can easily show that

f (ρα–1β1, 0)
β1

≥ 1
A

,
f (ρα–1α1,ρα–1R2)

α1
<

1
B

,

g(, 0,ρα–1β2)
β2

≤ 1
A

,
g(ρα–1R1,α2ρ

α–1)
α2

<
1
B

.

Thus conditions (4.3) and (4.4) hold. Then, by Theorem 4.2, problem (5.2) has multiplicity
of solutions.

6 Conclusions
In this present work, we discussed some existence multiplicity results for system of frac-
tional differential equations, under various assumptions on the right-hand side nonlin-
earity. The main assumptions on the nonlinearity are the continuity and some Nagumo–
Bernstein type growth conditions. We have used fixed point theory in vector metric spaces
with general properties from functional analysis. Also the positivity result for a fractional
system of differential equations was considered. We hope that this paper can provide con-
tributions to the questions of existence, positivity, and multiplicity of solutions for frac-
tional differential equations on bounded domains.
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Cluj-Napoca, Department of Mathematics (2011)
37. Kilbas, A.A., Trujillo, J.J.: Differential equations of fractional order: methods, results and problems II. Appl. Anal. 81,

435–493 (2002)
38. Zhao, D., Wang, H., Ge, W.: Existence of triple positive solutions to a class of p-Laplacian boundary value problems.

J. Math. Anal. Appl. 328, 972–983 (2007)


	System of fractional boundary value problem with p-Laplacian and advanced arguments
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Existence result
	Multiplicity of positive solutions
	Applications
	Conclusions
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


