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Abstract

In this research study, we are concerned with the existence and stability of solutions
of a boundary value problem (BVP) of the fractional thermostat control model with
Yr-Hilfer fractional operator. We verify the uniqueness criterion via the Banach
fixed-point principle and establish the existence by using the Schaefer and
Krasnoselskii fixed-point results. Moreover, we apply the arguments related to the
nonlinear functional analysis to discuss various types of stability in the format of Ulam.
Finally, by several examples we demonstrate applications of the main findings.
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1 Introduction

Fractional differential and integral equations have demonstrated high visibility and capa-
bility in applications of various topics related to physics, signal processing, mechanics,
electromagnetics, economics, biology, and many more [1, 2]. Particularly speaking, it has
been recognized that fractional integro-differential equations, whose kernels allow much
freedom to describe various processes involving memory and hereditary properties, of-
ten appear in different fractional models caused by many real-life processes such as phe-
nomena related to electromagnetic waves and heat transfer. Yang et al. [3] implemented a
discussion on the steady heat-transfer in the context of fractal media by invoking the local
fractional nonlinear integro-differential equations of Volterra type. Furthermore, electro-
magnetic waves in a wide range of dielectric media including the susceptibility following
a fractional power law are formulated in the framework of integro-differential equations
[4]. We can see some recent advances and applications of fractional modelings in several
newly published researches such as [5-8]. Also, in some new papers, the advantages and
power of mathematical modeling based on fractional operators are illustrated, and that is
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why in recent years, many researchers prefer studying real processes and phenomena by
applying newly defined versions of fractional operators (see, e.g., [9-18]).

Amongst important physio-electrical models, we are concerned with the thermostat
control model. In this context a thermostat is a regulating instrument that measures the
temperature of a given physical system and takes actions, provided that its temperature
is maintained near a desired level. Thermostats are applied in any industrial system or
controlling devices that cool or heat the temperature, examples including central heating,
building heating, water heaters, air conditioners, water heaters, and also kitchen equip-
ment such as refrigerators, ovens, and scientific and medical incubators. In [19] the au-
thors demonstrated interest in the investigation of a thermostat control model insulated at
¢ = 0 with controller at ¢ = 1 and proposed the following boundary value problem (BVP)
for the first time:

V'(s) +h(s,v(s) =0, ¢€(01],
V' (0) =0, (1) +v(k) =0,

(1)

in which k € (0,1), and ¢ > 0 is assumed to be an arbitrary parameter. Based on such a
second-order mathematical model, the thermostat discharges or adds an amount of the
heat with respect to the temperature detected by the existing sensor at ¢ = k. They proved
existence results for (1) by following the fixed point index theory in the context of integral
equations of Hammerstein type.

Knowing the magnificent advantage of fractional derivatives, the authors in [20] studied
the fractional-order thermostat control model

“D%x(s) +f(s,x(s) =0, s €(0,1], @
%'(0) =0, AED k(1) + x(n) = 0,
where ¢D¢ is the Caputo derivative of order « € (1,2]. Based on the hypothesis that the
nonlinearity f is assumed to be either superlinear or sublinear, the existence of positive so-
lutions was proved by the help of the obtained Green’s function and the Guo—Krasnoselskii
fixed-point results. In their recent paper [21] the authors studied the fractional configura-
tion of the thermostat control model subject to a convex—concave source term. They used
the fixed point technique to prove the existence and uniqueness of positive solutions and
provided an iterative scheme to approximate the obtained solutions. For more details on
fractional thermostat control models, the reader can consult [22—26]. Exploring this liter-
ature, we can notice that the reported results were restricted to the existence of positive
solutions and their properties. However, to the best of the authors’ knowledge, no results
were observed on the thermostat control model in the frame of generalized fractional op-
erators. Further, the stability of solutions of fractional thermostat control models was not
addressed yet.
Motivated by the above discussions, we consider a category of v -Hilfer nonlinear im-
plicit fractional boundary value problems (FBVPs) describing the thermostat control

model of the form

HOXY (o) = f(g,%(06), I8 x(s¢)), ¢ € (0,T],

3)
)03 o5V (
Yo wi”ng Vx(E) = A, p /\,”Qgi g %(0)) + Y _j_y Skx(nk) = B,
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where H@g’f;w denotes the -Hilfer derivative operators of order v = {a, B, ;}, @ € (1,2],
Bi» j € (0,1], A, B,w;, Aj, 8k € R, &1, 05, e € (0,T), i = 1,2,...,m,j=1,2,...,m, k=1,...,7,
p €[0,1], Igiw is the ¥ -RL-integral of order ¢ > 0, 0, ¢ € (0,1], f € C(J x R%L,R), and J :=
[0, T] with T > 0. We establish existence and stability results for (3). We employ fixed
point hypotheses to prove the existence results and we use the techniques of nonlinear
functional analysis to study the stability in the Ulam sense. We present our results in a
general platform, which covers many particular cases for specific values of p and . For
some relevant results, we refer the reader to recent papers [27-33].

The remaining parts of the research study adhere to the following plan. In Sect. 2, we
define the norms, spaces, and other essential notions and lemmas related to the y-Hilfer
fractional operator. Further, we derive the equivalent integral representation associated
with the linear problem and state some fixed point theorems. We present the existence and
uniqueness results in terms of three different fixed-point criteria in Sect. 3. In Sect. 4, we
systematically present stabilization analysis of problem (3). In Sect. 5, we construct three
particular examples, where the validity of the proposed results is verified. We terminate

the investigation by conclusions.

2 Primitive notions
In this section, we give important basic definitions and primitive concepts of fractional
calculus, which are useful throughout this paper.

We denote by E = C(J, R) the Banach space of continuous mappings on J with supnorm
%]l = sup s {|x(s)I} for x € E.

We also define the space of n times absolutely continuous functions

AC'[ILR] = {f : T — R;f"V € AC[J, R]}.

Definition 2.1 ([34]) Let ¥(¢) € C!([a,b],R) be an increasing function with ¥/(¢) # 0
for each ¢ € [a, b]. The ath-y-RL-fractional integral of f depending on the function ¥ is
defined as

f”f@>=—i—/gwmxw@»—w@ffﬂnds c>a>0u50
“ r@) Ja ’ e

where I' is the gamma function.

Definition 2.2 ([34]) Let v be as above with v¥'(¢) # 0. The ath-y-RL-fractional deriva-
tive of f depending on v is defined as

1 d
v'(c)ds

L —1 d ’ ° 4 n—a—1
:m@/(g)g) / VW) -v)  fds, >0,

®$ﬂ9=( )ZTWﬂm

where n = [a] + 1.

Definition 2.3 ([35]) Lety =a + p(n— ), @ € (n—1,n), f € C"([a,b],R), and let ¥(¢) €
CY([a, b], R) be increasing with v/'(¢) # 0 for each ¢ € [a, b]. Then the ath-1-Hilfer deriva-
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tive of f of type p € [0, 1] depending on the function v is given by

1 d
V'(c) ds

"DS() = 155“)””( )"f PIE) = TR f(6)

where @Zi%ﬁf(g) _ @Ziﬁ/fzi}rfp)(n—a);l//f(g)'
Lemma 2.4 ([34]) Let a, B > 0. In this case, we have the \-semigroup property
VB By
LET () =T f(s), ¢ >a.
Next, we present the following properties.

Proposition 2.5 ([34,35]) Let ¢ > a and consider x*(¢) = (Y (¢c) = (a))?" . Then, for v >0
and o > 0, we have the following properties:

(i) T x"(<) = ms x U (s);
(if) D5 “(g)—r(u—fx)x“ “(¢);
(iil) 795" x"(6) = i xU(s) v >y = + p(2 - ).

Lemma2.6 Leta € (m—1,m),Be(n-1,n),n,meN,n<m,pecl0,1],anda > B+ p(n-
B). Ifh € Ci_y y (I, R), then

1O T h6) = To ().
Proof Letting & = B+ p(n—B) withn—-1< & < n, we get
HRbY (T4 W(6)) = TE P DE (T4 (o))
:I;—ﬂ;w<wt = d )” 5 (T h(g))

:Is:ﬁ;w< 1 d>nné+awh
« \ Y9 de (€)

By Definition 2.1 we obtain

1 d
In E+a
(w(g)d§> He)

1 d c .
_W/(§)E<F(n—$+a)/a Vs (W(s) =¥ () h(S)ds)

~ 1 1
CT-&+a)y'(s)

/; / / n+a—£-2
x ( (n+a—& -1y (V' () (¥(s) - ¥ (s)) h(S)dS)

= 1 ° / nto—£-2
TTm-t+a-1) f V()W (5) - (s)) h(s) ds

—E+a-1y
=T, h(s)
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and

1 d ? n$+ou/f
(Fie) =eme

= ! d ° / n+ta—£-2
() E(r(n_g Ta-1) f V') (W () =¥ () h(s)ds)
1 1

T T-E+a-1)y(c)
¢ ’ / n+a—£-3
x ( / (n+a—&=2P V() (¥(s) - v(s) h(s)ds)

= 1 ¢ ’ n+oa—£-3
= m/ﬂ v ()(¥(s) - v(s) h(s) ds

_ In+—§+a—2;1//h(g).

Repeating the above process, we have

1 d n—-&+a;y
(w )ds)I )

1 4 c e
_I/f’(g)d§<l"(a—g) f v)(W(s) - v () h(s)ds>

1 a—E-1
= T —FrD) w(g)(/ @- OV W (W) -y ) h(s)dx>

- - ’ _ a—£-1
F(‘E +a)/a 4 (S)(W(S) W(S)) h(S)dS
=I5 ho),

which implies that
HRI (T8 h()) = TPV T () = TPV ().
This completes the proof. d

Lemma 2.7 ([35]) Letf € C"(J,R),y =a+pn—a) witha € (n—1,n),and p € [0,1]. Then

W H NGO _ _ . (W(g)—!ﬂ(ﬂ)) [n—k] ~(1-p)(n—a);yy
IO (9) = f(9) ;—F(y_ ey v e @)

n

o) f(s).

forany ¢ €, s0 thatf["]f(s') =

Lemma2.8 Let 2 #0,a € (1,2], B1,---s Bos 15+ s € (0,1], p € [0, 1], and y = a + p(2 -
). Suppose that h € E. Then x € C2(J,R) is a solution of

HDE Y x(c) = h(s), ¢ €(0,T],

(4)
m .05 v r
Zi:l wiH©g+p lllx(%_l) = Ar Z; 1 )\ H:Du/ " x(o,) + Zk:l akx(’?k) = B}
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iff x fulfills the -integral equation

. —(0))r! ” g
x(5) =T h(s) + % {94 (A - ;wzfg ﬁ“‘”h(&)>

-, (B =3 NIy " h(oy) > Sklgi‘”h(nk)ﬂ
j=1

k=1

— y-2
+%|: ( Z)”I(‘;*HI h(U/)—Z(skIng hr)k>

k=1

q <A-zwizg:wh<si>)} ®

i=1

where

, (6)

e oY (&) - p(0)r At
h = 121: I'(y - B)

Q Z wl(llf(&) -y (0)Fi?

V ,31 - 1) ’ (7)
A (o) = ()7 S Sk () — ¥ (0))7 !
2 Z T(y- u}) * — T(y) ' ®
AW (o) = Y (0) 717 S 8w (i) — ¥ (0))7 2
Q= j j , 9
' ,ZI Cy-w-1 &= Te-1 ®
Q= Q1 - 0. (10)

Proof Letx € E be a solution of problem (4). Taking the operator Igiw on both sides of (4)

and using Lemma 2.7, we have

W& -y O () -wO)7
T(y) ! T(y -1)

x(5) =T h(s) + ¢, (11)

where ¢1,c; € R are arbitrary real constants.
Taking the operators ”Dgip Y and # o, ¥ into (11), we obtain

W -wO) " W)y
F(V_ﬂi) ! F(V‘ﬁi—l)

Hagyo oy = 7Y oy ¢ W YO (W) -y o)
0 0 F(]/—/,Lj) F(V_Mj—l)

1D x(6) = Ty P () +

C2,

Cy.
From the first and second boundary conditions in (3) we get the system

Qe+ Qe =A-Y " iy PV (e,
Qa1+ Quer=B-Y 1 AT " hoy) = Yoy ST B,
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where Q1, Q5, Q3, and Q4 are given by (6), (7), (8), and (9), respectively. Solving the system,
it follows that

c = 5 |:Q4 (A — ;wizg:ﬂi;‘/fh(gi)>
- (B - WTor " (o) - > rSkIgi“’h(nk)) }

j=1 k=1

1 " o—[Lj; ! .
o=g [91 (B = T o) - Zakzg;‘”h(nk))
j=1

k=1

— QS (A _ Z a)iI(‘;ﬂii\/fh(%-i))],

i=1

where Q is given by (10). Hence the solution x follows by inserting ¢; and ¢, into (11). This
implies that x(¢) satisfies (5).

On the contrary, it is easy to show by a straightforward procedure that x(¢), which is
illustrated by (5), fulfills the given FBVP (3) in terms of supposed boundary conditions.
Lemma 2.8 is proved. d

3 Existence results
Set Fu(s) =f(5,2(0), I8 x(e<)), where

1

Iginx(C) = W

/0 VO -y @) E) dr

with = {g, 8;} and c = {¢,0,0;} for j = 1,2,...,n. According to Lemma 2.8, we define Q:
E— Eas

- y-1 "
(@(6) = T3 Fits) + LEL Y {94 (A DS wizg:wfx(a))
i=1

- Qz (B — Z )\.]‘Ig:w;wa(O'l‘) - Z (SkIg;wa(nk)>:|

j=1 k=1

(W(c) -y (0) S 5 7o
Oy [9 <B D ) - S ka))

-3 (A -3 a),«IgJ”';WFx(gi)) } (12)

i=1

Note that the proposed  -Hilfer FBVP describing thermostat control model (3) involves
solutions if and only if Q possesses fixed points. For brevity, we denote

(Y (X) - (0)"

Wiw ==

(13)

WU, V) = |—§12|(|U|w1<T,y )+ VIV (T,y — 1)), (14)

Page 7 of 28
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AULV)=UV(T,a) + VU (T, q + )

+ W (Qs, Q) Y el [UW G = B) + VL (5 g + @ — )]

i=1

n
+ ‘1’2(91,92)(2 II[UY (0,0 — ) + VWi (0, g + o — )]
-1

+ Z |5k| [U\Ijl(nkr 0() + V\Ill(nk:q + O[)]) (15)
k=1

3.1 Uniqueness property

In the forthcoming first theorem, we will prove the uniqueness of solution for the -
Hilfer FBVP describing thermostat control model (3) by invoking the Banach principle
(Lemma 3.1).

Lemma 3.1 ([36]) Let S be a nonempty closed set contained in the Banach space E. Then

any contraction self-map Q on E has a unique fixed point.

Theorem 3.2 Letf:J x R? — R be continuous and:
(Hy) There exist L1,Lo > 0 such that

[f (¢, u1,v1) = f (G, 142, v2)| < Liluiy — ta| + Lo|vy — v

foranyu,vieR,1=1,2,and ¢ €.
If

A(Ly,Ly) < 1, (16)

where A(:,-) is defined in (15), then the v-Hilfer FBVP describing the thermostat

control model (3) has a unique solution x in E.

Proof We convert the y-Hilfer FBVP describing the thermostat control model (3) into
x = Ox, where Q is given by (12). Obviously, the obtained fixed-points of Q are the possible
solutions of the mentioned i -Hilfer FBVP (3). Following Lemma 3.1, we verify that O
admits a unique fixed point, which means that (3) involves exactly one solution.

Define a bounded, closed, convex, and nonempty subset B,, := {x € E: ||x|| < r;} with

. A(M1,0) + |A|W2(23, 24) + |B| W (21, 2)
' 1- ALy, L)

, sup[f(§,0,0)| i=M; <oo, (17)
cel

where Q; fori=1,2,3,4, ¥5(-,-), and A(:, ) are given by (6)—(9), (14) and (15), respectively.
We divide the proof into two steps.

Step1. OB, CB,,.

Letx € B,, and ¢ € J. Then

[(Qx)(5)|

(W (T) -y (0))"

v
=" 20T ()

Fy(s)|(T) +
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x [mu (|A| £ || Ty Y Px(s)|<si>)
i=1

+|92|(|B|+Z|A 120" |E, (s)|(o,)+2|8k|1°‘“’|F s)|(nk)]

j=1

, WD -vO)"” 2

1QIT(y - 1)
[|91|(|B| + ZI/\ 1Zo. "™ |Ex(s)] (o) + Zwuf’ﬂF (s)|(nk))
j=1

+1s] (|A| ¥ Z i Zo P Fx(s)|(si>)}
i=1

S el |F(9)|(T) + W2 (823, Q) <|A| + Z i Zg P |Fx(s)‘(§i)>

i=1

+Wy(Qy, 92)<|B| + Z 1o B (o) + Y 184l

j=1

By Proposition 2.5 we have

q-
)i F()/ YO -y () x(o)| de

< / VW) - (@)

~ <w(s) - (0))*
= F—lell-
(g+1)

From (H7) we derive

|F(c)] < [f (5, 2(06), ZE x(e)) - f(5,0,0)| + |f(5,0,0)|
< Li|x(65)|

W ales)| + M,

_ q
<Lyl +Lz(‘“*f()q—+lﬁ)m))nxn + M,

_ q
< (Ll +L2W§L]7j’l()°”)nxn M.

Then we compute that

5V |F)|[(T) < [LiWi(T, @) + LoWi (T, g + @) ] llxl| + My Wi (T, ),
Ig:ﬂt?‘//

Fi()|(5)

<[LiWi(& o - B) + LoV (&g + « — B) | lxl + My W (5, — Bo)
7o [Es)| (o))

< [L1Wi(oj,a = ) + LaWi(0j, g + o — w)) ] llxll + My Wy (07,0 — )

75 |E6)|( )
k=1

(18)

(19)

(20)

Page 9 of 28
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W
o

Ee(s)|(ni0) < [L1W1(nis @) + Lo (s g + ) [ (161 + My Wi (s, ). (21)
From (18), (19), (20), and (21) we obtain
[(Qx)(s)| < ALy, La)ry + A(M,0) + |A|Wa(Q3, Qa) + |B[W2(21, ),
which implies that || Qx|| < r;. Hence OB, C B,,.
Step 11. The operator Q : E — E is a contraction.

Let x, y € E. For each ¢ € J, we get

|((Qx)(s) = (Q(9))]

11 Y x| o " | Fuls) - By (s)[ (&)

i=1

el

-1
Fi(s) - Fy(9)|(T) + w[

1R2IT(y)

+ 19| (Z g1 To 7 |Eols) — Bys) (o) + D 18kl ZoY | Euls) - Fy<s)|(nk))]

j=1 k=1

(W (T) - w(o»”[ ( ! -
+ —— | |21} [MIZo: " |Fels) = Fy(s)| (o))
|Q|F(}/ _ 1) 1 le J1-=0 | y i ]

r
Y 18T

k=1

Fy(s) - Fy(s>|(nk)) #1901 Y oy Zg

i=1

Fi(s) - Fy(5)|(5i)i|

= TV [Ee(s) = Fy(9)|(T) + Wa(S23, ) > leon| Zg P | Fils) - Fy(9)|(€0)

i=1

+ Wy (1, 2) (Z I)\;IIgf“’;w |Fx(5) - Fy(S)|(Uj)

j=1

r
Y 18T
k=1

Fi(s) - Fy(S)|(nk)). (22)

From (H;) we obtain

IEA(6) = Fy(s)| = |f (c.2(06), T x(e ) — (5,0 6), ZE y(e )|
<Li|x(05) - y(05)| + Lo|TE x(e ) - TE x(e )|

(¥(es) - (0))!
I'(g+1)

(1//(;)—1#(0))”7)”x_ I
I'(g+1) -

=Lillx—yll + Ly llx -yl

< (Ll + 1Ly (23)

Then by substituting (23) into (22) we get

[(Qx)(5) - (Q9)(s)|
< [LiWi(T, @) + LyWi(T, q + o) lx -y

n
+ W (921, Q) (Z II[L1Wi (o), — ) + LaWa (0,7 + @ = )] 1 =
j=1
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+ Z 18k [L1 W1 (ks @) + LWy (i, g + ) ] |% —yll) + W (23, 4)
k=1

X (Z |60t|[L1‘I’1(§z’»05 - B+ LyViGg+a —ﬂi)]llx—yH),

i-1
which illustrates that || Qx— Qy|| < A(Ly, Ly)|lx—y|. In view of the condition A(Ly,L;) < 1,
we get that Q is a contraction. Hence by Lemma 3.1 we get that the solution x € E is unique

on J for the supposed v -Hilfer FBVP describing the thermostat control model (3). The
proof of the theorem is completed. d

3.2 Existence property
The second result is obtained by invoking the Schaefer fixed-point theorem (Lemma 3.3).

Lemma 3.3 ([36]) Let Q:E — E bea completely continuous self-map on the Banach space
E,and let P={x € E:x =k Ox,0 <k <1} be bounded. Then a fixed-point exists for Q in
E.

Theorem 3.4 Letf :J x R? — R be continuous. Suppose that:
(Hy) There exist nonnegative continuous functions ky, ka, ks € C(J, R* U {0}) such that

If (c,u,v)| < ki (s) + ko(S)|ul + ks(S) v, w,veR, g€,

with ki = supgej{kl(g)}, Ky = supgej{kz(g)}, and k§ = supgd{kg(g)}.
Then a solution exists on ] for the supposed -Hilfer FBVP describing the thermostat con-
trol model (3).

Proof We divide the proof into four steps.
Step 1. Q is continuous.
Let a sequence {x,} C E be such that x, — x in E. Then, for every ¢ € J, we obtain

[(Qx)(5) = (Qx)(5)|
(¥ (T) -y (0))
1QIT(y)

x [mu D 1| Ty |E, (s) - Fils)| &)

i=1

el

Ey,(s) = Fx(9)|(T) +

+ 10| (Z i Ze ™ |Ey, (5) = Eols)| (@)

j-1

+ ) 18kl To |Fy, (s) —Fx(s)|(nk>>}

k=1

W (s) - v (0) 2 [ ( 4 "
w2l [ g1z | E (5) — Fils) | (07)
Qe -n [ ,ZI T !

+ Y 18T | (5) - Fx(s)|<nk>>
k=1
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+1931 Y lrl 5 | (5) - Px<s)|(si)}
i=1

n

= Tg | Fy (5) = Fu(9)] (1) + Wa(S21, 20) (Z I Za. "7 |y (s) - Eals)] (o)

Jj=1

r
+ Y 18T

k=1

Fy,(s) - Fx(5)|(77k)>

+Wa(Q23, Q) Y x| |F () - Fils)| ()

i=1

< [%(T,a) + Wy (91, Q) <Z IFACEEINEDS |6k|w1(nk,a)>

j=1 k=1

+ Wa(Q3,Q0) ) || W1 (5 - ﬂ»] IEs, = Fell.

i=1

Since the continuity of f implies the continuity of F,, we obtain
|Fy, —Fxll =0 asn— oo,

and therefore Q is continuous.

Step 11. Q maps bounded sets to bounded ones contained in E.

For r, > 0, there is N > 0 such that, for every x € B,, = {x € E : ||x|| < r,}, we have || Qx| <
N.

Indeed, for any ¢ € J and x € B,,, we have

[216]
< T,V |Es)|(T)

(W (T) = p(0)) ! [ ( " . )
+ WEIZVOD (141 + 3 1ol | o) €)
Q1T () ! Zl oI

. |92|(|B| Y e [E)| () + D I8kl Px(s)|(nk))]
j=1 k=1

, WD) - ¥(0)) 2

QIT(y - 1)
x [ml | (|B| 3 IIT Y B () + Y 18T Fx(s)|(nk))
j=1 k=1

+19s| (|A| Yl 2o |Fx(s)y<si>)}

i=1

1
= Zg+

Ey(s)|(T) + Wa (<23, ) <|A| + Yl Zo Y |Fx(s)|(si)>

i=1

+ Wy (21, Q27)
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x (|B| 3 Il Es) () + D I8kl Px(s)|(nk)>. (24)

j=1 k=1
It follows from (H,) that

Eu(6)] < ki) + ka($)|x(6 )| + ks (6)| ZE x(e )|

(¥ () - ¥ (0))*
— 7 Il

fkf+(k;‘+k§ T+ 1)

(25)

Substituting (25) into (24), we get

[(Qx)(<)|
< [k;‘l’l(T,Ot) + kW (T, q + oz)] x|l

+ Wa(L23, Q) Z |oi| [k W1 (& — B) + k3 W1 (&g + o — B) ]Il
i-1

n
+ Wy(Q, w(Z M1 [K5 W (o, @ — 1) + K5 Wi (0, g + e — )] %]
j=1

£ 18kl [k W (i ) + K3 W1 (i, 7 + a)]nxn)
k=1

+ |A| W (823, Q4) + |B|W2(21, 22)

+ kW (T, @) + kW (s, 24) Y |l W1 (5 - B)
i=1

+ kW (1, Q) (Z AT EIHESY |ak|w1(nk,a)>,

j=1 k=1

from which we get
1Qx]l < A (K5, K5)ra + A (K, 0) + AWy (3, ) + B Wy(R1, 22) = N.

Step I1I. Q maps bounded sets to equicontinuous ones contained in E.
For 0 < ¢1 < ¢y < T and x € B,,, since f is bounded on the compact set J x B,,, we have

|(Qx)(s2) - (Qx)(s1)|

(W (52) = ¥ ()" ~ (¥(s1) - ¥ (0)) "]
QI ()

x [mu (|A| + Y ol 2o \Fx(s)|<sl-)>

=

i=1

+ |92 (|B| + 3 IIZe " | () + 3 18I Fx(s)|(nk))]

j=1 k=1

L |W(e) - ¥(0))” 7> = (Y (s1) — ¥ (0)" |
IQIT(y - 1)

Page 13 of 28
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[|91|(|B| +ZM 120" |F(9)| ()

+ Z 1861 52" )) + ] <|A| + Yl 2o Fx(s)|(si)>}
k=1 i=1
+|Z5Y Eus)(s2) = Zgi Euls) (1))

By setting sup ., ,)c1x B, If (¢,1,v)| =f < 00 it follows that

(Qx)(52) — (Qx)(s1)]

o~

=T+l
x [(¥(s2) = ¥ ()" +|(¥(s2) = ¥(0)* = (¥(s2) = ¥(s1)" = (¥(s1) - ¥ (0)7]]

L W(e) - ¥(0)) ™ = (¥ (s1) — ¥ (0)"
1QIT(y)

_ a—pi
[|94|(|A| fleM(j) ﬂwf?)) )

|)\| ) ) |5k| (0))a
+|92|(|B| fZ Mo — _,_1) Z F(oz+1) >:|

k=1

, Wis) - w(o»V—2 - (W (s) -y ()"
QT (y - 1)

y o=ty
[|91|(|B| fZ' '(;f(j u/+(1)>)
1810 (i) — 1 (0))°
fZ F(a +1) )

oa—p;
+|93I(|AI fZ""‘ F(a)ﬂ‘/’f(;))) )} (26)

Clearly, the right-hand side of (26) is independent of the unknown variable x and ap-
proaches 0 as ¢; — ¢;. Then the operator Q is equicontinuous. So, the operator Q ad-
mits the relative compactness on B,,, and the Arzela—Ascoli theorem gives the complete
continuity of Q.

Step IV.P={xeE:x=1Qx,7 €(0,1]} is bounded.

Let x € P. Then x = 1 Qx for some t € (0, 1]. From (H>), for each ¢ € J, we get the esti-

mate

. —p(0)!
x(g):g(Iginx(g)+%|:Q4<A Zw; b F(i“z)

— Qz( Z)\ IO* Fx(O']) - Z(Skzg;wa(nk))]

k=1

Page 14 of 28
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(¥(g) - ¥ (0)72 [ ( i S )
FRALER S S A A— )L Ia i Fx(a-) - 6k1a+ Fx(nk)
Qr(y - 1) Z ! ; ’

-9 (A - w,»zg:wma))}).
i=1

From Step II, for any ¢ € J, we get that || Qx|| <N < oo. Hence the set P is bounded.
Using Theorem 3.4, we see that we can find N > 0 such that ||x|| < N < co. By Lemma 3.3

we find at least one fixed-point for Q, which is the corresponding solution of the suggested

Y -Hilfer FBVP describing the thermostat control model (3). O

Finally, by applying the Krasnoselskii fixed-point criterion we will prove the existence
of a solution.

Lemma 3.5 ([37]) Let M be a closed convex bounded nonempty set in a Banach space. Let
Q1, O, be such that (i) Q1x + Qay € M for x, y € M; (ii) Q; is compact and continuous;
and (iii) O, is a contraction. Then there exists z € M such that z = Q1z + O»z.

Theorem 3.6 Letf :J x R? — R be a continuous functions satisfying (H,). Moreover, sup-
pose that:

(H3) f(s,u,v) <0(c), (c,u,v) € J x R, and B(s) € C(J,R*).
If

A(LlrLZ)_Ll"Ijl(T’O()_LZIIJI(T7q+a)< 1’ (27)

where A1(-,-) and V1(-,-) are given by (15) and (13), respectively, then the v -Hilfer FBVP
describing the thermostat control model (3) admits a solution on J.

Proof Let sup |8(c)| = ©* and set B, := {x e E: ||x|| < r3}, where
r3 > |A|W2(Q3, 24) + |B|W2(221, Q) + A1(©F,0).
We define Q; and O, on B,, by

(Q)(5) =TeV Fulc), c€ld,

- y-1
(szxg):%[ ( Zwlzf* ﬁ”"ﬁ"(&)

k=1

- (B -S> Iz o) - Y skzgi"’Fx(nk)ﬂ
j=1
W(s)—v(0) oW - W
+ W[ < Z)\ F, (01 ;&J{; Fx(ﬂk))

- Qg (A - Zwizg+ﬁi;wa($i)>j|r (S' € J)

i=1

Note that @ = Q; + 9».
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For any %, y € B,,, we have

[(Q1%)(5) + (Q29)(<)|

< T3V |Es)|(T) + Wa(R23, 24) (|A| + Yl Ty |Fy(s)|(s,»))

i=1
+ Wy (21, Q) <|B| 3 IIT Y ) + > 18T \Fy(s)|(nk)>
j=1 k=1

< 1AWy (23, 24) + | B W2 (21, 22)

m
+ O (T, a) + O Wy (Q3,Q24) Z |w; | W1 (&5 00 — Bi)
i1

+ O Wy (21, Q) (Z PEACEEIMESY |8k|wl(nk,a)>

j=1 k=1

= |A|W2(23, Q) + [B|W2(R1, Q) + A(OF,0) <73.

This implies that Q;x + Q2% € B,,, which satisfies Lemma 3.5(i).
Next, we show that Lemma 3.5(ii) is fulfilled.
Let {x,,} C E be such that x, — x in E. For each ¢ € J, we have

(W (T) - (0)*

(Quxa)(s) — (Qua)(s)| < Zg Cla+1)

F, (s) = F(s)[(T) < | Fx, — Exl-

Due to the continuity of f, this implies the continuity of F,. Hence we obtain
|Ey, — Fxll — 0 asn— oo.

Thus Q is continuous. Also, the set Q;B,, is uniformly bounded since
[Qix|l < O Wi(T, ).

Now we prove the compactness of Q;. Setting SUP(¢ uu)elx B2, If (s, u,v)| =f* < 00, for all

¢1, 62 € Jwith 0 < ¢1 < g5 < T, we have (see Step III of Theorem 3.4)

(Q1%)(52) — (Qu)(s1))
< | T8 Ei9)(62) - T Fuls) ()]
= F(o{ i)
+](¥(62) =¥ (0)" = (¥(s2) - ¥(s1)” = (¥(s1) - (0)*|].

[(¥(s2) - ¥(s1)” (28)

Thus the right-hand side of (28) (independently of the unknown variable x) approaches
0 as ¢» — ¢1. Therefore Q; is equicontinuous. Thus by the Arzela—Ascoli theorem Q; is

relatively compact.
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Furthermore, it is easy to compute, utilizing (27), that Q, is a contraction, and so Lemma
3.5(iii) holds. Therefore Lemma 3.5 is fulfilled, and thus a solution exists on J for the -
Hilfer FBVP describing the thermostat control model (3). O

4 The Ulam stability analysis

In this section, we prove that the y-Hilfer FBVP describing the thermostat control model
(3) is Ulam—Hyers (UH) stable, generalized Ulam—Hyers (GUH) stable, Ulam—Hyers—
Rassias (UHIR) stable, and generalized Ulam—Hyers—Rassias (GUHR) stable.

Definition 4.1 ([38]) The -Hilfer FBVP describing the thermostat control model (3) is
said to be UH stable if there exists My € R* such that for any € > 0 and for every solution
zeE of

1057 2(6) ~ £ (5,2(06), T8 2(e <)) | < e, (29)

there is a solution x € E of the v -Hilfer FBVP describing the thermostat control model
(3) such that

|2(¢) —x(s)| <Mye, el (30)

Definition 4.2 ([38]) The -Hilfer FBVP describing the thermostat control model (3) is
said to be GUH stable if there exists B € C(R*, R*) subject to 5(0) = 0 such that, for every
solution z € E of

125 2(¢) —f (5,20 6), ZE 2(e))| < eB(s), (31)

there is a solution x € E of y-Hilfer FBVP describing the thermostat control model (3)
such that

|2(s) - x(s)| < Ble), <€l (32)

Definition 4.3 ([38]) The -Hilfer FBVP describing the thermostat control model (3) is
said to be UHR stable by terms of B € C(J, R*) if there exists My,5 € R* such that for each
€ >0 and for every solution z € E of (31), there is a solution x € C of the y-Hilfer FBVP
describing the thermostat control model (3) such that

|2(¢) - x(s)| < MyeB(s), <€l (33)

Definition 4.4 ([38]) The y-Hilfer FBVP describing the thermostat control model (3) is
said to be GUHR stable by terms of B € C(J, R*) if there is My 5 € R* such that for every
solution z € E of

108" 2(5) - f (5,20 6), IE 2(e6))| < B(s), (34)

there is a solution x € E of the v-Hilfer FBVP describing the thermostat control model
(3) such that

|2(5) —x(s)| <My sB(s), ¢el. (35)
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Remark 4.5 We easily see that:
(a1) Def. 4.1 = Def. 4.2;
(a3) Def. 4.3 = Def. 4.4;
(a3) Def. 4.3 for B(g) =1 = Def. 4.1.

Remark 4.6 z € E is a solution of (29) if there exists f u € E (where u depends on z) such
that:

(i) v(s)l <€ Vsel.

(i) DGV 2(s) = f(5,2(0), T¢ 2(66)) + u(s), s € T.

Remark 4.7 z € E is a solution of (31) if there exists f v € E (depending on z) such that:
@ ()l <eB(s), Vs el.
(i) "DV 2(s) = f(5,2(06), Te 2(e <)) + v(s), s € I.

Remark 4.8 There exist an increasing function B € C(J,R*) and a constant np > 0 such
that for each ¢ € J, we have the following integral inequality:

T8V B(s) < npB(s). (36)

4.1 The Ulam-Hyers stability
First, we give the following lemma, which will be utilized in the arguments on UH and
GUH stability of problem (3).

Lemma 4.9 Let p € [0,1] and o € (1,2], and let z € E be the solution of (29). Then z € E
Sfulfills the integral inequality

|2(s) = X.(5) - I3V Fi(o)| < AQ1, 0)e, (37)
where
W) -y i
X(s) = T(y) |:Q4 <A - ;wzz((; Fz(«fz))

— QZ (B — Z )\,]Ig:'u],sz(O}) - Z 5kIgJ¢Fz(77k)>:|
-1

k=1

— y-2 n o r .
+ % |:Ql (B - Z }‘iIO+ ulwaz(Uj) - Z SkIg‘:sz(nk))
Jj=1 k=1

— Qg (A - Z wiIg:ﬂi;sz(&')>:| (38)
i=1

with Q1, Qa, Q3, Q4, 2, and A(-,-) given by (6), (7) (8), (9), (10), and (15), respectively.

Proof Let z satisfy (29). By Remark 4.6(ii) and Lemma 2.8 we obtain

HDLY 2(6) = f(5,2(06), T8 2(e)) + u(s), ¢ €(0,T],

. (39)
ir0; i
Yo wi”Bgf Vag) = A, Z,il )»,”5351 ! 2(07) + 3 ko1 Sxz(nk) = B.

Page 18 of 28
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Then the solution of (39) can be written in the form

. —(0))1 “ 8
z(¢) = Ig;sz(g) + % [94 (A - Z: wiLy;s ﬁ"sz(gi)>

_Qz< Z)\ Ig+ sy F (U])—ZS/( F (nk)>:|
(W(6) - w0y ,
*W[ ( Zﬂg+‘ VEo) - 30T F(m))

k=1
-3 <A - Zwizgﬁ“”a(a))]

i=1

—_ -1 i — iy ! .
+ Iglwu(g) + % |:Qz (Z )L,‘Ig+ i M((Il‘) + Z (SkIg;]/fM(nk))
j=1 k=1

m

m -2
_94Zwizg;ﬁi;wu(§i)] RULEU [ngw T e
i=1

- <Z/\I““’ u(o,)+25k1a u(')k))]

k=1

Remark 4.6(i) implies that

|2(s) = X.() - I3 Fu(<)|

— y-1
bt u(g)+%[92<2)nfx i u(a,)+ZSkIa u(nk)>

k=1

“ B} — ¥ (0))r2 -~ )
- Z wizgfﬂ”wu(&)} + —(w(é)r(;//_( 1))) |:S23 Z wiIgfﬁ“wu(&)
i=1 i=1

- (Z A,Igfuj;wu(oj) + Z 8ﬂ§‘i¢u(m)) } ‘

j=1 k=1

{%(T o) + —|(|Q4I‘P1(T v = 1) + Q3| Wi (T, y - 2)) lezl%(éntx Bi)
i=1

1 n
+ g1l ((Toy = 1)+ 09 (T, - 2) > Il (oje - 1)
j=1

+ @(|92|‘1’1(T ¥ =1+ |W(T,y -2) Z|8/<|“I"1(77k7 }

= {‘I‘l(T,Ol) + Wy (23, Q24) Z ;| W1 (&5 0 — By)

i=1

+ Wy(Q1, Q) (Z ANCTEIHEDY |8k|w1(nk,a)) }e

j=1 k=1

Page 19 of 28
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= A(1,0)e.
Inequality (37) is achieved. a
Next, we prove the UH and GUH stability of solution to problem (3).

Theorem 4.10 Letf :J x R? — R be continuous, and let (H,) be satisfied subject to
LI\I'I(T,a) + Lz‘pl(T,q + 0[) <1

Then the v -Hilfer FBVP describing the thermostat control model (3) is UH and GUH stable
inE.

Proof Let z € E satisfy (29), and let x € E be a unique solution of the y-Hilfer FBVP de-

scribing the thermostat control model (3) with nonlocal conditions of the form
m n ) w r
Z a),»H@gi’p"/’x(Ei) =A and Z )»,»H’Dgi’p’ x(0y) + Z Sxx(nk) = B.
i=1 j=1 k=1

By using Lemma 2.8 we have

x() = Xu() + T Fulo),

where

(WQ—MW“[ ( 2 b )
Xy(c)= VO o (A= oz E(e)
Qr(y) ! 21: °

- Qz <B - Z ijg:#/;wa(aj) - Z 8kIg;wa(nk)>i|
j=1

k=1

W () - ()" - o
"ary-n [9 (B - )= akzgmnk))

-9 (A -3 wizg:“f””Fx(s,»))}. (40)

i=1

On other hand, if 7D x(&,) = HDI 7(£,), 1D x(0;) = "D 2(07), and x(ny) =
z(ni), then Xy (¢) = X,(¢). By applying the triangle inequality |x + y| < || + |y| and Lemma
4.9, for ¢ € J, we obtain

|2(s) - x(s)|
= |2(s) = Xuls) - ZEV Ful5))|
< [2(6) = Xul) = gl Fuls)| + T5 [Fols) = Exl5)| () + [ Xul) = Xis)|

< A@1,0)€ + (L1 Wi(T, ) + LoWi (T, g + @) |z() — x(s)

’

Page 20 of 28
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which implies that

A(l,O)
(L (T,0) + L (Tog o)

|2(s) - x(c)| < -

By setting

A(1,0)

M =
I T (WW(T, ) + LW (T, + @)

we get |z(¢) —x(¢)| < Mye. Therefore problem (3) is UH stable. Moreover, if we take B(e) =
M;ye with B(0) = 0, then the v/ -Hilfer FBVP describing the thermostat control model (3)
is GUH stable. a

4.2 The Ulam-Hyers-Rassias stability
This lemma will is helpful in the arguments on UHR and GUHR stability of our results.

Lemma 4.11 Let p € [0,1] and « € (1,2], and let z € E be the solution of (31). Thenz € E
Sfulfills the integral inequality

|2(¢) — X(c) ~ T Eu(s)| < @enpB(s), (41)
where
=1+ wz(szl,szz)(Z IEDS |6k|> + Ws(Q3, Q) ) |, (42)
j=1 k=1 i=1

and X,(c) is defined by (38).

Proof Let z satisfy (31). By Remark 4.7(ii) and Lemma 2.8 the solution of the problem

‘ngf”‘”z(g) (6 206), T Hec) +W(c), ¢ €(0,T], )

.05 ‘/f r
Z:ﬁl wiH®g+p 1WZ(S:’) = A, Z] 1 )\ HQM} "~ ) + Zk:l (Skz(nk) =B,

can be written in the following form:

. —(0))r1 " iy
2s) =TSV F() + % [94 (A - 21: wiZy: “""’B(&))

— QZ( Z)\ Ia i FZ(G]') - Zakzg;¢Fz(nk)):|
k=1

(W () — ¥ (0)r2 [ ( i )
FALACTANE &2 AI‘X i F,(o)) - SkIa F.(nx)
Qr(y - 1) Z ' ;

—93<A Za), LF(&)]

- y-1
+ Igi‘/fv(g) + % |:Qz (Z A IO+ WY V(O']) + Z (SkIg», V(ﬂk))
k=1



Thaiprayoon et al. Advances in Difference Equations (2021) 2021:201 Page 22 of 28

_ y-2 i
- Q4ZwI°’ it } ' —(I”(é)r (yw_(ol))) [93 > oLy uE)
i=1

- (ZA Lo " V(Uj) Y I uV(nk)ﬂ .

k=1

From Remarks 4.7(i) and 4.8 we obtain the following estimate:
|2(¢) = X.(5) - IV Fi(o)|

_ y 1 n r
=75 v(s) + %[ (Zx, o (a,-)+25kzg;%(nk))

j=1 k=1

- BV e (W(s)-v(0)r " I
— Q4 lzzl: szg+ V(Sz)i' + W |:93 lzzlj szg+ (&)

—Ql(X:)LZO”4 v(a])+25kzawl’(77k)>:”

j=1 =

< {1+ ‘I’l(T|QV| 2 [|92|(Z|x |+ Zwu) + |94|Z|wl }
+ %[MZW + m(Zw +Z|8k|)“en58<;)
i=1

j=1 k=1

= ®enpB(c),
from which we get (41). O
Next, we check UHR and GUHR stability of solution to problem (3).
Theorem 4.12 Let f : J x R? — R be a continuous mapping under the assumption (Hy),
and let (36) be satisfied. If (L1V1(T,a) + LoV (T, q + «)) < 1, then the -Hilfer FBVP de-

scribing the thermostat control model (3) is UHR and GUHR stable in E.

Proof Let z € E satisfy (31), and let x be a unique solution of (3). By Lemma 4.11 we get

x(¢) = Xu(5) + T8V Fulo),

where X,(¢) is given by (40). Similarly, if H@gi’p;wx(“g‘l) H@gipwz(él) HCDM’M/ x(0j) =
H@gfp;wz(a/), and x(nx) = z(nk), then X, (¢) = X,(¢). Applying the triangle inequality with

Lemma 4.11, for ¢ € J, we estimate

|2(5) —x(5)| = |2(s) = X(s) - TEV Ful5))|
<|2(s) = X(6) ~ TGV Fuo)| + T3 |Fuls) = Fu(s)] () + | Xa(s) = Xils)|

< OenpB(s) + (Ll‘ljl(T,Ol) +LyWi(T,q + Gf))
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where © and W, (-, -) are defined by (42) and (13), respectively. Then

@I'IB

e e A P AT e
By setting
Mf,B _ @I’IB

1-(LiVi(T,0) + LyW (T, q + )

we get the estimate
|2(5) - x(5)| < My B(s)e. (44)

This proves that the v -Hilfer FBVP describing the thermostat control model (3) is UHR
stable. Furthermore, taking € = 1 in (44) with B(0) = 0, the ¥ -Hilfer FBVP describing the
thermostat control model (3) is GUHR stable. O

5 Example
In this section, we provide some examples compatible to the exactitude and applicability

of our main results.

Example 5.1 Consider the v -Hilfer FBVP describing the thermostat control model

e 7T5e
x(g) :f(g,x(eg):l-m x(ag)), (SIS (013/2]1
NG
p (mn—l(i))H@ng,%;e 2
i= +

(i+1)2

YL (sinGE) Dy

I 31,
00

(45)

w[G

*(ii) =

’

I
3

sl

1.
135€

24+ Y e () = - L.

Herew =3/2,q=m, p=1/3, ¥ () =exp(\/5/2), T=3/2,m=2,n=2,r=2, B = /(2i +
1), uj= \/}/(] +1), w; = (tan~ 1))/ (( + 1)?), Aj =sin((m)/(j + 1)), 6k = exp(—vkr), & = i/(i +
1), 05=(G+1)/(2 +3), ;= Vkl(k +1), i =j=k=1,2, A= +/3/2, and B = -1/3. From
this information we can calculate that Q; ~ 0.2318892799, Q, ~ —0.2621694875, Q3 ~
0.2107768913, 24 ~ 0.1675500424, and Q2 ~ 0.09411232825 # 0.

(i) Consider the function

-
f(5,%(0.26), 7 = %(0.5¢))

NG

e 2
_S ., 2+1 k029 (451 IZ37* %(056))
c+1 2-cos?m¢c 4+ |x(0.2¢)] 4

@
25+ 177 7 x(0.5¢))

with # =1/5and ¢ = 1/2. For x;, y; € R, i = 1,2, and ¢ € [0, 3/2], we can find that

1
X1 —X| + = |y1 = y2l.
|1 — %2 4|y1 ¥a

N =

[f(c,x1,91) —£(S %2, 72)| <
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Assumption (H;) is satisfied with L = % and L, = %. Hence
A(1/2,1/4) =~ 0.7369944526 < 1.

All assumptions of Theorem 3.2 are fulfilled; thus the y-Hilfer FBVP describing the ther-
mostat control model (45) has exactly one solution on [0, 3/2]. Further,

A(1,0
My = (1,0) ~ 1.066442242 > 0.
1-(LYi(T,0) + LyW (T, q + o))

By Theorem 4.10 the v -Hilfer FBVP describing the thermostat control model (45) is both
UH and GUH stable on [0, 3/2]. Setting B(s) = ¥(s) — ¥ (0), by Proposition 2.5(i) we easily
compute that

1B - - (wi0)- ) Fere) < HEE D o)
0 B(g) = —(¥(s) - §) < ————06(s).

I'(3) 157

v6 5
Then inequality (36) is satisfied with ng = % >0 and © ~ 2.901034837. It follows
that
@I’IB
My g = ~ 0.4142937053 > 0.

1-(L1Vi(T,0) + LyW (T, q + o))

Therefore by Theorem 4.12 the y-Hilfer FBVP describing the thermostat control model
(45) is both UHR and GUHR stable on [0, 3/2].
(ii) Consider the function

NG
flex(v2612, T3 * x(v/3512))

B 2es J2¢+1

= -sin” x(v/25/2
(§+2)2+ o5 sin ‘x(x/—g/ )‘

NG
, deos’(r) IZe7 * x(v/312)]

es +1 wa
4+ 17077 x(V/3¢/2)]

with 6 = +/2/2 and & = /3/2. For x;, y;€R,i=1,2,and ¢ € [0,3/2], we can find that

lf(g’xliyl) _f(gerry2)|
V26 +1 cos?(rr¢)
Y

2 1
X1 =% + ———=2 |91 —yo| < Zlay — 22| + = |y1 — 2.
Y [ — 22| 11 ly1 =21 < 5|961 2 2|y1 Y2l

This means that assumption (H;) is satisfied with L, = 2/5, L, = 1/2, and A(2/5,1/2) =~
0.6261447320 < 1. Therefore, for any x, y € R and ¢ € [0, 3/2], we can estimate

J2e s JS2c+1 cos?(mr ¢)
x| + [yl

<
[f(g,x,y)|_(g+2)2+ c+5 es+1
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Assumption (H,) is also valid with k; = (v/2e79)/((¢ + 2)?), k(<) = (V2¢ + 1)/(¢ + 5),
k3(s) = (cos*(m))/(eS +1),and k} = V214, ki =2/5 k% = 1/2. Therefore the assumptions of
Theorem 3.4 are fulfilled, and thus the y-Hilfer FBVP describing the thermostat control
model (45) has at least one solution on [0, 3/2]. Moreover, we get

A(1,0)

My = ~ (0.8546613342 > 0.
1- (LI\IJI(T’O[) + LZ"Ijl(T’q + Ot))

Therefore by Theorem 4.10 problem (45) is both UH and GUH stable on [0, 3/2]. Fur-
thermore, if we set B(¢) = (¥(¢) — ¥(0))3?, then by Proposition 2.5(i) we easily compute

that
/6
‘ INED) 3 (e —1)3
Ia;w[j’ =2 —9(0)2"0(¢c) < ———20(¢).
or B(s) F(%Hx)(llf(g) v(0)) (¢) < NG (s)
Then inequality (36) is satisfied with ne = d 3 \/%1) > 0 and O ~ 2.901034837. It follows
that
@nB
My = ~ 0.1683734132 > 0.

1- (Ll\Ifl(T,Ol) + Lz\pl(T,q + Ol))
Therefore by Theorem 4.12 problem (45) is both UHR and GUHR stable on [0, 3/2].

(iii) Consider the function

xa
F(sx(s3), T x(s14))

S
3 o) st T /)
° (26 +3)?

1 2 5 \/E )
S+ S+ —
2+ |Ig(’e x(s/4)]

with 6 =1/3 and ¢ = 1/4. For x;, y; € R, i = 1,2, and ¢ € [0, 3/2], we can find that
[f (o1, 91) = f (S22, 72)| < §|x1 — x| + %U/l -yl

This means that assumption (H;) is satisfied with L; = 3/5 and L, = 1/9. We have
A(Ly, Ly) — LW (T, o) — Ly (T,q + o) =~ 0.5034171857 < 1

and

-3¢
V(g,x,y)| - e . 3 . 1 ’
“c¢c+1 2Q2¢+5) (2¢+3)?

which satisfy assumption (Hs3) and (27), respectively. Applying Theorem 3.6, we find a

solution for the y-Hilfer FBVP describing the thermostat control model (45) on [0, 3/2].
Moreover, we can also calculate that

A(1,0)

Mr = ~ 1.341638979 > 0.
4 1-(LVYi(T, ) + LyW(T, q + ) ”
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Therefore by Theorem 4.10 problem (45) is both UH and GUH stable on [0, 3/2]. In addi-
tion, if we set B(¢) = (¥(¢) — ¥ (0))3, then by Proposition 2.5(i) we easily compute that

V6 9
: I'(4) 3ra 64(es —1)°
To' B(g) = =——— ~9(0)*"0(g) < ——————0(c).
s B(s) Tdra) (V(s)-v(0) " O(s) < 3150 (s)
3
Then inequality (36) is satisfied with 76 = S>> 0 and © ~2.901084837. It follows
that
@I’IB
My = ~ 0.2424862463 > 0.

1-(L1Yi(T,0) + LyW (T, q + o))

Therefore by Theorem 4.12 the  -Hilfer FBVP describing the thermostat control model
(45) is both UHR and GUHR stable on [0, 3/2].

6 Conclusions

Oriented by the recent trend that supports considering some well-known physical mod-
els in the frame of generalized fractional operators, we study the model of thermostat that
controls the heating or cooling sources. The model is described using integro-differential
equation in the context of the generalized ¥ -Hilfer fractional operator. Unlike previous
research works, we proved the existence and uniqueness of solutions for a generalized
category of the v -Hilfer FBVP describing the thermostat control model. The fixed-point
approaches due to Banach, Schaefer, and Krasnoselskii are used to establish the relevant
results. Different kinds of the Ulam stability, such as UH, GUH, UHR, and GUHR sta-
bility are also investigated. Moreover, the results are well confirmed by several numerical
examples. Note that we can continue such a research by extending it to coupled systems of
fractional thermostat BVPs in terms of newly defined fractional operators with nonsingu-
lar kernels. Also, to obtain the exact solutions of such a coupled system, there are different
numerical algorithms, which we can implement on these generalized fractional models in
the next studies.
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