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Abstract
We consider distributed-order partial differential equations with time fractional
derivative proposed by Caputo and Fabrizio in a one-dimensional space. Two finite
difference schemes are established via Grünwald formula. We show that these two
schemes are unconditionally stable with convergence rates O(τ 2 + h2 +�α2) and
O(τ 2 + h4 +�α4) in discrete L2, respectively, where �α, h, and τ are step sizes for
distributed-order, space, and time variables, respectively. Finally, the performance of
difference schemes is illustrated via numerical examples.
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1 Introduction
The concept of fractional derivative can be traced back to the letter of Leibniz to L’Hospital
in 1695. Mathematician Euler discovered the Γ function in 1729, which established the
foundation of fractional derivative. Compared with the classical integer-order models,
fractional derivatives provide a more profound and comprehensive explanation about
memory, heredity, non-locality of complex phenomena and processes. At present, the
most commonly used definitions of fractional derivatives are the Grünwald–Letnikov
derivative, the Riemann–Liouville derivative, the Riesz derivative, and the Caputo deriva-
tive [1]. Some new fractional derivatives, such as the Caputo–Fabrizio derivative and
the Atangana–Baleanu fractional derivative, have tremendously promoted the capability
of modeling complex physical phenomena and processes. The connatural behavior has
been analyzed for evolution equations generated by three fractional derivatives namely
the Riemann–Liouville, Caputo–Fabrizio, and Atangana–Baleanu fractional derivatives
[2–4]. The Caputo–Fabrizio derivative is defined via an integral operator without singu-
lar kernel [5, 6], and it has supplementary motivating properties compared to the others.
For example, it can describe substance heterogeneities and configurations with different
scales, which noticeably cannot be characterized by the local theories. The properties
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of numerical approximation are discussed for the initial value problems with Caputo–
Fabrizio fractional derivative operator [7, 8]. Several valuable applications to the real world
data, such as blood ethanol concentration system, chickenpox disease model, and dengue
fever outbreak model, have been discussed; the discussions were based on the fractional
derivatives in the Caputo sense, Caputo–Fabrizio sense, and Atangana–Baleanu–Caputo
sense, respectively [9–15].

In the past decades, anomalous transport has been discussed in a wide range of appli-
cations, for example, turbulence [16–19], geoscience [20], bioscience [21, 22], porous me-
dia [23–27], viscoelastic material [28–30], and so on. The underlying anomalous features,
manifesting in memory-effects, sharp peak, power-law distribution, self-similar structure,
and nonlocal interactions, can be well described by fractional partial differential equa-
tions [31–33]. However, in some applications, a single power law cannot characterize
more complex physical processes, such as decelerating sub-diffusion [34, 35], accelerat-
ing super-diffusion, and random processes subordinated to Wiener processes [31, 36].
These processes can be described by the distributed-order derivatives first introduced
by Caputo, see [35] and the references therein. Recently, it is believed that distributed-
order differential equations are more suitable for describing complex dynamic systems
than fractional-order models.

Usually, it is difficult to obtain analytical solutions of these models, so different numer-
ical schemes for fractional partial differential equations(FPDE), which can exhibit history
dependence and nonlocal features, have been developed. The common numerical meth-
ods for fractional partial differential equations include finite-difference [37–41], finite-
element methods [42, 43], finite volume schemes [44–46], mixed finite element schemes
[47], spectral/spectral-element schemes [48, 49], the decomposition method [50, 51],
and others [52]. In [53–56], numerical analysis for distributed-order FPDEs was exten-
sively investigated. More recently, Tomovski and Sandev [57] expressed the solutions of
generalized distributed-order diffusion equations equipped with fractional time deriva-
tives by use of the Fourier–Laplace transform. The authors [58] obtained the existence
about Cauchy problems for the diffusion equations with time distributed-order deriva-
tive, they also computed it by Laplace transform and Fourier transform. Luchko [56] dis-
cussed the dependence of the uniqueness and continuity of the generalized time frac-
tional diffusion equations on initial conditions. However, there are few numerical studies
about the distributed-order equations, especially the study about high-order schemes is
almost blank. It has motivated us to find efficient numerical schemes for distributed-order
FPDEs.

Consider the following distributed-order fractional diffusion equation equipped with
the fractional derivative developed by Caputo and Fabrizio [5]:

⎧
⎪⎪⎨

⎪⎪⎩

Dw
t u(x, t) = ∂2u(x,t)

∂x2 + f (x, t), (x, t) ∈ Ω × (0, T],

u(x, 0) = 0, x ∈ Ω ,

u(x, t) = 0, x ∈ ∂Ω , 0 ≤ t ≤ T ,

(1)

where the distributed-order derivative in the Caputo–Fabrizio sense is defined as follows:

Dw
t u(x, t) =

∫ v2

v1

w(α)CF
0 Dα

t u(x, t) dα, w(α) ≥ 0,
∫ v2

v1

w(α) dα = c0 > 0
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CF
0 Dα

t u(x, t) =
1

1 – α

∫ t

0
u′(x, s) exp

[

–α
t – s
1 – α

]

ds,

and 0 < v1 < v2 < 1, Ω = (a, b), and f (x, t) represents the source term.
This paper has the following organization. Section 2 provides some preliminary work,

including the space partition, the inner products, and norms. Section 3 is devoted to the
finite difference scheme, which is proved to be second-order with respect to distributed-
order, space, and time respectively, and the stability and convergence rates are also studied.
In Sect. 4, a compact finite difference method is proposed, the stability and convergence
are rigorously proved. Section 5 provides numerical tests that illustrate the reliability of
theoretical analysis. In Sect. 6 we summarize this paper and indicate the possible work in
the future.

2 Preliminary
In order to establish finite difference methods, the space interval [a, b] is partitioned by
xi = a + ih (0 ≤ i ≤ M), and the time interval [0, T] is partitioned by tk = kτ (0 ≤ k ≤ N ),
with M, N positive integers and h = (b – a)/M the spatial grid size and τ = T/N the tem-
poral step size. Divide the integral interval [v1, v2] to 2J subintervals, �α = v2–v1

2J . Denote
αl = v1 + l�α, l = 0, 1, 2, . . . , 2J . Let Ωh = {xi : 0 ≤ i ≤ M}, Ωτ = {tk : 0 ≤ k ≤ N}, thus the
computational range [a, b] × [0, T] has a discretization Ωh × Ωτ . A grid function u is rep-
resented as uk

j = u(xj, tk). Uk
j denotes the finite difference solution at the grid point (xj, tk).

Denote Vh = {v|v = (v0, v1, . . . , vM)}. For any grid function v ∈ Vh, we define the difference
quotient operators

δxvj =
vj – vj–1

h
, 1 ≤ j ≤ M; δ2

x vj =
vj+1 – 2vj + vj–1

h2 , 1 ≤ j ≤ M – 1,

and the average operator

Avj =

⎧
⎨

⎩

1
12 (vj+1 + 10vj + vj–1), 1 ≤ j ≤ M – 1,

vj, j = 0, M.

It is easy to see

Avj =
(

I +
h2

12
δ2

x

)

vj,

where I denotes the identical operator. We also denote Av = (Av1,Av2, . . . ,AvM) for v =
(v1, v2, . . . , vM), and A(u, v) = (Au, v) with (·, ·) the discrete L2 inner product defined below.

For two grid functions u, v ∈ V 0
h = {v|v ∈ Vh, v0 = vM = 0}, the discrete inner products

and norms are defined as follows:

(u, v) = h
M–1∑

j=1

ujvj, 〈u, v〉 = h
M∑

j=1

δxujδxvj,

and

‖u‖2
2 = (u, u), |u|21 = 〈u, u〉, ‖u‖∞ = max

1≤j≤M–1
|uj|.
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By summation by parts and the boundary conditions, it is easy to get that
(
δ2

x u, v
)

= –〈u, v〉 =
(
u, δ2

x v
)
.

For the average operator A, we also define

‖v‖2
A �A(v, v) = (Av, v).

Additionally, denote by Vτ = {v|v = (v0, v1, . . . , vN )} the space of all grid functions with
respect to Ωτ . Given a grid function v ∈ Vτ , we denote the difference quotient in time
direction as

δtvk =
vk – vk–1

τ
.

Lemma 1 ([59]) The following inequalities hold for any grid function v ∈ V 0
h :

‖v‖2 ≤ b – a√
6

|v|1,
1
3
‖v‖2

2 ≤ ‖v‖2
A ≤ ‖v‖2

2.

Throughout this paper, the symbol C will indicate a genetic constant that depends on
the function u and may assume different values at different occurrences, and the symbol
O(S) indicates a quantity bounded above by S with a constant.

3 A second-order scheme for space and distributed order
Lemma 2 ([60]) If s(α) ∈ C2[v1, v2], then we have

∫ v2

v1

s(α) dα = �α

2J∑

l=0

cls(αl) –
�α2

12
s(2)(ξ ), ξ ∈ (v1, v2),

where

cl =

⎧
⎨

⎩

1
2 , l = 0, 2J ,

1, l = 1, 2, . . . , 2J – 1.

Differential equation (1) has the form at the node (xi, tn)

Dw
t u(xi, tn) =

∂2u(xi, tn)
∂x2 + f (xi, tn), 1 ≤ i ≤ M – 1, 1 ≤ n ≤ N – 1. (2)

Let s(α, xi, tn) = w(α)CF
0 Dα

t u(xi, tn), and we set w(α) ∈ C2[v1, v2], CF
0 Dα

t u(xi, t)|t=tn ∈
C2[v1, v2]. By Lemma 2 we obtain

Dw
t u(xi, tn) =

∫ v2

v1

s(α, xi, tn) dα

= �α

2J∑

l=0

cls(αl, xi, tn) –
�α2

12
∂2s(α, xi, tn)

∂α2

∣
∣
∣
∣
α=ξn

i

= �α

2J∑

l=0

clw(αl)CF
0 Dα

t u(xi, tn) + O
(
�α2),

where ξn
i ∈ (v1, v2).
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We have [61]

CF
0 Dαl

t u(xi, tn) =
1

αlτ

n∑

k=1

Gαl
n–k

[
u(xi, tk) – u(xi, tk–1)

]
+ O

(
τ 2)

=
1

αlτ

[

Gαl
0 u(xi, tn) –

n–1∑

k=1

(
Gαl

n–k–1 – Gαl
n–k

)
u(xi, tk) – Gαl

n–1u(xi, t0)

]

+ O
(
τ 2), (3)

where

Gαl
k = exp

[

–αlτ
k

1 – αl

]

– exp

[

–αlτ
k + 1
1 – αl

]

.

Noting that u(x, 0) = 0, we have

Dw
t u(xi, tn) = �α

2J∑

l=0

clw(αl)
1

αlτ

[

Gαl
0 u(xi, tn) –

n–1∑

k=1

(
Gαl

n–k–1 – Gαl
n–k

)
u(xi, tk)

]

+ O
(
τ 2 + �α2) (4)

and

∂2u
∂x2 (xi, tn) = δ2

x un
i + O

(
h2). (5)

Substituting (4) and (5) into (2), we get

�α

2J∑

l=0

clw(αl)
1

αlτ

[

Gαl
0 un

i –
n–1∑

k=1

(
Gαl

n–k–1 – Gαl
n–k

)
uk

i

]

= δ2
x un

i + f n
i + (r1)n

i , 1 ≤ i ≤ M – 1, 1 ≤ n ≤ N , (6)

and there exists a constant C satisfying

(r1)n
i ≤ C

(
τ 2 + h2 + �α2).

The boundary and initial conditions show that

u0
i = 0, 1 ≤ i ≤ M – 1,

uk
0 = uk

M = 0, 0 ≤ k ≤ N .
(7)

Canceling the infinitesimal part and replacing the true solution uk
i with approximate

solution Uk
i , we get the finite difference method as follows:

�α

2J∑

l=0

clw(αl)
1

αlτ

[

Gαl
0 Un

i –
n–1∑

k=1

(
Gαl

n–k–1 – Gαl
n–k

)
Uk

i

]

= δ2
x Un

i + f n
i , 1 ≤ i ≤ M – 1, 1 ≤ n ≤ N ,

U0
i = 0, 1 ≤ i ≤ M – 1,

Un
0 = Un

M = 0, 0 ≤ n ≤ N .

(8)
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3.1 Stability analysis
We give a lemma about Gαl

k which is useful in the stability analysis.

Lemma 3 ([61]) From the definition of Gαl
k , we have Gαl

k > 0 and Gαl
k+1 < Gαl

k , ∀k ≤ N .

Rearranging equation(8), we get

�α

2J∑

l=0

clw(αl)
1

αlτ

n∑

k=1

Gαl
n–kUk

i – δ2
x Un

i

= �α

2J∑

l=0

clw(αl)
1

αlτ

n–1∑

k=1

Gαl
n–k–1Uk

i + f n
i , 1 ≤ i ≤ M – 1, 1 ≤ n ≤ N . (9)

Denote η1 = �α
∑2J

l=0 clw(αl) 1
αlτ

. Multiplying both sides of equation (9) by hUn
i and mak-

ing summation with respect to i from 1 to M – 1, we obtain

η1

n∑

k=1

Gαl
n–k

(
Uk , Un)+

∣
∣Un∣∣2

1 = η1

n–1∑

k=1

Gαl
n–k–1

(
Uk , Un) +

(
f n, Un).

Noting Lemma 1 and Young’s inequality, we have

6
L2

∥
∥Un∥∥2

2 + η1Gαl
0

∥
∥Un∥∥2

2 ≤ η1

n–1∑

k=1

(
Gαl

n–k–1 – Gαl
n–k

)(
Uk , Un) +

L2

24
∥
∥f n∥∥2

2 +
6
L2

∥
∥Un∥∥2

2.

Using the triangle inequality, we obtain

η1Gαl
0

∥
∥Un∥∥2

2 ≤ η1

2

n–1∑

k=1

(
Gαl

n–k–1 – Gαl
n–k

)(∥
∥Uk∥∥2

2 +
∥
∥Un∥∥2

2

)
+

L2

24
∥
∥f n∥∥2

2.

Consequently, we get

η1Gαl
0

∥
∥Un∥∥2

2 +
η1

2

n–1∑

k=1

(
Gαl

n–k – Gαl
n–k–1

)∥
∥Un∥∥2

2

≤ η1

2

n–1∑

k=1

(
Gαl

n–k–1 – Gαl
n–k

)∥
∥Uk∥∥2

2 +
L2

24
∥
∥f n∥∥2

2.

Namely,

η1

2
(
Gαl

0 + Gαl
n–1

)∥
∥Un∥∥2

2 ≤ η1

2

n–1∑

k=1

(
Gαl

n–k–1 – Gαl
n–k

)∥
∥Uk∥∥2

2 +
L2

24
∥
∥f n∥∥2

2.

Then it follows that

η1

2

n∑

k=1

Gαl
n–k

∥
∥Uk∥∥2

2 ≤ η1

2

n–1∑

k=1

Gαl
n–k–1

∥
∥Uk∥∥2

2 +
L2

24
∥
∥f n∥∥2

2.
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Denote

Q
(
Un) =

η1

2

n∑

k=1

Gαl
n–k

∥
∥Uk∥∥2

2.

Making summation with respect to i from 1 to N shows that

Q
(
UN) ≤ Q

(
U0) +

L2

24

N∑

n=1

∥
∥f n∥∥2

2.

Observing that U0 = 0 implies Q(U0) = 0, we have

Q
(
UN) ≤ L2

24

N∑

n=1

∥
∥f n∥∥2

2.

Theorem 1 For scheme (8), stability inequality is as follows:

Q
(
Um) ≤ L2

24

m∑

n=1

∥
∥f n∥∥2

2, ∀0 ≤ m ≤ N .

3.2 Optimal error estimates
Combining equations (6), (7) with (8), we have the following error equation:

η1

n∑

k=1

Gαl
n–kek

i – δ2
x en

i = η1

n–1∑

k=1

Gαl
n–k–1ek

i + (r1)n
i . (10)

Here (r1)n
i = O(τ 2 + h2 + �α2), ek

i = uk
i – Uk

i , ∀0 ≤ k ≤ N .
Multiply two sides of equation (10) with hen

i and make summation with respect to i from
1 to M – 1 to get

η1

n∑

k=1

Gαl
n–k

(
ek , en)+

∣
∣en∣∣2

1 = η1

n–1∑

k=1

Gαl
n–k–1

(
ek , en) +

(
(r1)n, en).

Noting Lemma 1 and Young’s inequality, we have

6
L2

∥
∥en∥∥2

2 + η1Gαl
0

∥
∥en∥∥2

2 ≤ η1

n–1∑

k=1

(
Gαl

n–k–1 – Gαl
n–k

)(
ek , en) +

L2

24
∥
∥(r1)n∥∥2

2 +
6
L2

∥
∥en∥∥2

2.

By the triangle inequality, we obtain

η1Gαl
0

∥
∥en∥∥2

2 ≤ η1

2

n–1∑

k=1

(
Gαl

n–k–1 – Gαl
n–k

)(∥
∥ek∥∥2

2 +
∥
∥en∥∥2

2

)
+

L2

24
∥
∥(r1)n∥∥2

2.
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Transposition gives rise to

η1Gαl
0

∥
∥en∥∥2

2 +
η1

2

n–1∑

k=1

(
Gαl

n–k – Gαl
n–k–1

)∥
∥en∥∥2

2

≤ η1

2

n–1∑

k=1

(
Gαl

n–k–1 – Gαl
n–k

)∥
∥ek∥∥2

2 +
L2

24
∥
∥(r1)n∥∥2

2,

namely,

η1

2
(
Gαl

0 + Gαl
n–1

)∥
∥en∥∥2

2 ≤ η1

2

n–1∑

k=1

(
Gαl

n–k–1 – Gαl
n–k

)∥
∥ek∥∥2

2 +
L2

24
∥
∥(r1)n∥∥2

2.

Then we have

η1

2

n∑

k=1

Gαl
n–k

∥
∥ek∥∥2

2 ≤ η1

2

n–1∑

k=1

Gαl
n–k–1

∥
∥ek∥∥2

2 +
L2

24
∥
∥(r1)n∥∥2

2.

Denote

Q
(
en) =

η1

2

n∑

k=1

Gαl
n–k

∥
∥ek∥∥2

2.

Making summation with respect to n from 1 to N shows that

Q
(
eN) ≤ Q

(
e0) +

L2

24

N∑

n=1

∥
∥(r1)n∥∥2

2.

Observing that e0 = 0 implies Q(e0) = η1
2 Gαl

0 ‖e0‖2
2 = 0, we have

Q
(
eN) ≤ L2

24

N∑

n=1

∥
∥(r1)n∥∥2

2.

Theorem 2 For scheme (8), the following stability inequality holds:

∥
∥em∥

∥
2 ≤ C

(
τ 2 + h2 + �α2), ∀0 ≤ m ≤ N .

4 A fourth-order method for space and distributed order
The following lemma is necessary for establishing a scheme with fourth-order accuracy
in spatial variable,

Lemma 4 ([62]) Let θ (s) = (1 – s)3[5 – 3(1 – s)2]. Suppose that f (x) ∈ C6[a, b], h = (b – a)/M,
xi = a + ih (0 ≤ i ≤ M), then we have

1
12

[
f ′′(xi–1) + 10f ′′(xi) + f ′′(xi+1)

]

=
1
h2

[
f (xi–1) – 2f (xi) + f (xi+1)

]

+
h4

360

∫ 1

0

[
f (6)(xi – sh) + f (6)(xi + sh)

]
θ (s) ds, 1 ≤ i ≤ M – 1.
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Lemma 5 ([60]; The composite Simpson formula) Let s(α) ∈ C4[v1, v2], then we have

∫ v2

v1

s(α) dα = �α

2J∑

l=0

dls(αl) –
�α4

180
s(4)(ξ ), ξ ∈ (v1, v2),

where

dl =

⎧
⎪⎪⎨

⎪⎪⎩

1
3 , l = 0, 2J ,
2
3 , l = 2, 4, . . . , 2J – 4, 2J – 2,
4
3 , l = 1, 3, . . . , 2J – 3, 2J – 1.

The differential equation at the node (xi, tn) has the form

Dw
t u(xi, tn) =

∂2u(xi, tn)
∂x2 + f (xi, tn), 1 ≤ i ≤ M – 1, 1 ≤ n ≤ N – 1. (11)

Denote s(α, xi, tn) = w(α)CF
0 Dα

t u(xi, tn) and suppose that w(α) ∈ C4[v1, v2], CF
0 Dα

t u(xi,
t)|t=tn ∈ C4[v1, v2]. By Lemma 5, we get

Dw
t u(xi, tn) =

∫ v2

v1

s(α, xi, tn) dα

= �α

2J∑

l=0

dls(αl, xi, tn) –
�α4

180
∂4s(α, xi, tn)

∂α4

∣
∣
∣
∣
α=ξn

i

= �α

2J∑

l=0

dlw(αl)CF
0 Dαl

t u(xi, tn) + O
(
�α4),

where ξn
i ∈ (v1, v2).

Noting u(x, 0) = 0 and taking use of equation (3), we have

Dw
t u(xi, tn) = �α

2J∑

l=0

dlw(αl)
1

αlτ

[

Gαl
0 u(xi, tn) –

n–1∑

k=1

(
Gαl

n–k–1 – Gαl
n–k

)
u(xi, tk)

]

+ O
(
τ 2 + �α4). (12)

By Lemma 4, we obtain

A
∂2u
∂x2 (xi, tn) = δ2

x un
i + O

(
h4). (13)

Substituting (12)–(13) into (11), we get

A�α

2J∑

l=0

dlw(αl)
1

αlτ

[

Gαl
0 un

i –
n–1∑

k=1

(
Gαl

n–k–1 – Gαl
n–k

)
uk

i

]

= δ2
x un

i + Af n
i + (r2)n

i , 1 ≤ i ≤ M – 1, 1 ≤ n ≤ N , (14)

and there exists a constant C satisfying

(r2)n
i ≤ C

(
τ 2 + h4 + �α4).
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Noting the boundary and initial conditions, we have

u0
i = 0, 1 ≤ i ≤ M – 1,

un
0 = un

M = 0, 0 ≤ n ≤ N .
(15)

Canceling the infinitesimal part (r2)n
i and replacing the exact solution uk

i with the ap-
proximate solution Uk

i , a compact difference method is obtained as follows:

A�α

2J∑

l=0

dlw(αl)
1

αlτ

[

Gαl
0 Un

i –
n–1∑

k=1

(
Gαl

n–k–1 – Gαl
n–k

)
Uk

i

]

= δ2
x Un

i + Af n
i , 1 ≤ i ≤ M – 1, 1 ≤ n ≤ N ,

U0
i = 0, 1 ≤ i ≤ M – 1,

Un
0 = Un

M = 0, 0 ≤ n ≤ N .

(16)

4.1 Stability analysis
Sorting equation (16), we get the following equation:

A�α

2J∑

l=0

dlw(αl)
1

αlτ

n∑

k=1

Gαl
n–kUk

i – δ2
x Un

i

= A�α

2J∑

l=0

dlw(αl)
1

αlτ

n–1∑

k=1

Gαl
n–k–1Uk

i + Af n
i , 1 ≤ i ≤ M – 1, 1 ≤ n ≤ N . (17)

We set η2 = �α
∑2J

l=0 dlw(αl) 1
αlτ

. Multiplying both sides of equation (17) by hUn
i and

making summation with respect to i from 1 to M – 1 leads to

η2

n∑

k=1

Gαl
n–k

(
Uk , Un)

A+
∣
∣Un∣∣2

1 = η2

n–1∑

k=1

Gαl
n–k–1

(
Uk , Un)

A +
(
f n, Un)

A.

Noting Lemma 1 and Young’s inequality, we have

6
L2

∥
∥Un∥∥2

2 + η2Gαl
0

∥
∥Un∥∥2

A ≤ η2

n–1∑

k=0

(
Gαl

n–k–1 – Gαl
n–k

)(
Uk , Un)

A +
L2

24
∥
∥f n∥∥2

A +
6
L2

∥
∥Un∥∥2

2.

Using the triangle inequality, we obtain

η2Gαl
0

∥
∥Un∥∥2

A ≤ η2

2

n–1∑

k=1

(
Gαl

n–k–1 – Gαl
n–k

)(∥
∥Uk∥∥2

A +
∥
∥Un∥∥2

A

)
+

L2

24
∥
∥f n∥∥2

A.

It follows that

η2Gαl
0

∥
∥Un∥∥2

A +
η2

2

n–1∑

k=1

(
Gαl

n–k – Gαl
n–k–1

)∥
∥Un∥∥2

A

≤ η2

2

n–1∑

k=1

(
Gαl

n–k–1 – Gαl
n–k

)∥
∥Uk∥∥2

A +
L2

24
∥
∥f n∥∥2

A,
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namely,

η2

2
(
Gαl

0 + Gαl
n–1

)∥
∥Un∥∥2

A ≤ η2

2

n–1∑

k=1

(
Gαl

n–k–1 – Gαl
n–k

)∥
∥Uk∥∥2

A +
L2

24
∥
∥f n∥∥2

A.

Transposition leads to

η2

2

n∑

k=1

Gαl
n–k

∥
∥Uk∥∥2

A ≤ η2

2

n–1∑

k=1

Gαl
n–k–1

∥
∥Uk∥∥2

A +
L2

24
∥
∥f n∥∥2

A.

Denote

Q
(
Un) =

η2

2

n∑

k=1

Gαl
n–k

∥
∥Uk∥∥2

A.

Making summation from n = 1 to n = N shows that

Q
(
UN) ≤ Q

(
U0) +

L2

24

N∑

n=1

∥
∥f n∥∥2

A.

Observing that u0 = 0 implies Q(u0) = 0, then we have

Q
(
UN) ≤ L2

24

N∑

n=1

∥
∥f n∥∥2

A.

Theorem 3 For scheme (16), the following stability inequality holds:

Q
(
Um) ≤ L2

24

m∑

n=1

∥
∥f n∥∥2

A, ∀0 ≤ m ≤ N .

4.2 Convergence analysis
Combining equations (14), (15) with (16), an error equation can be obtained as follows:

Aη2

n∑

k=1

Gαl
n–kek

i – δ2
x en

i = Aη2

n–1∑

k=1

Gαl
n–k–1ek

i + (r2)n
i , (18)

where (r2)n
i = O(τ 2 + h4 + �α4), ek

i = uk
i – Uk

i , ∀0 ≤ k ≤ N .
Multiplying two sides of equation (18) by hen

i and making summation with respect to i
from 1 to M – 1, we get

Aη2

n∑

k=1

Gαl
n–k

(
ek , en)

A+
∣
∣en∣∣2

1 = Aη2

n–1∑

k=1

Gαl
n–k–1

(
ek , en)

A +
(
(r2)n, en)

A.

Noting Lemma 1 and Young’s inequality, we have

6
L2

∥
∥en∥∥2

2 + η2Gαl
0

∥
∥en∥∥2

A ≤ η2

n–1∑

k=1

(
Gαl

n–k–1 – Gαl
n–k

)(
ek , en)

A +
L2

24
∥
∥(r2)n∥∥2

A +
6
L2

∥
∥en∥∥2

2.
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Using the triangle inequality, we obtain

η2Gαl
0

∥
∥en∥∥2

A ≤ η2

2

n–1∑

k=1

(
Gαl

n–k–1 – Gαl
n–k

)(∥
∥ek∥∥2

A +
∥
∥en∥∥2

A

)
+

L2

24
∥
∥(r2)n∥∥2

A.

Rearranging the above equation leads to

η2Gαl
0

∥
∥en∥∥2

A +
η2

2

n–1∑

k=1

(
Gαl

n–k – Gαl
n–k–1

)∥
∥en∥∥2

A

≤ η2

2

n–1∑

k=1

(
Gαl

n–k–1 – Gαl
n–k

)∥
∥ek∥∥2

A +
L2

24
∥
∥(r2)n∥∥2

A,

namely

η2

2
(
Gαl

0 + Gαl
n–1

)∥
∥en∥∥2

A ≤ η2

2

n–1∑

k=1

(
Gαl

n–k–1 – Gαl
n–k

)∥
∥ek∥∥2

A +
L2

24
∥
∥(r2)n∥∥2

A.

Finally we get

η2

2

n∑

k=1

Gαl
n–k

∥
∥ek∥∥2

A ≤ η2

2

n–1∑

k=1

Gαl
n–k–1

∥
∥ek∥∥2

A +
L2

24
∥
∥(r2)n∥∥2

A.

Denote

Q
(
en) =

η2

2

n∑

k=1

Gαl
n–k

∥
∥ek∥∥2

A.

Make summation with respect to n from 1 to N to get

Q
(
eN) ≤ Q

(
e0) +

L2

24

N∑

n=1

∥
∥(r2)n∥∥2

A.

Observing that e0 = 0 implies Q(e0) = 0, it follows that

Q
(
eN) ≤ L2

24

N∑

n=1

∥
∥(r2)n∥∥2

A.

Theorem 4 For scheme (16), the following stability inequality holds:

∥
∥em∥

∥
2 ≤ C

(
τ 2 + h4 + �α4), ∀0 ≤ m ≤ N .

5 Numerical tests
We perform numerical experiments to verify the proposed numerical format. Here, we
consider the convergence speed of the numerical solution format. For the problem to be
solved, we take the domain Ω = [0,π ], T = 0.5. The numerical simulations are performed
with MATLAB2015 on a 8GB memory computer.

Consider time distributed-order model as follows.
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Example 1 For equation (1), if we give the true solution u(x, t) = 4t2 sin(x) with w(α) = α2,
accordingly, f (x, t) can be derived as follows:

f (x, t) = 8 sin(x)
[∫ v2

v1

(αt + α – 1) dα – et
∫ v2

v1

(α – 1)e
t

α–1 dα

]

+ 4t2 sin(x).

The error norms for difference schemes (8) and (16) are denoted as ‖ · ‖#
l and ‖ · ‖∗

l ,
where l = 2 or ∞, respectively.

Firstly, the numerical convergence orders of the two difference formats are tested by
Example 1. Let the spatial step size h and the distributed-order subinterval size �α be fixed
small enough. We take h = π/900, �α = 1/300, and τ = 1/4, 1/8, 1/16, 1/32 to observe the
convergence rates about time step τ for both of the two difference formats. Table 1 shows
the simulation results for three different distribution intervals [v1, v2] = [0.1, 0.4], [0.5, 0.9],
and [0.2, 0.8], including the errors and convergence orders in discrete L2 norm. From these
results we can see that the time convergence rates for both formats are second-order.

Next, we fix v1 = 0.1, v2 = 0.9, and take several different step sizes satisfying N = J and
M = floor(π J), i.e., τ = 1

2J , h ≈ 1
J , and �α = (v2–v1)

2J . The simulation results of the numerical
format (8) for Example 1 are shown in Table 2. From the table we can see that, when the
spatial step size h, the discrete step of the distributed order �α, and the time step τ are
halved simultaneously, the errors between the numerical solution and the true solution
will be reduced to quarter in both of maximum norm and the discrete L2 norm. These
results show that the numerical convergence orders for difference format (8) are approxi-
mately 2 about time variable, space variable, and the distributed order.

Table 1 The discrete L2 error and convergence rates in time for schemes (8) and (16) for Example 1
with h = π /900 and �α = 1/300

v1, v2 τ ‖eN‖#2 Order ‖eN‖∗
2 Order

0.1, 0.4 1/22 3.1795e–04 3.1810e–04
1/23 7.9364e–05 2.0022 7.9543e–05 1.9997
1/24 1.9701e–05 2.0102 1.9887e–05 1.9999
1/25 4.7846e–06 2.0418 4.9718e–06 2.0000

0.5, 0.9 1/22 0.0288 0.0288
1/23 0.0074 1.9605 0.0074 1.9605
1/24 0.0019 1.9615 0.0019 1.9615
1/25 4.6265e–04 2.0380 4.6265e–04 2.0380

0.2, 0.8 1/22 0.0124 0.0124
1/23 0.0031 2.0000 0.0031 2.0000
1/24 7.7660e–04 1.9970 7.8234e–04 1.9864
1/25 1.8990e–04 2.0319 1.9569e–04 1.9992

Table 2 The discrete L2 errors, maximum errors, and convergence rates for scheme (8) for Example 1
with v1 = 0.1 and v2 = 0.9

h τ �α ‖eN‖#∞ Order ‖eN‖#2 Order

1/8 1/16 1/20 7.1433e–04 8.9705e–04
1/16 1/32 1/40 1.7223e–04 2.0523 2.1586e–04 2.0551
1/32 1/64 1/80 4.2569e–05 2.0165 5.3352e–05 2.0165
1/64 1/128 1/160 1.0500e–05 2.0194 1.3160e–05 2.0194
1/128 1/256 1/320 2.6233e–06 2.0009 3.2879e–06 2.0009
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Table 3 The discrete L2 errors, maximum errors, and convergence rates for scheme (16) for
Example 1 with v1 = 0.1 and v2 = 0.9

h τ �α ‖eN‖∗∞ Order ‖eN‖∗
2 Order

1/4 1/4 1/10 0.0060 0.0075
1/8 1/16 1/20 3.7641e–04 3.9946 4.7269e–04 3.9879
1/16 1/64 1/40 2.3576e–05 3.9969 2.9548e–05 3.9998
1/32 1/256 1/80 1.4731e–06 4.0004 1.8462e–06 4.0004

Table 4 The discrete L2 errors, maximum errors, and their convergence rates for scheme (8) for
Example 2 when v1 = 0.1 and v2 = 0.9

h τ �α ‖eN‖#∞ Order ‖eN‖#2 Order

π /4 1/8 1/10 3.2542e–2 4.0785e–2
π /8 1/16 1/20 8.0780e–3 2.0102 1.0124e–2 2.0102
π /16 1/32 1/40 2.0157e–3 2.0027 2.5263e–3 2.0027
π /32 1/64 1/80 5.0368e–4 2.0007 6.3126e–4 2.0007
π /64 1/128 1/160 1.2590e–4 2.0002 1.5780e–4 2.0002
π /128 1/256 1/320 3.1475e–5 2.0000 3.9448e–5 2.0000
π /256 1/512 1/640 7.8687e–6 2.0000 9.8619e–6 2.0000
π /512 1/1024 1/1280 1.9672e–6 2.0000 2.4655e–6 2.0000

Table 5 The discrete L2 errors, maximum errors, and convergence rates for scheme (16) for
Example 2 with v1 = 0.1 and v2 = 0.9

h τ �α ‖eN‖∗∞ Order ‖eN‖∗
2 Order

π /4 1/4 1/10 2.3994e–2 3.0072e–2
π /8 1/16 1/20 1.5429e–3 3.9590 1.9337e–3 3.9590
π /16 1/64 1/40 9.6510e–5 3.9988 1.2096e–4 3.9988
π /32 1/256 1/80 6.0314e–6 4.0001 7.5593e–6 4.0001
π /64 1/1024 1/160 3.7695e–7 4.0000 4.7244e–7 4.0000
π /128 1/4096 1/320 2.3559e–8 4.0000 2.9527e–8 4.0000

In addition, we choose a group of mesh steps satisfying 8N = J2 and M = floor(π J), which
means that τ varies synchronously with �α2 and h2. The simulation results of numerical
format (16) for Example 1 are given in Table 3. We observe that when the spatial step h
and the distributed-order step size �α are halved, the corresponding numerical errors in
discrete norm are reduced to 1/16 times. This means both of the convergence rates for
spatial variable and distributed order are of fourth order and thus the time convergence
rate is of second order.

Example 2 For equation (1), if we give the true solution u(x, t) = 2t sin(x) with w(α) = α2,
accordingly, f (x, t) can be derived as follows:

f (x, t) = 2 sin(x)
[∫ v2

v1

α dα – et
∫ v2

v1

αe
t

α–1 dα

]

+ 2t sin(x).

For Example 2, we set the distributed-order interval [v1, v2] = [0.1, 0.9] and the numbers
of discrete points are required to satisfy M = N = J for scheme (8). The simulation results
in Table 4 show that scheme (8) has convergence rates of second order for all of the spatial
step h, the temporal step τ , and the distributed-order step �α.

In addition, we choose a group of mesh steps satisfying 8N = J2 and M = J , which means
that τ varies synchronously with �α2 and h2. The simulation results of numerical format
(16) for Example 2 are given in Table 5. We observe that when the spatial step h and the
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distributed-order step size �α are halved, the corresponding numerical errors in discrete
norm are reduced to 1/16 times. This means both of the convergence rates for spatial
variable and distributed order are fourth order, and accordingly the convergence rate for
time variable is second order.

6 Conclusion
In this paper, two effective finite difference schemes are developed for solving time
distributed-order partial differential equations equipped with the new Caputo–Fabrizio
fractional derivative in a one-dimensional space. The first scheme (8) is based on second-
order central difference quotient in space direction and the other one (16) is based on
compact difference. We have proved that both of the two finite difference schemes are un-
conditionally stable. Theoretical analysis shows that the first scheme has convergence rates
of second order for all of the spatial step h, the temporal step τ , and the distributed-order
step �α; and the second scheme (compact difference) has convergence rates of fourth or-
der for both of the spatial step h and the distributed-order step �α, while second order
for the temporal step τ . Finally, some numerical experiments, which demonstrate the per-
formance of the schemes and verify the correctness of the theoretical results, are carried
out.

The basic model is in a one-dimensional space, an extension to multi-dimensional mod-
els is possible and feasible. With the development of the theory about fractional calculus,
fractional partial differential equations with variable order become the potentially power-
ful tool for describing complex phenomena [63]. We hope to extend the idea of this paper
to this kind of fractional equations in the future. Moreover, because of the nonlocal prop-
erty of fractional derivatives, the requirement for memory and computational complexity
will increase rapidly along with the size of discrete systems. So we plan to develop some
techniques of fast solution in the future work.
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