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Abstract
We investigate the dynamical behavior of a modified Leslie–Gower prey–predator
model with harvesting in prey population. In order to explore rich dynamics of the
model, Euler approximation is implemented to obtain a discrete-time modified
Leslie–Gower model. Existence of equilibria and their local asymptotic stabilities are
carried out. Furthermore, with the help of bifurcation theory and center manifold
theorem, existence and directions of period-doubling and Neimark–Sacker
bifurcations are investigated at positive steady-state. In order to control chaos and
bifurcations, the Ott–Grebogi–Yorke (OGY) method and the hybrid control strategy
are introduced. Numerical simulations are also provided to illustrate the theoretical
discussions.
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1 Introduction
Discrete-time models administered by distinction conditions are much more suitable than
the continuous ones when the population is of non-overlapping generations [1–4]. Due to
large applications in nearly all fields of applied sciences, discrete dynamical systems are an
effective point of research. Discrete dynamical systems show rich and complex dynamical
properties, for example, transcritical bifurcation, flip bifurcation, Hopf bifurcation, and
chaos [5–8]. To study the nonlinear systems and their ramifications, qualitative analysis
of discrete dynamical systems is the main mathematical apparatus to use. Integrity of the
discrete-time models adds significance in the research community. For an examination
of the qualitative behavior of difference equations, an easy computational and graphical
explanation tools of illustration are available, but the analytical analysis always keeps a
tremendous task especially in the case of the complicated and amazingly varying differ-
ence equations [9–11]. The predator–prey co-operations are the foremost complex zones
of the population environment. Their universal reality and extraordinary behavior have
created the interest of scholars, ecologists, and mathematicians during the final few years
[12]. An innovative result, i.e., Lotka–Volterra predator–prey model given by Lotka [13]
and Volterra [14] independently, is the first and challenging mathematical model. The
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Lotka–Volterra predator–prey model has neglected many actual conditions and compli-
cations and was modeled in such a way that carries the reality. Leslie and Gower [15] sug-
gested a predator–prey model, called the Leslie–Gower predator–prey model, in which
the predator growth activity is clear-cut from the predator predation function. They pre-
sumed that the predator growth is interpreted by a function of the rate of predators and
their prey. Many authors have employed this model to study the real global complica-
tions; for example, Wollkind, Logan, and Wollkind [16, 17] applied this system to model
the predator–prey speck outbreak synergies on fruit trees in Washington state. Aziz and
Okiye [18] set up and examined the modified LG model. Xiao and Huang [19] examined
a predator–prey system with Holling type-IV functional response. Pattern formation and
bifurcation analysis were discussed for a class of predator–prey system in [20]. Influence
of fear factor on predator–prey dynamics with prey refuge was analyzed in [21, 22].

In biological mathematics, discrete-time models are used to examine the taxonomic
group of organisms and species with the passage of time. Discrete-time population mod-
els are appropriate where the populations are non-overlapping and essentially remain con-
stant over a generation. These models are best to describe the chaotic behavior of nonlin-
ear dynamics [23, 24]. Controlling chaos is an interesting topic in recent studies of nonlin-
ear dynamical systems. Sometime bifurcation and chaotic behavior are highly unfavorable
phenomena in dynamical systems because there may be an extinction of population due
to chaos. So, controlling chaos by introducing new measures to the population is very im-
portant in the population dynamical systems. We are able to get chaos control by using
different strategies, e.g., feedback control strategy, hybrid control technique, and pole-
placement method. By using these techniques, one can delay, advance, or even eliminate
the chaotic behavior due to emergence of bifurcation in dynamical systems.

Next, arguing as in [25], we consider the following class of predator–prey interaction
with nonlinear harvesting in prey population and Holling type-IV functional response:

dx
dt

= x(1 – x) –
xy

x2
α

+ x + β
–

ax
x + b

,

dy
dt

= cy
(

1 – d
y
x

)
,

(1)

where x and y are prey and predator density, respectively. All the parameters a, b, c, d, α,
and β are positive constants. Moreover, α represents tolerance of the prey, β denotes half
saturation constant, a is the catchability coefficient, b represents the effort for harvesting,
c is intrinsic growth rate of the predator, and d is the amount of prey required to support
one predator at equilibrium.

The qualitative behavior of continuous system (1) has been investigated recently in [25].
In order to explore rich dynamical behavior of such predator–prey interaction, one may
consider some discrete counterpart of system (1). For this, we apply Euler’s approximation
to system (1) as follows:

xn+1 = xn + h
[

xn(1 – xn) –
xnyn

x2
n
α

+ xn + β
–

axn

xn + b

]
,

yn+1 = yn + h
[

cyn

(
1 – d

yn

xn

)]
.

(2)
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2 Stability analysis of equilibria
The equilibria for system (2) are the solutions of the following system:

x(1 – x) –
xy

x2
α

+ x + β
–

ax
x + b

= 0,

y
(

1 – d
y
x

)
= 0.

Then it follows that (x1, 0) and (x2, 0) are boundary equilibria of system (2), where x1 and
x2 are real roots of the following quadratic equation:

x2 + (b – 1)x + a – b = 0

such that x1 = 1
2 (1 – b –

√
(1 + b)2 – 4a), x2 = 1

2 (1 – b +
√

(1 + b)2 – 4a) and (1 + b)2 – 4a > 0.
Moreover, assume that 0 < b < 1 and b < a < 1

4 (b + 1)2, then both x1 and x2 are positive
with x1 < x2. Next, we take x1,2 = x̄, then the Jacobian matrix of system (2) at boundary
equilibrium points (x̄, 0) is computed as follows:

J(x̄, 0) =

(
1 + h – 2x̄h – abh

(b+x̄)2 – hαx̄
x̄(x̄+α)+αβ

0 1 + ch

)
. (3)

Then λ1 = 1+h–2x̄h– abh
(b+x̄)2 and λ2 = 1+ch are eigenvalues of J(x̄, 0) with λ2 > 1. Therefore,

both boundary equilibria (x1, 0) and (x2, 0) are unstable. Next, we are looking for interior
equilibria of system (2). For this, the components of interior equilibrium (x∗, y∗) are given
as follows:

y∗ =
1
d

x∗,

where x∗ is a positive real root for the following quartic equation:

Ax4 + Bx3 + Cx2 + Dx + E = 0,

where A = d, B = d(α+b–1), C = d(α(β –1)+a+b(α–1))+α, D = α(ad+(b–1)βd–bd+b),
and E = αβd(a – b). In order to see the existence of positive equilibria graphically, we con-
sider nullclines defined by y = x

d and y = (1 – x – a
b+x )(β + x2

α
+ x). Then Fig. 1 shows the exis-

tence of two distinct positive equilibria (0.219259, 0.609053) and (0.714336, 1.98427), and
Fig. 2 reveals the existence of the unique positive equilibrium point (0.734318, 1.93242)
for system (2).

Furthermore, the Jacobian matrix at positive equilibrium (x∗, y∗) is given by

J
(
x∗, y∗) =

(
w11 w12

ch
d 1 – ch

)
,

where

w11 := 1 + h
(

ax∗

(b + x∗)2 +
x∗y∗(1 + 2x∗

α
)

(β + x∗( x∗
α

+ 1))2
– x∗

)
,
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Figure 1 Existence of two positive equilibria for
α = 0.054, β = 0.06, a = 0.07, b = 0.05, d = 0.36

Figure 2 Existence of unique positive equilibrium
for α = 0.042, β = 0.59, a = 0.155, b = 0.465, d = 0.38

and

w12 := –
αhx∗

αβ + x∗(x∗ + α)
.

Furthermore, the characteristic equation for J(x∗, y∗) is given as follows:

P(λ) = λ2 – (1 – ch + w11)λ + w11(1 – ch) –
w12ch

d
. (4)

Keeping in view the relation between roots and coefficients of a quadratic equation [26,
27], we have the following lemma for the dynamics of interior equilibrium (x∗, y∗).

Lemma 2.1 The following hold true for interior equilibrium (x∗, y∗) of system (2):
(i) (x∗, y∗) is a sink if

w11 +
w12

d
< 1,

w12ch < d(1 + w11)(2 – ch),

and

w11(1 – ch) < 1 +
w12ch

d
.

(ii) (x∗, y∗) is a saddle point if

1 – w11 –
w12

d
> 0
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and

(1 + w11)(2 – ch) –
w12ch

d
< 0.

(iii) (x∗, y∗) is a source (repeller) if

∣∣∣∣w11(1 – ch) –
w12ch

d

∣∣∣∣ > 1

and

|1 – ch + w11| <
∣∣∣∣1 + w11(1 – ch) –

w12ch
d

∣∣∣∣.

(iv) (x∗, y∗) is a non-hyperbolic point if

|1 – ch + w11| =
∣∣∣∣1 + w11(1 – ch) –

w12ch
d

∣∣∣∣
and

∣∣∣∣w11(1 – ch) –
w12ch

d

∣∣∣∣ �= 1,

or

w11(1 – ch) –
w12ch

d
= 1 and |1 – ch + w11| < 2.

3 Period-doubling bifurcation
In this section, we study the period-doubling bifurcation (PDB) at the fixed point E∗ =
(x∗, y∗) of system (2). The characteristic polynomial equation at E∗ has eigenvalues λ1 = –1
and |λ2| �= 1. The characteristic polynomial equation for system (2) at E∗ = (x∗, y∗) can be
written as follows:

P(λ) = λ2 – Aλ + B, (5)

where A = (1 – ch + w11) and B = w11(1 – ch) – w12ch
d .

Assume that A2 > 4B, we get

(1 – ch + w11)2 > 4w11(1 – ch) –
w12ch

d
,

and A + B = –1, we obtain

h =
2(1 + w11)d

c((1 + w11)d + w12)
.

Then the solutions of P(λ) = 0 are λ1 = –1 and λ2 = –B. The condition |λ2| �= 1 implies that

w11(1 – ch) –
w12ch

d
�= ±1.
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Let

ΩPD =
{

(a, b, c, d, h,α,β) : A2 > 4B, h =
2(1 + w11)d

c((1 + w11)d + w12)
, B �= ±1, a, c, d, h,α,

β > 0, 0 < b < 1
}

.

PDB occurs in system (2) when we change real parameters in the neighborhood of ΩPD.
Let

h =
2(1 + w11)d

c((1 + w11)d + w12)
:= h1

and taking parameters (a, b, c, d, h,α,β) ∈ ΩPD arbitrary, then in terms of parameters
(a, b, c, d, h,α,β) model (2) can be expressed as

(
x
y

)
−→

⎛
⎝x + h1(x(1 – x) – xy

x2
α +x+β

– ax
x+b )

y + h1(cy(1 – dy
x ))

⎞
⎠ . (6)

Now, taking h̃ as a small bifurcation parameter, a perturbation map (6) is given as

(
x
y

)
−→

⎛
⎝x + (h1 + h̃)(x(1 – x) – xy

x2
α +x+β

– ax
x+b )

y + (h1 + h̃)(cy(1 – dy
x ))

⎞
⎠ . (7)

Now, we consider the transformation u = x – x∗ and v = y – y∗, then map (7) is transformed
in the following fashion:

(
u
v

)
−→

(
a11 a12

a21 a22

)(
u
v

)
+

(
f (u, v, h̃)
g(u, v, h̃)

)
, (8)

where

f (u, v, h̃) = a13u2 + a14uv + b1u3 + b2u2v + b3u2h̃ + e1uvh̃ + e2uh̃ + e3vh̃

+ O
((|u| + |v|)4),

g(u, v, h̃) = a23u2 + a24v2 + a25uv + k1uv2 + k2u3 + k3u2v + k4v2h̃ + k5u2h̃

+ k6uvh̃ + k7uh̃ + k8vh̃ + O
((|u| + |v|)4),

a11 = 1 + h1

(
ax∗

(b + x∗)2 +
x∗y∗(1 + 2x∗

α
)

(β + x∗( x∗
α

+ 1))2
– x∗

)
, a12 = –

αh1x∗

αβ + x∗(x∗ + α)
,

a13 = h1

(
–1 +

y∗α(α2β + 3αβx∗ – x∗3)
((β + x∗)α + x∗2)3 +

ab
(b + x∗)3

)
,

a14 = –h1α

(
αβ – x∗2

((β + x∗)α + x∗2)2

)
, a21 =

ch1

d
, a22 = 1 – ch1,

a23 = –
(

h1cy∗2d
x∗3

)
, a24 = –

(
h1cd

x∗

)
, a25 =

(
2h1cy∗d

x∗2

)
,
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b1 = h1

(
y∗α(–βα3 + β(β – 4x∗)α2 – 6αβx∗2 + x∗4)

((β + x∗)α + x∗2)4 –
ab

(b + x∗)4

)
,

b2 = h1α(
(α2β + 3αβx∗ – x∗3)

((β + x∗)α + x∗2)3 , b3 =
(

–1 +
y∗α(α2β + 3αβx∗ – x∗3

((β + x∗)α + x∗2)3 +
ab

(b + x∗)3

)
,

e1 =
(

–α(αβ – x∗2)
((β + x∗)α + x∗2)2

)
, e2 = –2x∗ + 1 –

y∗α(αβ – x∗2)
((β + x∗)α + x∗2)2 –

ab
(b + x∗)2 ,

e3 = –
αx∗

(β + x∗)α + x∗2 , k1 =
(

h1cd
x∗2

)
, k2 =

(
h1cy∗2d

x∗4

)
,

k3 = –
(

2h1cdy∗

x∗3

)
, k4 = –

(
cd
x∗

)
, k5 = –

(
cdy∗2

x∗3

)
,

k6 =
(

2cdy∗

x∗2

)
, k7 =

(
cdy∗2

x∗2

)
, k8 = –c

(
2dy∗ – x∗

x∗

)
.

We diagonalize system (8) by considering the following translation:

(
u
v

)
= T

(
p
q

)
, (9)

where T =
( a12 a12

–1–a11 λ2–a11

)
and |T | �= 0. Using translation (9), map (8) can be expressed as

(
p
)

−→
(

–1 0
0 λ2

)(
p
q

)
+

(
f̃ (p, q, h̃)
g̃(p, q, h̃)

)
, (10)

where

f̃ (p, q, h̃) =
(

χa13 –
a23

λ2 + 1

)
u2 +

(
b1χ –

k2

λ2 + 1

)
u3 +

(
b2χ –

k3

λ2 + 1

)
u2v

+
(

a14χ –
a25

λ2 + 1

)
uv +

(
b3χ –

k5

λ2 + 1

)
h̃u2 +

(
e1χ –

k6

λ2 + 1

)
h̃uv

+
(

e2χ –
k7

λ2 + 1

)
h̃u +

(
e3χ –

k8

λ2 + 1

)
h̃v +

(
–k1

λ2 + 1

)
uv2

+
(

–k4

λ2 + 1

)
h̃v2 +

(
–

a24

λ2 + 1

)
v2,

g̃(p, q, h̃) =
(

θa13 +
a23

λ2 + 1

)
u2 +

(
θb1 +

k2

λ2 + 1

)
u3 +

(
θb2 +

k3

λ2 + 1

)
u2v

+
(

θa14 +
a25

λ2 + 1

)
uv +

(
θb3 +

k5

λ2 + 1

)
h̃u2 +

(
θe1 +

k6

λ2 + 1

)
h̃uv

+
(

θe2 +
k7

λ2 + 1

)
h̃u +

(
θe3 +

k8

λ2 + 1

)
h̃v +

(
k1

λ2 + 1

)
uv2

+
(

k4

λ2 + 1

)
h̃v2 +

(
a24

λ2 + 1

)
v2,

χ = ( (λ2–a11)
a12(λ2+1) ), θ = ( (1+a11)

a12(λ2+1) ), u = a12(p + q) and v = –(1 + a11)p + (λ2 – a11)q. Now, we
approximate center manifold (CM) at the origin by using the center manifold theorem
(CMT) for system (10) depending on parameter h̃. The dynamics of map (8) around the
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fixed point (0, 0) for parameter values near h̃ = 0 can be analyzed using the behavior of a
one-parameter family of maps on the CM, according to CMT. Let Gc be the CM of (10)
calculated at origin, then Gc can be written as follows:

Gc(0, 0, 0) =
{

(p, q, h̃) ∈ R3 : q = z2(p, h̃), z2(0, 0) = Dz2(0, 0) = 0
}

.

The two conditions z2(0, 0) = 0 and Dz2(0, 0) = 0 show that the CM is tangent to the q = 0
axis. Assume that z2 (p, h̃) has the following form:

z2(p, h̃) = m1p2 + m2ph̃ + m3h̃2 + O
((|p| + |h̃|)3). (11)

The following equation must be satisfied by CM of (11):

X
(
z2(p, h̃)

)
= z2

(
–p + f̃

(
p, z2(p, h̃), h̃

))
– λ2z2(p, h̃) – g̃

(
p, z2(p, h̃), h̃

)
= 0. (12)

Substituting (10), (11) into (12) and comparing the coefficients, we obtain

m1 =
1

–λ2 + 1

((
θa13 +

a23

λ2 + 1

)
a2

12 +
(

a14θ +
a25

λ2 + 1

)
a12(–1 – a11)

+ a24

(
(–1 – a11)2

λ2 + 1

))
,

m2 =
–1

λ2 + 1

((
e2θ +

k7

λ2 + 1

)
a12 +

(
e3θ +

k8

λ2 + 1

)
(–1 – a11)

)
,

m3 = 0.

Then the confined one-dimensional map to the CM Gc becomes

F : p −→ –p + s1p2 + s2ph̃ + s3p2h̃ + s4ph̃2 + s5p3 + O
((|p| + |h̃|)4), (13)

where

s1 =
((

θa13 +
a23

λ2 + 1

)
a2

12 +
(

θa14 +
a25

λ2 + 1

)
a12(–1 – a11) + a24

(
(–1 – a11)2

λ2 + 1

))
,

s2 =
((

θe2 +
k7

λ2 + 1

)
a12 +

(
θe3 +

xk6 + k8

λ2 + 1

)
(–1 – a11)

)
,

s3 =
(

2
(

θa13 +
a23

λ2 + 1

)
a2

12m2 +
(

θb3 +
k5

λ2 + 1

)
a2

12 +
(

θa14 +
a25

λ2 + 1

)
a12m2(λ2

– 2a11 – 1) + (θe1a12)(–1 – a11) +
(

e2θ +
k7

λ2 + 1

)
a12m1 +

(
2a12a24χ (–1

– a11)m2
)

+ k4
(
(1 + a11)θa12

)
+

(
θe3 +

xk6 + k8

λ2 + 1

)
(λ2 – a11)m1

)
,

s4 =
(

2
(

θa13 +
a23

λ2 + 1

)
a2

12m3 +
(

θa14 +
a25

λ2 + 1

)
a12m3(λ2 – 2a11 – 1) +

(
e2θ

+
k7

λ2 + 1

)
a12m2 +

(
2a12a24χ (–1 – a11)m3

)
+

(
θe3 +

xk6 + k8

λ2 + 1

)
(λ2 – a11)m2

)
,
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s5 =
((

θb1 +
k2

λ2 + 1

)
a3

12 +
(

θb2 +
k3

λ2 + 1

)
a2

12(–1 – a11) + 2
(

θa13 +
a23

λ2 + 1

)
a2

12m1

+ k1a2
12θ (1 + a11) +

(
θa14 +

a25

λ2 + 1

)
a12m1(λ2 – 2a11 – 1)

+
(
2a12a24χ (–1 – a11)m1

))
.

If map (13) undergoes a period-doubling bifurcation, then we need that two discrimi-
natory quantities l1 and l2 are not zero at (p, h̃) = (0, 0):

l1 =
(

∂2F
∂p∂h̃

+
1
2

∂F
∂h̃

∂2F
∂p2

)
(0,0)

= s2 �= 0,

l2 =
(

1
6

∂3F
∂p3 +

1
2

(
∂2F
∂p2

)2)
(0,0)

= s2
1 + s5 �= 0.

Theorem 3.1 If l1 �= 0 and l2 �= 0, then model (2) undergoes PDB at E∗ = (x∗, y∗) while we
change the real parameter h nearby h1. Moreover, if l2 > 0, then the period-two orbits that
bifurcate from positive steady-state are stable, and if l2 < 0, then these orbits are unstable.

4 Neimark–Sacker bifurcation
In this section, we study the existence of Neimark–Sacker bifurcation (NSB) for the steady
state (x∗, y∗) of system (2). We find the parametric conditions for a non-hyperbolic fixed
point so that the Jacobian matrix has two complex conjugate eigenvalues with modulus 1.
At fixed point E∗ = (x∗, y∗), the characteristic polynomial equation can be written as

P(λ) = λ2 – Aλ + B, (14)

where

A = (1 – ch + w11) and B = w11(1 – ch) –
w12ch

d
.

From Lemma 2.1, the solutions of P(λ) = 0 are complex conjugates with modulus 1 if
B = 1 and |A| < 2, which implies that h2 = ( d(w11–1)

c(dw11+w12) ), |1 – ch + w11|< 2.
Assume that

ΩNS =
{

(a, b, c, d, h2,α,β) : h2 =
d(w11 – 1)

c(dw11 + w12)
, |1 – ch2 + w11| < 2, (a, b, c, d,α,β) > 0

}
.

When the parameters are changing in a small neighborhood of ΩNS, the unique positive
equilibrium point of system (2) experiences the Neimark–Sacker bifurcation. Choosing
the parameters (h2, a, b, c, d,α,β) in a random way from the set ΩNS, system (2) can be
described by the following map:

(
x
y

)
−→

⎛
⎝x + h2(x(1 – x) – xy

x2
α +x+β

– ax
x+b )

y + h2(cy(1 – dy
x ))

⎞
⎠ . (15)
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Since (h2, a, b, c, d,α,β)∈ ΩNS, where

h2 =
(

d(w11 – 1)
c(dw11 + w12)

)
.

Take h̃ as a bifurcation parameter and consider system (15) as follows:

(
x
y

)
−→

⎛
⎝x + (h2 + h̃)(x(1 – x) – xy

x2
α +x+β

– ax
x+b )

y + (h2 + h̃)(cy(1 – dy
x ))

⎞
⎠ , (16)

where |h̃| <<< 1, which is a small perturbation parameter. Next we consider the transfor-
mation u = x – x∗, v = y – y∗, then map (16) is transferred into the following form:

(
u
v

)
−→

(
a11 a12

a21 a22

)(
u
v

)
+

(
f (u, v)
g(u, v)

)
, (17)

where

f (u, v) = a13u2 + a14uv + b1u3 + b2u2v + O
((|u| + |v|)4),

g(u, v) = a23u2 + a24v2 + a25uv + k1uv2 + k2u3 + k3u2v + O
((|u| + |v|)4).

All the coefficients are given in (8) by replacing h1 = h2 + h̃. The characteristic polynomial
equation of linearized system (17) evaluated at (0, 0) is given by

P(λ) = λ2 – A(h̃)λ + B(h̃) = 0, (18)

A(h̃) = (1 – c(h2 + h̃) + w11), and B(h̃) = w11(1 – c(h2 + h̃)) – w12c(h2+h̃)
d . Since parameter

(h2, a, b, c, d,α,β) ∈ ΩNS, therefore the roots of (18) are complex numbers λ1, λ2 with
λ2 = λ̄1 and |λ1| = |λ2| = 1, it follows that

λ1,λ2 =
A(h̃)

2
± ι

2

√
4B(h̃) – A2(h̃).

Then we obtain

|λ1| = |λ2| =
√

B(h̃),(
d|λ2|

dh̃

)
h̃=0

=
(

d|λ1|
dh̃

)
h̃=0

=
1
2

(
c(dw11 – w12)

d
√

(–d–2w12)w11+w12
dw11+w12

)
�= 0.

Further, we need that when h̃ = 0, λm
1 ,λm

2 �= 1 for m = 1, 2, 3, 4, which is equivalent to A(0) �=
2, 1, 0, –2. Since (h2, a, b, c, d,α,β) ∈ ΩNS, it follows that

–2 < A(0) = (1 – ch + w11) < 2.

Next we assume that A(0) �= 0, 1, that is,

w11 – ch �= –1 and ch �= w11. (19)
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Thus, we obtain A(0) �= 2, 1, 0, –2, which gives λm
1 ,λm

2 �= 1 ∀m = 1, 2, 3, 4 at h̃ = 0. Hence,
h̃ = 0 roots of (18) do not lie in the intersection of unit circle of co-ordinate axis when
h̃ = 0 and (19) hold. In order to obtain the normal form of (17) at h̃ = 0, we take α = A(0)

2
and β = 1

2

√
4B(0) – A2(0). We take the transformation given as

(
u
v

)
= T

(
p
q

)
, (20)

where T =
( a12 0

α–a11 –β

)
and det(T) �= 0. Under translation (20) the normal form of map (17)

can be written as follows:
(

p
q

)
−→

(
α –β

β α

)(
p
q

)
+

(
f̃ (p, q)
g̃(p, q)

)
, (21)

where

f̃ (p, q) =
a13

a12
u2 +

a14

a12
uv +

b1

a12
u3 +

b2

a12
u2v + O

((|p| + |q|)4),

g̃(p, q) =
( (α – a11)a13

a12β
–

a23

β

)
u2 +

( (α – a11)a14

a12β
–

a25

β

)
uv +

( (α – a11)b2

a12β

–
k3

β

)
u2v –

k1

β
uv2 –

a24

β
v2 +

( (α – a11)b1

a12β
+

k2

β

)
u3 + O

((|p| + |q|)4),

where u = a12p and v = (α –a11)p–βq. Next, we define the following nonzero real number:

L =
([

– Re

(
(1 – 2λ1)λ2

2
1 – λ1

ζ20ζ11

)
–

1
2
|ζ11|2 – |ζ02|2 + Re(λ2ζ21)

])
h̃=0

,

ζ20 =
1
8
[ ˜fpp – f̃qq + 2g̃pq + ι(g̃pp – g̃qq – 2f̃pq)

]
,

ζ11 =
1
4
[ ˜fpp + f̃qq + ι(g̃pp + g̃qq)

]
,

ζ02 =
1
8
[ ˜fpp – f̃qq – 2g̃pq + ι(g̃pp – g̃qq + 2f̃pq)

]
,

ζ21 =
1

16
[
f̃ppp + f̃pqq + g̃ppq + g̃qqq + ι(g̃ppp + g̃pqq – f̃ppq – f̃qqq)

]
.

Due to the above analysis, we have the following result.

Theorem 4.1 If condition (19) holds and L �= 0, then system (2) undergoes NSB at the
unique positive equilibrium point (x∗, y∗) when the parameter h varies in a small neigh-
borhood of h2 = ( d(w11–1)

c(dw11+w12) ). Furthermore, if L > 0, then a repelling invariant closed curve
bifurcates from the equilibrium point for h < h2, which is also called sub-critical NSB, and
an attracting invariant closed curve bifurcates when L < 0, which is also called supercritical
NSB.

5 Chaos control
In this segment, two feedback control techniques are talked about. The first one is the
pole-placement methodology, which may be processed as a generalized OGY method,
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and the second method is known as the hybrid control strategy. In order to use the OGY
technique to system (2), we have a tendency to write the system in the following way:

xn+1 = xn + h
[

xn(1 – xn) –
xnyn

x2
n
α

+ xn + β
–

axn

xn + b

]
= f (xn, yn, h),

yn+1 = yn + h
[

cyn

(
1 – d

yn

xn

)]
= g(xn, yn, h),

(22)

where h indicates the parameter for chaos control. Furthermore, h is limited to lie in some
small interval |h – h0| < ε with ε > 0, and h0 indicates the nominal value belonging to
the chaotic region. Suppose that (x∗, y∗) indicates an unstable fixed point for (2) in the
chaotic region, which yields under the influence of period-doubling and Neimark–Sacker
bifurcation. In this case, (22) is approximated in the neighborhood of (x∗, y∗) as follows:

[
xn+1 – x∗

yn+1 – y∗

]
≈ A

[
xn+1 – x∗

yn+1 – y∗

]
+ B

[
h h0

]
, (23)

where

A =

[
∂f
∂xn

(x∗, y∗, h0) ∂f
∂yn

(x∗, y∗, h0)
∂g
∂xn

(x∗, y∗, h0) ∂g
∂yn

(x∗, y∗, h0)

]
=

[
w11 w12
ch0
d 1 – ch0

]
,

and

B =

[
∂f
∂h (x∗, y∗, h0)
∂g
∂h (x∗, y∗, h0)

]
=

[
w13

0

]
,

where w13 = x∗(1 – x∗) – x∗2α

((x∗+β)α+x∗2)d – ax∗
(x∗+b) . Moreover, if the following matrix has rank

2, then system (22) is controllable.

C = [B : AB] =

[
w13 w11w13

0 ch
d w13

]
. (24)

Since ch
d w13 �= 0, the rank of C is 2. Consequently, system (2) is always controllable with

the OGY feedback control method. Next we assume that [h – ho] = –K
[ xn–x∗

yn–y∗
]
, where K =[

k1 k2
]
, then system (23) can be written as

[
xn+1 – x∗

yn+1 – y∗

]
≈

[
A – BK

][
xn – x∗

yn – y∗

]
. (25)

Moreover, both eigenvalues μ1 and μ2 of matrix A – BK lie in an open disk if and only if
the equilibrium point (x∗, y∗) is locally asymptotically stable. These eigenvalues are called
regulator poles, and the problem of placing these regulator poles at appropriate place is
known as a pole-placement problem. Since the rank of matrix C is 2, hence the pole-
placement problem has a unique solution. Next we suppose that γ 2 + α1γ + α2 is the char-
acteristic equation of A and μ2 + β1μ + β2 is the characteristic equation of A – BK , then
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the unique solution of pole-placement problem is given by

K =
[
β2 – α2 β1 – α1

]
T–1,

where T = CM and M =
[

α1 1
1 0

]
.

Secondly, we apply the hybrid control strategy to system (2) for controlling chaos
through the effect of both types of bifurcations. Assume that system (2) undergoes PDB
and NSB at its equilibrium point (x∗, y∗), then the corresponding controlled system using
the hybrid control method is written as follows:

xn+1 = ρ

[
xn + h

(
xn(1 – xn) –

xnyn
x2

n
α

+ xn + β
–

axn

xn + b

)]
+ (1 – ρ)xn,

yn+1 = ρ

[
yn + h(cyn

(
1 – d

yn

xn

)]
+ (1 – ρ)yn,

(26)

where ρ ∈ (0, 1) illustrates the control parameter for controlled system (26). Moreover, the
Jacobian matrix for (26) at (x∗, y∗) is computed as follows:

J =

[
ρw11 + (1 – ρ) ρw12

ρ ch
d ρ(1 – ch) + (1 – ρ)

]
. (27)

Furthermore, the following lemma gives parametric conditions for local stability of the
fixed point (x∗, y∗) for controlled system (26).

Lemma 5.1 The positive equilibrium point (x∗, y∗) of control system (26) is locally asymp-
totically stable if the following condition holds:

d <
chρ2w12

(1 – chρ(ρw11 – ρ + 1) + ρ(w11 – 1))
.

6 Numerical simulation and discussion
This segment is committed to proving the presence of PDB and NSB for system (2) for
specific numerical values of its parameters (a, b, c, d,α,β) whereas taking h as bifurca-
tion parameter. The verification of period-doubling and Neimark–Sacker bifurcation is
demonstrated using bifurcation diagrams and phase portraits. In addition, hybrid control
and pole-placement techniques for chaos control are too supported by numerical simula-
tions.

Example 6.1 First we choose (a, b, c, d,α,β) = (0.4, 2, 5.4, 0.113, 0.012, 6) and the initial val-
ues (x0, y0) = (0.75, 6.5). Then system (2) experiences PDB as bifurcation parameter h
changes in the small neighborhood of h0 = 0.3805. From bifurcation diagrams, which are
shown in Fig. 3, for h < 0.3805, the fixed point E∗ is stable and unstable at h = 0.3805
and period-doubling bifurcation occurs for h > 0.3805. MLEs related to bifurcation dia-
grams Fig. 3(a) and (b) are plotted in Fig. 3(c), which confirms the existence of chaotic
behavior in system (2). The phase portraits related to Figs. 3(a) and (b) are plotted in
Fig. 4. On the other hand, for these parametric values λ1 = –1, λ2 = 0.7604011396 �= ±1,
l1 = –11.13714613 �= 0, and l2 = 0.3269262762 �= 0. Therefore, all the conditions of Theo-
rem 3.1 are satisfied.
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(a) Bifurcation diagram of xn (b) Bifurcation diagram of yn

(c) Maximum Lyapunov exponents

Figure 3 MLE and bifurcation diagrams for model (2) in the interval 0.32≤ h ≤ 0.5 with parameters
(a,b, c,d,α,β ,h) = (0.4, 2, 5.4, 0.113, 0.012, 6, 0.3805) and initial conditions (x0, y0) = (0.75, 6.5)

Example 6.2 Next we select (a, b, c, d,α,β) = (0.001, 0.75, 0.224, 0.29, 0.19, 1) and h ∈
[0.4, 0.99] and the initial value (x0, y0) = (0.38564, 1.33674). Then system (2) undergoes
NSB as bifurcation parameter h0 = 0.5731. From bifurcation diagrams 5(a) and (b), it can
be easily seen that E∗ of map (2) is stable for h < 0.5731 and unstable at h = 0.5731, and NSB
occurs at h > 0.5731. MLEs related to bifurcation diagrams Figs. 5(a) and (b) are plotted in
Fig. 5(c), which confirms the existence of chaotic behavior in system (2). Phase portraits
related to these parametric values are shown in Fig. 6. For these parametric values, the
first Lyapunov exponent is computed as follows: L = –0.03295317044 �= 0. This proves the
correctness of Theorem 4.1.

Example 6.3 For an application of the pole-placement control strategy for Neimark–
Sacker bifurcation to system (2), we select the nominal value h0 = 0.575 that belongs to
the chaotic region [0.5731, 0.99]. At (a, b, c, d,α,β) = (0.001, 0.75, 0.224, 0.29, 0.19, 1) the
unique positive equilibrium point (x∗, y∗) = (0.384976, 1.33584) of system (2) and it is un-
stable. In this case system (22) can be written as

xn+1 = xn + h
[

xn(1 – xn) –
xnyn

x2
n

0.19 + xn + 1
–

0.001xn

xn + 0.75

]
= f (xn, yn, h),

yn+1 = yn + h
[

0.224yn

(
1 – 0.29

yn

xn

)]
= g(xn, yn, h).

(28)
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(a) h = 0.36 (b) h = 0.3805

(c) h = 0.40 (d) h = 0.42

(e) h = 0.45 (f ) h = 0.47

(g) h = 0.48 (h) h = 0.50

Figure 4 Phase portraits for model (2) at different values of h with (a,b, c,d,α,β) = (0.4, 2, 5.4, 0.113, 0.012, 6)
with initial conditions (x0, y0) = (0.75, 6.5)

Then linearized form of (28) approximated at a positive equilibrium point (x∗, y∗) =
(0.384976, 1.33584) can be written as

[
xn+1 – 0.384976
yn+1 – 1.33584

]
≈ A

[
xn – 0.384976
yn – 1.33584

]
+ B

[
h – 0.575

]
,



Bilal Ajaz et al. Advances in Difference Equations         (2020) 2020:45 Page 16 of 24

(a) Bifurcation diagram of xn (b) Bifurcation diagram of yn

(c) Maximum Lyapunov exponents

Figure 5 MLE and bifurcation diagrams for model (2) in the interval 0.4≤ h ≤ 0.99 with parameters
(a,b, c,d,α,β ,h) = (0.001, 0.75, 0.224, 0.29, 0.19, 0.5731) and initial conditions (x0, y0) = (0.38564, 1.33674)

where

A =

[
1.096121758 –0.1022448706

0.4441379310 0.871200

]
, B =

[
0.0003773848246

0

]
.

Then it follows that C = [B : AB] =
[ 0.0003773848246 0.000413659717383074

0 0.000167610915188642

]
is of rank 2.

Taking h = (ho – k1(xn – x∗) – k2(yn – y∗)), where K = (k1, k2) is the gain matrix, the re-
spective controlled system is given as

xn+1 = xn +
(
ho – k1

(
xn – x∗) – k2

(
yn – y∗))[xn(1 – xn) –

xnyn
x2

n
0.19 + xn + 1

–
0.001xn

xn + 0.75

]
,

yn+1 = yn +
(
ho – k1

(
xn – x∗) – k2

(
yn – y∗))[0.224yn

(
1 – 0.29

yn

xn

)]
.

(29)

By simple calculations, we get α1 = –1.967321758, α2 = 1.000352101,
β1 = 0.0003773848246k1 – 1.967321758, and β2 = 1.000352101 – 0.00032877765k1 +
0.00016761091k2. Next it is easy to see that M =

( –1.967321758 1
1 0

)
and T =( –0.00032877765 0.000377384824

0.000167610915 0

)
. For the purpose of simplification, we fix k2 = k and k1 = 0.1

as an arbitrary parameter in controlled system (29), then the characteristic equation of
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(a) h = 0.56 (b) h = 0.5731

(c) h = 0.65 (d) h = 0.70

(e) h = 0.78 (f ) h = 0.75

(g) h = 0.85 (h) h = 0.97

Figure 6 Phase portraits for model (2) at different values of h with
(a,b, c,d,α,β) = (0.001, 0.75, 0.224, 0.29, 0.19, 1) and initial conditions (x0, y0) = (0.38564, 1.33674)

Jacobian matrix (29) is given by

λ2 + 0.000473780λk – 1.967284020λ + 0.000651671k

+ 0.0000093731k2 + 1.00031922 = 0. (30)
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(a) Bifurcation diagram of xn (b) Bifurcation diagram of yn

Figure 7 Bifurcation diagrams for controlled system (29)

(a) Plot of xn for controlled system (29) (b) Plot of yn for controlled system (29)

(c) Phase portrait for controlled system (29)

Figure 8 Plots for controlled system (29)

In this case the positive equilibrium of control system (29) is locally asymptotically stable
for –69.03215478) < k < –0.4933532528. The bifurcation diagrams for controlled system
(29) are shown in Fig. 7 by taking k1 = 0.1 and –12 < k2 < 4. Next we take k1 = 0.1 and
k2 = –10 for controlled system (29), then the plots xn and yn are shown in Figs. 8(a) and
(b) and the phase portrait is shown in Fig. 8(c).

Example 6.4 We apply the pole-placement control strategy for period-doubling bifurca-
tion to system (2) and select the nominal value h0 = 0.47 that belongs to the chaotic region
[0.3805, 0.5]. At (a, b, c, d,α,β) = (0.4, 2, 5.4, 0.113, 0.012, 6) the unique positive equilibrium
point (x∗, y∗) = (0.730715, 3.62792) of system (2) is unstable. In this case system (22) can
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be written as

xn+1 = xn + h
[

xn(1 – xn) –
xnyn

x2
n

0.012 + xn + 6
–

0.4xn

xn + 2

]
= f (xn, yn, h),

yn+1 = yn + h
[

5.4yn

(
1 – 0.113

yn

xn

)]
= g(xn, yn, h).

(31)

Then linearized form (31) approximated at a positive equilibrium point (x∗, y∗) =
(0.730715, 3.62792) can be written as

[
xn+1 – 0.730715
yn+1 – 3.62792

]
≈ A

[
xn – 0.730715
yn – 3.62792

]
+ B

[
h – 0.47

]
,

where

A =

[
0.7772896532 –0.006704319996
22.46017699 –1.538

]
, B =

[
–0.0025073679

0

]
.

Then it follows that C = [B : AB] =
[ –0.0025073679 –0.00194895112543581

0 –0.0563159268130446

]
is of rank 2.

Taking h = (ho – k1(xn – x∗) – k2(yn – y∗)), where K = (k1, k2) is the gain matrix, the re-
spective controlled system is given as

xn+1 = xn +
(
ho – k1

(
xn – x∗) – k2

(
yn – y∗))[xn(1 – xn) –

xnyn
x2

n
0.012 + xn + 6

–
0.4xn

xn + 2

]
,

yn+1 = yn +
(
ho – k1

(
xn – x∗) – k2

(
yn – y∗))[5.4yn

(
1 – 0.113

yn

xn

)]
.

(32)

By simple calculations, we get α1 = 0.7607103468, α2 = –1.044891273, β1 =
–0.0025073679k1 + 0.7607103468, and β2 = –1.04489127 – 0.00385633183k1 –
0.0563159268k2. Next it is easy to see that M =

( 0.7607103468 1
1 0

)
and T =( –0.00385633183 –0.00250736790

–0.0563159268 0

)
. For the purpose of simplification, we fix k2 = k and k1 = 0.1

as an arbitrary parameter in controlled system (32), then the characteristic equation of
the Jacobian matrix of (32) is given by

λ2 – 16.6734242λk + 0.760459609λ + 7.974513942k + 26.45038149k2

– 1.045276906 = 0. (33)

The positive equilibrium of control system (32) is locally asymptotically stable for
0.030673 < k < 0.165560. The bifurcation diagrams for controlled system (32) are shown
in Fig. 9 by taking k1 = 0.1 and –0.02 < k2 < 0.14. Next we take k2 = 0.06 and k1 = 0.1 for
controlled system (32), then the plots xn and yn are shown in Figs. 10(a) and (b) and the
phase portrait is shown in Fig. 10(c).

Example 6.5 Now, choose the parameters (a, b, c, d,α,β) = (0.4, 2, 5.4, 0.113, 0.012, 6) and
h = 0.3805 and the initial condition and (x0, y0) = (0.75, 6.5). Then the controlled system
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(a) Bifurcation diagram of xn (b) Bifurcation diagram of yn

Figure 9 Bifurcation diagrams for controlled system (32)

(a) Plot of xn for controlled system (32) (b) Plot of yn for controlled system (32)

(c) Phase portrait for controlled system (32)

Figure 10 Plots and phase portrait for controlled system (32)

using hybrid control strategy is given by

xn+1 = ρ

[
xn + 0.3805

(
xn(1 – xn) –

xnyn
x2

n
0.012 + xn + 1

–
0.4xn

xn + 2

)]
+ (1 – ρ)xn,

yn+1 = ρ

[
yn + 0.3805

(
5.4yn

(
1 –

0.113yn

xn

))]
+ (1 – ρ)yn.

(34)

The Jacobian matrix of (34) is

J =

[
–0.1946040346ρ + 1 –0.005321678323ρ

18.18318584ρ –2.05470ρ + 1

]
. (35)
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(a) Plot of xn for controlled system (34) (b) Plot of yn for controlled system (34)

(c) Phase portrait for controlled system (34)

Figure 11 Plots and phase portrait for controlled system (34) with (a,b, c,d,α,β) = (0.4, 2, 5.4, 0.113, 0.012, 6)
and h = 0.3803 and initial conditions (x0, y0) = (0.75, 6.5)

The characteristic polynomial equation of (35) is

P(λ) = λ2 + (2.249304035ρ – 2)λ + 1 – 2.249304035ρ + 0.4966179758ρ2 = 0. (36)

Under the Jury condition, the roots of (36) lie in a unit open disk if 0 < ρ < 1. Thus,
the period-doubling bifurcation is completely controlled in the largest allowable interval
ρ ∈ 0.9994323. For ρ = 0.90, the plots of xn, yn and the phase portrait of controlled system
(34) are shown in Figs. 11(a), (b), and (c), respectively.

Example 6.6 We again select the parameters (a, b, c, d,α,β) = (0.001, 0.75, 0.224, 0.29,
0.19, 1) and h = 0.5731 and the initial condition (x0, y0) = (0.38564, 1.33674), then system
(2) undergoes NSB corresponding to the parametric values, we have the following con-
trolled system:

xn+1 = ρ

[
xn + 0.5731

(
xn(1 – xn) –

xnyn
x2

n
0.19 + xn + 1

–
0.001xn

xn + 0.75

)]
+ (1 – ρ),

yn+1 = ρ

[
yn + 0.5731

(
0.224yn

(
1 –

0.29yn

xn

))]
+ (1 – ρ)yn.

(37)

The Jacobian matrix of (37) is given by

J =

[
0.095529046ρ + 1 –0.1019247393ρ

0.4426703448ρ –0.1283744ρ + 1

]
. (38)
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(a) Plot of xn for controlled system (37) (b) Plot of yn for controlled system (37)

(c) Phase portrait for controlled system (37)

Figure 12 Plots and phase portrait for controlled system (37) with
(a,b, c,d,α,β) = (0.001, 0.75, 0.224, 0.29, 0.19, 1) and h = 0.5731 and initial conditions
(x0, y0) = (0.38564, 1.33674)

The characteristic polynomial equation of (38) is

P(λ) = λ2 + (0.032845354ρ – 2)λ + 1 – 0.032845354ρ + 0.03285557553ρ2 = 0. (39)

Under the Jury condition, the roots of (39) lie in a unit open disk if and only if 0 < ρ < 1.
Thus NSB is entirely controlled in the largest admissible interval for ρ ∈ 0.9996888951.
For ρ = 0.95, the plots and phase portrait of controlled system (37) are shown in Fig. 12.

7 Concluding remarks
We studied the qualitative behavior of a modified Leslie–Gower predator–prey model and
achieved the results for stability of equilibrium points. In order to support the complexity
in system (2), the presence of period-doubling and Neimark–Sacker bifurcation for the
fixed point is verified mathematically, further numerically simulations are performed. Us-
ing these simulations, we showed that system (2) goes through PDB and NSB for the vast
range of bifurcation parameters h. Chaos control is discussed through the implementation
of pole-placement and hybrid feedback control methods. It is clear from our numerical
observations that, for an extensive range of parameters, stability can be rebuilt through
the OGY method and the hybrid control method. The OGY method is based on feedback
control methodology, whereas hybrid control depends on feedback control and parameter
perturbation. The computation of maximum Lyapunov exponents proved the presence of
chaotic behavior of the system.
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