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Abstract
Let c be a nonzero constant and n a positive integer, let f be a transcendental
meromorphic function of finite order, and let R be a nonconstant rational function.
Under some conditions, we study the relationships between the exponent of
convergence of zero points of f – R, its shift f (z + nc) and the differences �n

c f .
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1 Introduction and main results
Nevanlinna theory is one of the most important developments in complex analysis in the
20th century, which deals with the value distribution of entire and meromorphic func-
tions. Many applications can be found in the study of Picard type theorems, value sharing
results and normality criteria.

In this paper, we assume that the reader is familiar with the basic notations of Nevan-
linna’s value distribution theory (see [11, 15–18]). In the following, a meromorphic func-
tion always means meromorphic in the whole complex plane. By S(r, f ), we denote any
quantity satisfying S(r, f ) = o(T(r, f )) as r → ∞ possible outside of an exceptional set E
with finite logarithmic measure

∫
E dr/r < ∞. A meromorphic function a is said to be a

small function of f if it satisfies T(r, a) = S(r, f ).
Let f be a nonconstant meromorphic function. The order of f is defined by

ρ(f ) = lim
r→∞

log+ T(r, f )
log r

.

The exponents of convergence of zeros and poles of f are defined by

λ(f ) = lim
r→∞

log+ N(r, 1
f )

log r

and

λ

(
1
f

)

= lim
r→∞

log+ N(r, f )
log r

.
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For a nonzero complex constant η ∈ C, we define the difference operators of f as
�ηf (z) = f (z + η) – f (z) and �n

ηf (z) = �η(�n–1
η f (z)), n ∈N, n ≥ 2 (see [7, 8, 12–14]).

Recently, numerous mathematicians have studied fixed points, which is an important
topic in the theory of meromorphic functions (see [3–6, 9, 10]). In 2000, Chen [4] studied
fixed points of solutions of differential equations and defined the exponent of convergence
of fixed points by τ (f ) as follows:

τ (f ) = lim
r→∞

log+ N(r, 1
f –z )

log r
.

In 2000, Fang [10] studied the fixed points of derivative of meromorphic functions and
obtained the following result.

Theorem A Let f be a transcendental meromorphic function. Suppose that all zeros and
poles of f are multiple. Then f ′ has infinitely many fixed points.

The topic on fixed points can be also investigated in the field of complex differences.
For example, Chen and Shon [6] have got some results on the zeros and fixed points of
transcendental entire functions and meromorphic functions. Chen [5] and Zhang–Chen
[19] studied the relationships between fixed points of meromorphic functions and their
differences and shifts. Their results are stated as follows.

Theorem B ([5]) Let f be a finite order meromorphic function such that λ( 1
f ) < ρ(f ), and

let c(�= 0) be a finite constant such that �cf (z) �≡ c. Then

max
{
τ
(
f (z)

)
, τ

(
�cf (z)

)}
= ρ(f ),

max
{
τ
(
f (z)

)
, τ

(
f (z + c)

)}
= ρ(f ),

max
{
τ
(
�cf (z)

)
, τ

(
f (z + c)

)}
= ρ(f ).

Theorem C ([19]) Let a be a finite complex number, let f be a finite order meromorphic
function such that λ(f – a) < ρ(f ), and let c(�= 0) be a finite constant. Then

max
{
τ
(
f (z)

)
, τ

(
�cf (z)

)}
= ρ(f ),

max
{
τ
(
f (z)

)
, τ

(
f (z + c)

)}
= ρ(f ),

max
{
τ
(
�cf (z)

)
, τ

(
f (z + c)

)}
= ρ(f ).

Chen and Zheng [3] extended Theorem C and proved the following theorem.

Theorem D ([3]) Let a be a finite complex number, let f be a finite order transcendental
meromorphic function such that λ(f – a) < ρ(f ), and let c(�= 0) be a finite constant and n be
a positive integer. Then

max
{
τ
(
f (z)

)
, τ

(
�n

c f (z)
)}

= ρ(f ),

max
{
τ
(
f (z)

)
, τ

(
f (z + nc)

)}
= ρ(f ),

max
{
τ
(
�n

c f (z)
)
, τ

(
f (z + nc)

)}
= ρ(f ).
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They generalized the case of fixed points into the more general case for n = 1, and ob-
tained the following result.

Theorem E ([3]) Let a be a finite complex number, let f be a finite order transcendental
meromorphic function such that λ(f – a) < ρ(f ), let c(�= 0) be a finite constant and m be a
positive integer, and let p(z) = pmzm +pm–1zm–1 + · · ·+p1z+p0 be a nonconstant polynomial,
where pm �= 0, pm–1, . . . , p1, p0 are finite complex numbers. Then

max
{
λ
(
f (z) – p(z)

)
,λ

(
�cf (z) – p(z)

)}
= ρ(f ),

max
{
λ
(
f (z) – p(z)

)
,λ

(
f (z + c) – p(z)

)}
= ρ(f ),

max
{
λ
(
�cf (z) – p(z)

)
,λ

(
f (z + c) – p(z)

)}
= ρ(f ).

In 2003, Bergweiler and Pang [2] extended Theorem A as follows.

Theorem F Let f be a transcendental meromorphic function and let R(�≡ 0) be a rational
function. Suppose that all but finitely many zeros and poles of f are multiple. Then f ′ – R
has infinitely many zeros.

By the above theorems, we naturally pose the following question.

Problem 1 In Theorem B–Theorem E, whether the fixed points or the nonconstant poly-
nomial p can be replaced by a nonconstant rational function R? In this paper, we give a
positive answer to Problem 1 and prove the following results.

Theorem 1 Let a, c(�= 0) be two finite complex numbers, let f be a finite order transcen-
dental meromorphic function such that λ(f – a) < ρ(f ), and let R be a nonconstant rational
function. Then

(1.1) max{λ(f (z) – R(z)),λ(�n
c f (z) – R(z))} = ρ(f );

(1.2) max{λ(f (z) – R(z)),λ(f (z + nc) – R(z))} = ρ(f );
(1.3) max{λ(�n

c f (z) – R(z)),λ(f (z + nc) – R(z))} = ρ(f ).
(1.1), (1.3) are valid unless f (z) = a + a–R(z)

DeAz–1 , where A, D are nonzero constants, R is a poly-
nomial of 1 ≤ deg R < n, and eAc = 1.

Remark Let n be a positive integer, a, c(�= 0) be two finite values with ec = 1, let f (z) =
a + a–R(z)

ez–1 , and let R be a polynomial of 1 ≤ deg R < n. Then �n
c f ≡ 0. But (1.1) and (1.3) are

not valid. Let R(z) = z, n ≥ 2, in this case, Theorem D is not valid.

The following two examples show that it is necessary that R is nonconstant.

Example 1 Let a, R(�= 0, a), c(�= 0) be three finite complex numbers with ec = 1, let n be a
positive integer, and let f (z) = a + a–R

ez–1 . Then f (z) �= a, f (z) �= R, f (z + nc) �= R, �n
c f ≡ 0 �= R.

Example 2 Let a, c be two nonzero finite complex numbers with ec = 2, let R = 0, and let
f (z) = a

1–ez . Then �cf = aez

(1–ez)(1–2ez) , f �= a, f �= R, �cf �= R.

Theorem 2 Let c(�= 0) be a finite constant, let f be a finite order transcendental meromor-
phic function such that λ( 1

f ) < ρ(f ), and let R be a nonconstant rational function. If �n
c f is

a transcendental meromorphic function, then
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(2.1) max{λ(f (z) – R(z)),λ(�n
c f (z) – R(z))} = ρ(f );

(2.2) max{λ(f (z) – R(z)),λ(f (z + nc) – R(z))} = ρ(f );
(2.3) max{λ(�n

c f (z) – R(z)),λ(f (z + nc) – R(z))} = ρ(f ).

Example 3 Let R be a rational function, let f (z) = ez + R(z), and let c is a nonzero constant
with ec = 1. Then �cf (z) = �cR(z). Obviously, ρ(f ) = 1, λ(f (z) – R(z)) = 0, λ(�cf (z) – R(z)) =
0, λ(f (z + c) – R(z)) = 0. Thus we obtain max{λ(f (z) – R(z)),λ(f (z + c) – R(z)),λ(�cf (z) –
R(z))} < ρ(f ).

This shows that it is necessary that �n
c f is a transcendental meromorphic function in

Theorem 2.

2 Some lemmas
For the proof of our results, we need the following lemmas.

Lemma 1 ([7, 8, 13]) Let f be a meromorphic function of finite order, let c be a nonzero
finite complex number. Then

m
(

r,
f (z + c)

f (z)

)

= S(r, f ),

and, for any ε > 0, we have

m
(

r,
f (z + c)

f (z)

)

= O
(
rρ(f )–1+ε

)
.

Lemma 2 ([16, 17]) Let f be a meromorphic function. Then, for all irreducible rational
functions in f ,

R(z, f ) =
∑m

i=0 ai(z)f i
∑n

j=0 bj(z)f j

with meromorphic coefficients ai(z), bj(z) such that

T(r, ai) = S(r, f ), i = 0, 1, . . . , m,

T(r, bj) = S(r, f ), j = 0, 1, . . . , n,

the characteristic function of R(z, f ) satisfies

T
(
r, R(z, f )

)
= max{m, n}T(r, f ) + S(r, f ).

Lemma 3 ([7]) Let f be a meromorphic function of finite order, let c be a nonzero finite
complex number. Then

T
(
r, f (z + c)

)
= T(r, f ) + S(r, f ),

N
(
r, f (z + c)

)
= N(r, f ) + S(r, f ),

N
(

r,
1

f (z + c)

)

= N
(

r,
1
f

)

+ S(r, f ).
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Lemma 4 ([15–18]) Let f be a nonconstant meromorphic function, and let a1, a2, a3 (one
may be ∞) be three distinct small functions of f . Then

T(r, f ) ≤ N
(

r,
1

f – a1

)

+ N
(

r,
1

f – a2

)

+ N
(

r,
1

f – a3

)

+ S(r, f ).

Lemma 5 Let R be a nonconstant rational function, let c be a nonzero constant, and let n
be a positive integer. Then �n

c R – R �≡ 0.

Proof We consider two cases.
Case 1. R is a nonconstant polynomial. Then �n

c R is a polynomial of degree deg R – n for
n ≤ deg R, and �n

c R ≡ 0 for n > deg R. It follows that �n
c R – R �≡ 0.

Case 2. R = q/p, where p, q are two coprime polynomials with deg p ≥ 1. Set

p(z) = aszs + · · · + a1z + a0, q(z) = btzt + · · · + b1z + b0,

where a0, a1, . . . , as, b0, b1, . . . , bt are finite complex numbers with asbt �= 0.
Thus we have

�n
c R – R =

q(z + nc)
p(z + nc)

+ · · · + (–1)n–1Cn–1
n

q(z + c)
p(z + c)

+ (–1)n q(z)
p(z)

–
q(z)
p(z)

=
–(as)nbtzns+t + c1zns+t–1 + · · · + cns+t

p(z)p(z + c) · · ·p(z + nc)
�≡ 0. �

Lemma 6 Let n be a positive integer, let c be a nonzero constant, and let R = q/p be a
nonconstant rational function, where p, q are two coprime polynomials. If deg p ≥ 1, or R
is a polynomial with deg R ≥ n, then �n

c R �≡ 0.

Proof We consider two cases.
Case 1. R is a nonconstant polynomial with deg R ≥ n. Set deg R = s ≥ n, then we have

R(z) = aszs + · · · + a1z + a0,

where a0, a1, . . . , as are finite complex numbers with as �= 0. Then

�cR =
[
as(z + c)s + · · · + a1(z + c) + a0

]
–

[
aszs + · · · + a1z + a0

]

= sasczs–1 + · · · ,

�2
c R = �c(�cR) = s(s – 1)asc2zs–2 + · · · ,

· · ·
�n

c R = �c
(
�n–1

c R
)

= s(s – 1) · · · (s – n + 1)ascnzs–n + · · · �≡ 0.

Case 2. R = q/p, where p, q are two coprime polynomials with deg p ≥ 1. Then we claim
that

�cR(z) =
q(z + c)
p(z + c)

–
q(z)
p(z)

=
p(z)q(z + c) – p(z + c)q(z)

p(z)p(z + c)
=

q1(z)
p1(z)

�≡ 0,

where p1, q1 are two coprime polynomials with deg p1 ≥ 1.
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In fact, if �cR ≡ 0, then q(z+c)
p(z+c) ≡ q(z)

p(z) . Since deg p ≥ 1, there exists a finite complex number
z0 such that p(z0) = 0. It follows that p(z0 + c) = 0, p(z0 + 2c) = 0, . . . , p(z0 + (deg p + 1)c) = 0,
a contradiction. Thus we prove �cR �≡ 0. Obviously, there exists a finite complex number
z1 such that p(z1 + c) = 0, p(z1) �= 0, q(z1 + c) �= 0, thus we obtain deg p1 ≥ 1.

Next, using mathematical induction, we obtain

�n
c R = �c

(
�n–1

c R
)

=
qn(z)
pn(z)

�≡ 0,

where pn, qn are two coprime polynomials with deg pn ≥ 1. Thus the proof of the lemma
is completed. �

3 Proof of Theorem 1

Proof Now we prove (1.1). Suppose that λ(f (z)–R(z)) < ρ(f ). Next we will prove λ(�n
c f (z)–

R(z)) = ρ(f ).
Since λ(f (z) – a) < ρ(f ), and R is a nonconstant rational function, we have

f (z) – R(z)
f (z) – a

= α(z)ep(z), (3.1)

where α (�≡ 0,∞) is a meromorphic function such that ρ(α) < ρ(f ), and p is a nonconstant
polynomial with deg p = ρ(f ).

Hence we have

T(r,α) = S
(
r, ep), T(r, f ) = T

(
r, ep) + S(r, f ). (3.2)

By (3.1), we obtain

f (z) = a +
a – R(z)

α(z)ep(z) – 1
. (3.3)

Thus we have

�n
c f (z) = �n

c
(
f (z) – a

)

=
n∑

i=0

(–1)iCi
n
(
f
(
z + (n – i)c

)
– a

)

=
n∑

i=0

(–1)iCi
n

a – R(z + (n – i)c)
α(z + (n – i)c)ep(z+(n–i)c) – 1

(3.4)

=
∑n

i=0(–1)iCi
n(a – R(z + (n – i)c))	n

j �=i(α(z + (n – j)c)ep(z+(n–j)c) – 1)
	n

i=0(α(z + (n – i)c)ep(z+(n–i)c) – 1)

=
Bm(z)(ep(z))m + Bm–1(z)(ep(z))m–1 + · · · + B1(z)ep(z) + B0(z)
An+1(z)(ep(z))n+1 + An(z)(ep(z))n + · · · + A1(z)ep(z) + (–1)n+1 , (3.5)

where A1(z), A2(z), . . . , An+1(z), B0(z), B1(z), . . . , Bm(z) are small functions of ep(z), and
An+1(z) = α(z)α(z + c)ep(z+c)–p(z) · · ·α(z + nc)ep(z+nc)–p(z) �≡ 0, Bm(z) �≡ 0, B0(z) = (–1)n+1 ×
�n

c R(z), m ≤ n.
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It follows from (3.4) that �n
c f �≡ 0. Suppose that �n

c f ≡ 0. Next we consider two cases.
Case 1. ep(z+nc)–p(z+(n–i)c) – α(z+(n–i)c)

α(z+nc) �≡ 0, i = 1, 2, . . . , n. Then, by (3.4) and Nevanlinna’s
second fundamental theorem [1, 17, 18], we obtain

T
(
r, ep) = T

(

r,
α(z + nc)ep(z+nc)

α(z + nc)ep(z+nc)–p(z)

)

≤ T
(
r,α(z + nc)ep(z+nc)) + S

(
r, ep) ≤ N

(
r,α(z + nc)ep(z+nc))

+ N
(

r,
1

α(z + nc)ep(z+nc) – 1

)

+ N
(

r,
1

α(z + nc)ep(z+nc)

)

+ S
(
r, ep)

≤ N
(

r,
1

α(z + nc)ep(z+nc) – 1

)

+ S
(
r, ep)

= N
(

r,
1

α(z + nc)ep(z+nc) – 1
,�n

c f = 0
)

+ S
(
r, ep)

≤
n∑

i=1

N
(

r,
1

(α(z + nc)ep(z+nc) – 1) – (α(z + (n – i)c)ep(z+(n–i)c) – 1)

)

+ S
(
r, ep)

=
n∑

i=1

N
(

r,
1

α(z + nc)ep(z+nc) – α(z + (n – i)c)ep(z+(n–i)c)

)

+ S
(
r, ep)

≤
n∑

i=1

N
(

r,
1

ep(z+nc)–p(z+(n–i)c) – α(z+(n–i)c)
α(z+nc)

)

+ S
(
r, ep)

≤
n∑

i=1

[

T
(
r, ep(z+nc)–p(z+(n–i)c)) + T

(

r,
α(z + (n – i)c)

α(z + nc)

)]

+ S
(
r, ep)

= S
(
r, ep), (3.6)

which is a contradiction.
Case 2. ep(z+nc)–p(z+(n–i)c) – α(z+(n–i)c)

α(z+nc) ≡ 0, for some i ∈ {1, 2, . . . , n}. If deg p ≥ 2, then by
ρ(α) < ρ(f ) = deg p and Lemma 1 we get

ρ

(
α(z + (n – i)c)

α(z + nc)

)

≤ ρ(α) – 1 +
ρ(f ) – ρ(α)

2
< ρ(f ) – 1 = ρ

(
ep(z+nc)–p(z+(n–i)c)),

which is a contradiction. Hence deg p = 1. So, ρ(α) < 1. Let p(z) = Az + B, then we have
α(z + (n – i)c) = eiAcα(z + nc). Without loss of generality, we assume that i = 1, then we
obtain

α(z) = eAcα(z + c).

We claim that α �= ∞. Suppose that there exists z0 such that α(z0) = ∞, without loss of
generality, let z0 = 0, then we deduce that for all positive integers j, α(jc) = ∞. Thus for
sufficiently large r, and 2n|c| ≤ r < (2n + 1)|c|, we have

T(r,α) ≥ N(r,α) =
∫ r

0

n(t,α) – n(0,α)
t

dt + n(0,α) log r

≥
2n–1∑

j=1

j
∫ (j+1)|c|

j|c|
dt
t

=
2n–1∑

j=1

j log

(

1 +
1
j

)
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≥
2n–1∑

j=1

j log

(

1 +
1

2n – 1

)

= n log

(

1 +
1

2n – 1

)2n–1

≥ n log 2 >
log 2
4|c| r.

It follows that ρ(α) ≥ 1, which is a contradiction. Similarly, we obtain α �= 0. Thus we
deduce that α is a nonzero constant C. By (3.1), we obtain

f (z) = a +
a – R(z)

CeAz+B – 1
= a +

a – R(z)
DeAz – 1

, D = CeB �= 0. (3.7)

If R = q/p be a nonconstant rational function, where p, q are two polynomials with
deg p ≥ 1, or R is a polynomial with deg R ≥ n, then, by Lemma 6, (3.5) and (3.7), we ob-
tain �n

c f �≡ 0. If R is a polynomial with 1 ≤ deg R < n, and eAc �= 1, then, by (3.7) and some
computation, we deduce that �n

c f �≡ 0.
In fact, by (3.4) and (3.7) we have

�n
c f (z) =

n∑

i=0

(–1)iCi
n

a – R(z + (n – i)c)
DeA(z+(n–i)c) – 1

=
∑n

i=0(–1)iCi
n(a – R(z + (n – i)c))	n

j �=i(DeA(z+(n–j)c) – 1)
	n

i=0(Dep(z+(n–i)c) – 1)

=
[Dn(eAc)1+2+···+(n–1) ∑n

i=0(–1)iCi
n(a – R(z + (n – i)c))(eAc)i](eAz)n + · · ·

An+1(z)(eAz)n+1 + An(z)(eAz)n + · · · + A1(z)eAz + (–1)n+1

=
[–Dn(eAc)1+2+···+(n–1)as

∑n
i=0(–1)iCi

n(eAc)izs + · · · ](eAz)n + · · ·
An+1(z)(eAz)n+1 + An(z)(eAz)n + · · · + A1(z)eAz + (–1)n+1

=
[–Dn(eAc)1+2+···+(n–1)as(eAc – 1)nzs + · · · ](eAz)n + · · ·

An+1(z)(eAz)n+1 + An(z)(eAz)n + · · · + A1(z)eAz + (–1)n+1 ,

where R(z) = aszs + as–1zs–1 + · · · + a1z + a0, 1 ≤ s = deg R < n. It follows from as �= 0, D �=
0, eAc – 1 �= 0 that �n

c f �≡ 0.
Hence by the above discussion we prove that �n

c f �≡ 0. Set

B
(
ep) = Bm

(
ep)m + Bm–1

(
ep)m–1 + · · · + B1ep + B0,

A
(
ep) = An+1

(
ep)n+1 + An

(
ep)n + · · · + A1ep + (–1)n+1.

By the method of successive division, there exist D(ep), E(ep), F(ep), G(ep), H(ep) satisfying

A
(
ep) = D

(
ep)E

(
ep), B

(
ep) = D

(
ep)F

(
ep), (3.8)

E
(
ep)G

(
ep) + F

(
ep)H

(
ep) ≡ 1, (3.9)

where

D
(
ep) = Dl

(
ep)l + Dl–1

(
ep)l–1 + · · · + D1ep + D0,

E
(
ep) = En+1–l

(
ep)n+1–l + En–l

(
ep)n–l + · · · + E1ep + E0,
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F
(
ep) = Fm–l

(
ep)m–l + Em–1–l

(
ep)m–1–l + · · · + F1ep + F0,

and D0, D1, . . . , Dl , E0, E1, . . . , En+1–l , F0, F1, . . . , Fm–l are small functions of ep, and Dl �≡ 0,
En+1–l �≡ 0, Fm–l �≡ 0, E0D0 = (–1)n+1, 0 ≤ l ≤ m.

So by (3.5) and (3.8), we have

�n
c f (z) – R(z) =

B(ep)
A(ep)

– R(z) =
B(ep) – R(z)A(ep)

A(ep)

=
F(ep)D(ep) – R(z)E(ep)D(ep)

E(ep)D(ep)
,

=
F(ep) – R(z)E(ep)

E(ep)
. (3.10)

It follows that

[
F0 – R(z)E0

]
D0 = B0 – R(z)A0 = (–1)n+1[�n

c R(z) – R(z)
]
.

By Lemma 5, we know that �n
c R – R �≡ 0. Thus we deduce that F0 – R(z)E0 �≡ 0. By this and

(3.9)–(3.10), we obtain

N
(

r,
1

�n
c f (z) – R(z)

)

= N
(

r,
1

F(eP) – R(z)E(ep)

)

+ S
(
r, ep). (3.11)

By (3.10) and Lemma 2, we obtain

T
(
r,�n

c f (z)
)

= (n + 1 – l)T
(
r, ep) + S(r, f ). (3.12)

Let F(ep) – R(z)E(ep) = Rn+1–l(ep)n+1–l + · · · + R1(z)ep + R0(z), then Rn+1–l = –R(z)En+1–l(z)(�≡
0), Rn–l(z), . . . , R1(z), R0(z) = F0 – R(z)E0 (�≡ 0) are small functions of ep. Thus by Lemma 2,
Lemma 4 and Nevanlinna’s second fundamental theorem, we obtain

(n + 1 – l)T
(
r, ep)

= T
(
r, Rn+1–l

(
ep)n+1–l + · · · + R1ep)

≤ N
(

r,
1

Rn+1–l(ep)n+1–l + · · · + R1ep

)

+ N
(
r, Rn+1–l

(
ep)n+1–l + · · · + R1ep)

+ N
(

r,
1

Rn+1–l(ep)n+1–l + · · · + R1ep + R0

)

+ S
(
r, ep)

≤ (n – l)T
(
r, ep) + N

(

r,
1

Rn+1–l(ep)n+1–l + · · · + R1ep + R0

)

+ S
(
r, ep).

It follows that

T
(
r, ep) ≤ N

(

r,
1

Rn+1–l(ep)n+1–l + · · · + R1ep + R0

)

+ S
(
r, ep).

From this together with (3.11) we deduce that

N
(

r,
1

�n
c f (z) – R(z)

)

≥ T
(
r, ep) + S

(
r, ep). (3.13)
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By (3.2), (3.12) and (3.13), we deduce that λ(�n
c f (z) – R(z)) = ρ(f ). Thus we prove (1.1).

Now we prove (1.2). Suppose that

max
{
λ
(
f (z) – R(z)

)
,λ

(
f (z + nc) – R(z)

)}
< ρ(f ).

Then, by Lemma 3, we have λ(f (z) – R(z – nc)) < ρ(f ). Hence there exist ε0 > 0, T > 0, for
r > T , we have

N
(

r,
1

f – a

)

≤ rρ(f )–ε0 , N
(

r,
1

f – R

)

≤ rρ(f )–ε0 ,

N
(

r,
1

f – R(z – nc)

)

≤ rρ(f )–ε0 .

By the above formulas and Lemma 4, we obtain

T(r, f ) ≤ N
(

r,
1

f – a

)

+ N
(

r,
1

f – R

)

+ N
(

r,
1

f – R(z – nc)

)

+ S(r, f )

≤ 3rρ(f )–ε0 + O(log r).

Thus we deduce that ρ(f ) ≤ ρ(f ) – ε0, a contradiction. Hence we prove (1.2).
Next we prove (1.3). Suppose that λ(f (z + nc) – R(z)) < ρ(f ). Then, by Lemma 3, we de-

duce that λ(f (z) – R(z – nc)) < ρ(f ). In the following, using the same methods as used in
the proof of (1.1), we obtain λ(�n

c f (z) – R(z)) = ρ(f ). Thus we prove (1.3). Therefore, The-
orem 1 is proved. �

4 Proof of Theorem 2

Proof We first prove (2.1). Suppose that λ(f (z) – R(z)) < ρ(f ). Next we prove λ(�n
c f (z) –

R(z)) = ρ(f ).
Since λ( 1

f (z) ) < ρ(f ), and R is a nonconstant rational function, we have

f (z) – R(z) = α(z)ep(z), (4.1)

where α is a meromorphic function satisfying ρ(α) < ρ(f ), and p is a nonconstant polyno-
mial with deg p = ρ(f ).

Hence we have

T(r,α) = S
(
r, ep), T(r, f ) = T

(
r, ep) + S(r, f ). (4.2)

Thus we have

�n
c f (z) – R(z)

= �n
c R(z) + �n

c
(
α(z)ep(z)) – R(z)

≤
n∑

i=0

(–1)iCi
n(α

(
z + (n – i)c

)
ep(z+(n–i)c) –

(
R(z) – �n

c R(z)
)
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≤
n∑

i=0

(–1)iCi
n(α

(
z + (n – i)c

)
ep(z+(n–i)c)–p(z)ep(z) –

(
R(z) – �n

c R(z)
)

= A(z)ep(z) –
(
R(z) – �n

c R(z)
)
, (4.3)

where A(z) =
∑n

i=0(–1)iCi
n(α(z + (n – i)c)ep(z+(n–i)c)–p(z).

By (4.2) and Lemma 3, we deduce that T(r, A) = S(r, f ).
Since �n

c f (z) is a transcendental meromorphic function, it follows that A �≡ 0. By
Lemma 6, R(z) – �n

c R(z) �≡ 0. Thus by (4.2), (4.3) and Nevanlinna’s second fundamental
theorem, we obtain

T
(
r,�n

c f
)

= T
(
r, ep) + S(r, f ),

T
(
r, ep) ≤ T

(
r, Aep) + T

(

r,
1
A

)

+ O(1)

≤ N
(
r, Aep) + N

(

r,
1

Aep

)

+ N
(

r,
1

Aep – (R – �n
c R)

)

+ S
(
ep)

≤ N
(

r,
1

Aep – (R – �n
c R)

)

+ S
(
ep).

Thus we obtain

N
(

r,
1

�n
c f – R

)

≥ T
(
r, ep) + S(r, f ).

It follows that λ(�n
c f (z) – R(z)) = ρ(f ). Thus we prove (2.1).

Now we prove (2.2). Suppose that max{λ(f (z) – R(z)),λ(f (z + nc) – R(z))} < ρ(f ). Then,
by Lemma 3, we have λ(f (z) – R(z – nc)) < ρ(f ). Hence there exist ε0 > 0, T > 0, for r > T ,
we have

N(r, f ) ≤ rρ(f )–ε0 , N
(

r,
1

f – R

)

≤ rρ(f )–ε0 , N
(

r,
1

f – R(z – nc)

)

≤ rρ(f )–ε0 .

By the above formulas and Lemma 4, we obtain

T(r, f ) ≤ N(r, f ) + N
(

r,
1

f – R

)

+ N
(

r,
1

f – R(z – nc)

)

+ S(r, f )

≤ 3rρ(f )–ε0 + O(log r).

Thus we deduce that ρ(f ) ≤ ρ(f ) – ε0, a contradiction. Hence we prove (2.2).
Next we prove (2.3). Suppose that λ(f (z + nc) – R(z)) < ρ(f ). Then, by Lemma 3, we de-

duce that λ(f (z) – R(z – nc)) < ρ(f ). In the following, using the same methods as used in
the proof of (2.1), we obtain λ(�n

c f (z) – R(z)) = ρ(f ). Thus we prove (2.3). Theorem 2 is
proved. �

5 Conclusion
In this paper, we have discussed the exponent of convergence of zero points of f (z) – R(z),
f (z + nc) – R(z) and �n

c f – R(z), where R(z) is a nonconstant rational function. Examples are
given to show that all conditions of our results are necessary. Whether the nonconstant
rational function can be replaced by a small functions of f (z) is still open.
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