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Abstract
A Bézier model with shape parameters is one of the momentous research topics in
geometric modeling and computer-aided geometric design. In this study, a new
recursive formula in explicit expression is constructed that produces the generalized
blended trigonometric Bernstein (or GBT-Bernstein, for short) polynomial functions of
degreem. Using these basis functions, generalized blended trigonometric Bézier (or
GBT-Bézier, for short) curves with two shape parameters are also constructed, and
their geometric features and applications to curve modeling are discussed. The newly
created curves share all geometric properties of Bézier curves except the shape
modification property, which is superior to the classical Bézier. The C3 and G2

continuity conditions of two pieces of GBT-Bézier curves are also part of this study.
Moreover, in contrast with Bézier curves, our generalization gives more shape
adjustability in curve designing. Several examples are presented to show that the
proposed method has high applied values in geometric modeling.

Keywords: GBT-Bernstein-like polynomial functions; GBT-Bézier curve; Properties of
GBT-Bézier curves; Continuities of GBT-Bézier curves; Shape parameters

1 Introduction
Bézier curves are the powerful mechanism for modeling in computer-aided geometric de-
sign (CAGD) and computer graphics (CG). Bézier curves have a lot of applications in the
areas of science, engineering, and technology such as: railway route or highway modeling,
networks, animation, computer-aided design system, robotics, environment design, com-
munications, and many other fields due to their computational simplicity and stability.
However, the classical Bézier curves have still some noiseless limitations due to their fixed
shape and position relative to their control polygon [1–3]. In geometric modeling and en-
gineering, practical applications of Bézier curves are restricted due to their shortcomings,
and to overcome these shortcomings, a lot of work has been carried out [4–10]. The con-
trol over the shape and position of curves is enhanced by introducing the shape control
parameters into Bézier approach. Another limitation in the classical Bézier curves is their
representation in a polynomial form. Thus many scholars try to search for the solution of
this issue in a non-polynomial function space.
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Over the past few years, a significant work has been carried out, with the help of trigono-
metric functions, polynomials, or their combination, for the description of curves and sur-
faces. These trigonometric polynomials play a significant role in many fields like medicine,
electronics [11], and computer-aided geometric design [12]. In recent years, geometric
modeling by using trigonometric polynomials has achieved much consideration. Yan and
Liang [13] constructed Bézier-like curve and rectangular Bézier-like surface based on a
new type of polynomial basis functions with single shape parameter which they achieved
by the recursive technique. Hu et al. [14] constructed geometric continuity conditions
for the construction of free-form generalized Bézier curves with n shape parameters.
These free-form complex shape-adjustable generalized Bézier curves can be modeled by
using shape-adjustable generalized Bernstein basis functions. These newly proposed ap-
proaches not only take over the benefits of classical Bézier curve and surface schemes, but
also resolve the issue of shape adjustability of Bézier curves and surfaces with the help of
multiple shape parameters. In 2019, BiBi et al. [15] proposed a new approach using the
generalized hybrid trigonometric Bézier curve (shortly, GHT-Bézier) with shape param-
eters to solve the problem in construction of some symmetric curves and surfaces. These
curves are easily modified by changing the values of shape parameters. Using GHT-Bézier
curves, they constructed some free-form complex curves with restriction of parametric
continuity. To show the efficiency of modeling, the authors also constructed different types
of symmetric curves and surfaces with their continuity conditions and symmetric for-
mulas. Maqsood et al. [16] constructed the generalized trigonometric Bézier (GT-Bézier)
curves via GT-basis functions with shape parameters. They modeled some complex curves
and surfaces using C3 and G2 continuity conditions. The proposed basis functions pro-
vide an alternative approach to generate the complex curves using C3 and G2 continuity
conditions with simple and straightforward calculation for proposed algorithm because
they are blended with linear polynomials rather than trigonometric functions.

In 2004, the cubic trigonometric polynomial curves were constructed by Han [17] with
a shape parameter and C2 and G3 continuity conditions having nonuniform knot vector.
It has been observed that the trigonometric polynomial curves can better approximate
to the classical cubic B-spline curves or to the given control polygon than the classical
cubic B-spline curves. The cubic trigonometric Bézier basis functions with two shape pa-
rameters were developed by Han et al. [18]. They also constructed cubic trigonometric
Bézier curve with two shape parameters similar to the classical Bézier curve that was based
on these basis functions. They observed that due to the presence of shape parameters
the shape of trigonometric Bézier curve better approximates to the given control poly-
gon than the classical cubic Bézier curves. Han and Zhu [19] constructed five trigono-
metric blending functions using two exponential shape parameters that have geometric
properties similar to the classical Bézier curves. The quadratic trigonometric basis func-
tions were constructed by Bashir et al. [20] using two shape parameters. Moreover, they
modeled a rational quadratic trigonometric Bézier curve using these trigonometric basis
functions as well as two curve segments connected by using C2 and G2 continuity con-
ditions. Yan expressed an algebraic-trigonometric mixed piecewise curve with two shape
parameters and cubic trigonometric nonuniform B-spline curves with local shape param-
eters in [21] and [22], respectively. Hu et al. [23] constructed geometric continuity con-
straints for H-Bézier curve of degree n. Recently, many researchers have developed the
positivity-preserving rational quartic spline interpolation [24], cubic triangular patches
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scattered data interpolation [25], rational bi-cubic Ball image interpolation [26], quasi-
quintic trigonometric Bézier curve with shape parameters [27], curve modeling by new
cubic trigonometric Bézier with shape parameters [28], continuity conditions for G1 joint
of S-λ curves and surfaces [29], generalized Bernstein basis functions for approximation of
multi-degree reduction of Bézier curve [30], surface modeling in medical imaging by Ball
basis functions [31], and geometric conditions for the generalized H-Bézier model [32]
which have many applications in medicine, science, and engineering. Khalid and Lobiyal
[33] presented the extension of Lupaş Bézier curves/surfaces and rational Lupaş Bernstein
functions with shape parameters having all positive (p, q)-integers values. They presented
two techniques named de-Casteljau’s algorithm and Korovkin’s type approximation based
on (p, q)-integers by using two parameter family of Lupaş (p, q)-Bernstein functions. Lu-
paş [34] studied the q-analogue of the Bernstein operator. Mursaleen et al. [35] presented
the analogue of (p, q)-Bernstein operators, which is a generalization of q-Bernstein oper-
ators, and studied its approximation properties based on Korovkin’s type approximation
theorem of (p, q)-Bernstein operators.

In this research work, GBT-Bézier curves with two shape parameters are constructed
based on GBT-Bernstein basis functions of degree m. Furthermore, the adjacent GBT-
Bézier curve segments are connected using parametric and geometric continuity condi-
tions which can be utilized to model free-form complex shapes. As a continuation of tra-
ditional Bézier curves, these GBT-Bézier curves will also offer a new application range in
the field of manufacturing industry, computer vision, computer graphics, computer ani-
mation, and multimedia technology.

In this work, we make the following technical contributions:
• C3 continuity of the 2D GBT-Bézier curves;
• Gk (k ≤ 3) geometric continuity of the 2D GBT-Bézier curves.

The outline of this paper is structured in the following manner. Some basic definitions and
characteristics of GBT-Bézier curves are given in Sect. 2. Continuity constraints for joining
the two GBT-Bézier curve segments are discussed in Sect. 3. Some modeling examples are
given in Sect. 4. Concluding remarks on this research are given in Sect. 5.

2 Definition and characteristics of GBT-Bézier curves
The definitions and properties of GBT-Bernstein basis functions and GBT-Bézier curves
with shape parameters are given in this section.

2.1 GBT-Bernstein basis functions
Definition 1 For μ,ν ∈ [–1, 1] and any z ∈ [0, 1],

⎧
⎪⎪⎨

⎪⎪⎩

f0,2(z) = (1 – sin( π
2 z))(1 – μ sin( π

2 z)),

f1,2(z) = (1 – f0,2(z) – f2,2(z)),

f2,2(z) = (1 – cos( π
2 z))(1 – ν cos( π

2 z)),

(1)

are called second degree GBT-Bernstein basis functions associated with shape parameters
μ, ν . For any integer m (m ≥ 3), the functions, fk,m(z) (k = 0, 1, 2, . . . , m) defined iteratively

fk,m(z) = (1 – z)fk,m–1(z) + zfk–1,m–1(z), (2)
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Figure 1 GBT-basis functions of different degrees with multiple shape parameters

are mth degree GBT-Bernstein basis functions. In position, when k = –1 or k > n, the func-
tion fk,m(z) = 0. Figure 1 exhibits the graphs of GBT-Bernstein basis functions of multiple
degrees with different values of shape parameters as μ,ν = 1 (orange), 0.3 (green), –0.3
(red), –1 (blue).

Remark 1 It is noted that the expressions given in equation (2) differ from the ones we in-
troduced in our earlier work [16] in that we explicitly added polynomial instead of trigono-
metric functions. We found in our experiments that the trigonometric functions were not
intuitive enough for the users to control, while resulting in unnecessarily complex com-
putations. As we prove in this work, we are able to derive sufficiently high order derivative
constraints (up to C3 and G3) while keeping linear polynomial which provided smoother
output as compared to Maqsood [16]. We advocate therefore Definition 1 from now on.

Theorem 1 GBT-Bernstein basis functions have the following characteristics:
1. Degeneracy: When μ,ν = 1 and sin( π

2 z), 1 – cos( π
2 z) = z, then

fk,m(z) = Bk,m(z)(k = 0, 1, . . . , m; m ≥ 2). That is, with μ,ν = 1 and
sin( π

2 z), (1 – cos( π
2 z)) = z, the GBT-Bernstein basis functions of degree m become the

same as classical Bernstein basis functions of degree m.
2. Nonnegativity: For any μ,ν ∈ [–1, 1], fk,m(z) ≥ 0 (k = 0, 1, 2, . . . , m).
3. Partition of unity:

∑m
k=0 fk,m(z) = 1.

4. Symmetry: When μ = ν , fk,m(z)(k = 0, 1, 2, . . . , m) are symmetric, i.e.,

fm–k,m(z,μ,ν) = fk,m(1 – z,μ,ν).
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5. Derivative at the end points:

f ′
k,m(0) =

⎧
⎪⎪⎨

⎪⎪⎩

–(m – 2 + π
2 (1 + μ)), k = 0,

(m – 2 + π
2 (1 + μ)), k = 1,

0, other,

(3)

f ′
k,m(1) =

⎧
⎪⎪⎨

⎪⎪⎩

–(m – 2 + π
2 (1 + ν)), k = m – 1,

(m – 2 + π
2 (1 + ν)), k = m,

0, other,

(4)

f ′′
k,m(0) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(m – 2)(m – 3) + π
2 (2(m – 2)(1 + μ) + πμ), k = 0,

–1
4 (8(m – 2)(m – 3) + π (8(m – 2)(1 + μ) + π (1 + 2μ – ν)),

k = 1,
1
4 (4(m – 2)(m – 3) + π (4(m – 2)(1 + μ) + π (1 – ν)),

k = 2,

0, other,

(5)

f ′′
k,m(1) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(m – 2)(m – 3) + π
2 (2(m – 2)(1 + ν) + πν), k = m,

–1
4 (8(m – 2)(m – 3) + π (8(m – 2)(1 + ν) + π (1 + 2ν – μ)),

k = m – 1,
1
4 (4(m – 2)(m – 3) + π (4(m – 2)(1 + ν) + π (1 – μ)),

k = m – 2,

0, other,

(6)

f ′′′
k,m(0) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

–1
8 [8m1 + π ((12m2 – π2)(1 + μ) + 12m3πμ)], k = 0,

1
8 [24m1 + π ((36m2 – π2)(1 + μ) + 6m3π (1 + 4μ – ν))], k = 1,
–1
8 [24m1 + π ((36m2 + 12m3π )(1 + μ) – 12m3πν))], k = 2,

1
8 [8m1 + π (12m2(1 + μ) + 6m3π (1 – ν))], k = 3,

0, other.

(7)

f ′′′
k,m(1) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
8 [8m1 + π ((12m2 – π2)(1 + ν) + 12m3πν)], k = m,
–1
8 [24m1 + π ((36m2 – π2)(1 + ν) + 6m3π (1 + 4ν – μ))],

k = m – 1,
1
8 [24m1 + π ((36m2 + 12m3π )(1 + ν) – 12m3πμ)],

k = m – 2,
–1
8 [8m1 + π (12m2(1 + ν) + 6m3π (1 – μ))], k = m – 3,

0, other.

(8)

where m1 = (m – 4)(m – 3)(m – 2), m2 = (m – 3)(m – 2), and m3 = (m – 2).

Proof We shall prove (2), (3), (4), and (5). The remaining properties can be proved with
direct calculation.
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2. For z ∈ [0, 1], μ,ν ∈ [–1, 1], f0,2(z), f1,2(z), f2,2(z) ≥ 0, and (1 – z) ≥ 0, GBT-Bernstein
basis functions will always be positive.

3. We can prove it by using inductive hypothesis as when n = 2, we obtain

2∑

k=0

fk,2(z) = 1.

Now suppose that the equality holds for m = s.

s∑

k=0

fk,s(z) = 1.

Thus, for m = s + 1, according to formula (2), we have

s+1∑

k=0

fk,s+1(z) =
s+1∑

k=0

[
(1 – z)fk,s(z) + zfk–1,s(z)

]
,

s+1∑

k=0

fk,s+1(z) = (1 – z)
s∑

k=0

fk,s(z) + z
s∑

k=0

fk,s(z) + (1 – z)fs+1,s(z) + +zf–1,s(z)

= (1 – z) + z + 0 + 0

= 1.

4. For m = 2 and μ = ν ,

2∑

k=0

fk,2(z) =
2∑

k=0

f2–k,2(1 – z).

Now imagine that the GBT-Bernstein basis functions of degree s are consistent.
Then from this inductive hypothesis and iterative formula (2), we have

fk,s+1(1 – z) = zfk,s(1 – z) + (1 – z)fk–1,s(1 – z),

fk,s+1(z) = zfs–k,s(z) + (1 – z)fs–k+1,s(z)

= (1 – z)fs+1–k,s(z) + zfs–k,s(z)

= fs+1–k,s+1(z).

5. For any hk ∈ R (k = 0, 1, . . . , m; m = 2), we consider a linear combination as follows:

m∑

k=0

hkfk,m(z) = 0, z ∈ [0, 1]. (9)

By taking s-order derivatives of the above formula corresponding to z on each side,
we get

m∑

k=0

hkf s
k,m(z) = 0 (s = 0, 1, 2, . . . , m). (10)
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By using (3) and (5), s-order derivatives of GBT-Bernstein basis functions at z = 0
can be represented as follows:

⎧
⎨

⎩

f s
k,m(0) �= 0 (k = 0, 1, 2, . . . , s); (s = 1, 2, . . . , m),

f s
k,m(0) = 0 (k = s + 1, . . . , m); (s = 1, 2, . . . , m).

(11)

From (10) and (11), we can obtain the following system of linear equations for s = 0
with respect to hk(k = 0, 1, . . . , m):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

h0f 0
0,m(0) = 0,

h0f 1
0,m(0) + h1f 0

1,m(1) = 0,

. . .

h0f m–1
0,m (0) + h1f m–1

1,m (0) + · · · + hm–1f m–1
m–1,m(0) = 0,

h0f m
0,m(0) + h1f m

1,m(0) + · · · + hm–1f m
m–1,m(0) + hmf m

m,m(0) = 0.

(12)

Thus, it is obvious that fk,m(z) (k = 0, 1, . . . , m) are linearly independent as hk = 0
(k = 0, 1, . . . , m). �

2.2 Composition of GBT-Bézier curves
Definition 2 For given control points Qk ∈ Rm (m = 2, 3; k = 0, 1, . . . , m), the curves

{�z} : F(z;μ,ν) =
m∑

k=0

fk,m(z)Qk , 0 ≤ z ≤ 1 (13)

are called GBT-Bézier curves, where fk,m(z) are GBT-Bernstein basis functions.

From the geometric characteristics of GBT-Bernstein basis functions, GBT-Bézier
curves have the following geometric properties.

1. End-point properties: For any μ,ν ∈ [–1, 1], we have

F(0) = Q0,

F(1) = Qm,

F ′(0) =
1
2
(
2(m – 2) + π (1 + μ)

)
(Q1 – Q0),

F ′(1) =
1
2
(
2(m – 2) + π (1 + μ)

)
(Qm – Qm–1),

F ′′(0) =
1
4
[
4(m – 2)

(
m – 3 + π (1 + μ)

)
(Q0 – 2Q1 + Q2) + 2π2μ(Q0 – Q1)

+ π2(1 – μ)(Q2 – Q1)
]
,

F ′′(1) =
1
4
[
4(m – 2)

(
m – 3 + π (1 + μ)

)
(Qm–2 – 2Qm–1 + Qm)

+ π2(1 – μ)(Qm–2 – Qm–1) + 2π2μ(Qm – Qm–1)
]
,

F ′′′(0) =
1
8
π3((–

(
(m – 2)3 – 2(m – 2) – 1

)
–

(
3(m – 2)(m – 1) – 1

)
μ

)
Q0
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+
((

3(m – 2)3 – (m – 1)
)

+
(
3(m – 2)(3m – 5) – 1

)
μ – 3(m – 2)ν

)
Q1

– 3(m – 2)
((

(m – 2)2 + 1
)

+
(
3(m – 3) + 2

)
μ – 2ν

)
Q2

)

+ (m – 2)
((

m2 – 4m + 6
)

+ 3(m – 3)μ – 3ν
)
Q3),

F ′′′(1) =
1
8
π3(1 + ν)

((
6(m – 2) + 1

)
Qm–1 – 3(m – 2)Qm–2 –

(
3(m – 2) + 1

)
Qm

)
.

2. Symmetry: Q0, Q1, Q2, . . . , Qm and Qm, Qm–1, Qm–2, . . . , Q0 describe the symmetric
GBT-Bézier curves, which can be written as follows:

F(z,μ,ν, Q0, Q1, Q2, . . . , Qm) = F(1 – z,ν,μ, Qm, Qk–1, Qm–2, . . . , Q0).

3. Convex hull property: The whole GBT-Bézier curve must be contained inside the
control polygon spanned by Q0, Q1, Q2, . . . , Qm.

4. Geometric invariance: The shape of the GBT-Bézier curve is independent of the
selection of a coordinate system for the reason that F(z,μ,ν) is an affine
combination of the control points, which means it satisfies the next two equations:

F(z,μ,ν, Q0 + Q, Q1 + Q, Q2 + Q, . . . , Qm + Q)

= F(z,μ,ν, Q0, Q1, Q2, . . . , Qm) + Q,

F(z,μ,ν, MQ0, MQ1, MQ2, . . . , MQm)

= MF(z,μ,ν, Q0, Q1, Q2, . . . , Qm),

where Q is a random vector in R2 or R3 and M is a random n × n(n = 2, 3, . . . , m)
matrix.

5. Variation diminishing property: As GBT-Bernstein basis functions fabricate a class
of formalized completely positive basis functions, the GBT-Bézier curves in (13)
carry the variation reducing property, which means that a GBT-Bézier curve will
have no more intersections with any plane more often than it intersects the
correlated control polygon.

6. Shape control property: For a described control polygon, the shape of the traditional
Bézier curve can be totally defined by its control points, while the shape of the
GBT-Bézier curve can be modified by changing its shape parameters μ, ν although
its control polygon remains fixed.

From the above expressions, we can conclude that, GBT-Bézier curves interpolate to the
terminal points of the control polygon, that is, to the first and the last edge. The above-
mentioned expressions also show that the value of the first and second derivative at both
terminal points on GBT-Bézier curves can be modified by adjusting shape parameters μ,
ν , which play a significant role in unwrinkled joining.

Figure 2 depicts the influence role of shape parameters μ, ν on quartic and quintic GBT-
Bézier curves, that is, if we increase the value of a shape parameter, either μ or ν or both,
the GBT-Bézier curve gradually approximates to the control polygon, whereas the points
marked on the quartic GBT-Bézier curves correlate to F(0.2) in red, F(0.4) in blue, F(0.6)
in black, and F(0.8) in green, and the points correspond to quintic GBT-Bézier curves for
F(0.2) in orange, F(0.4) in blue, F(0.6) in red, and F(0.8) in black. Figure 2 also represents
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Figure 2 Quartic and quintic GBT-Bézier curves with different values of shape parameters
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Figure 3 Geometric modeling of GBT-Bézier curves of multiple degrees with different values of shape
parameters

that the points on theses curves change linearly for increasing or decreasing value of z
with different values of shape parameters.

Figure 3 displays that the outlook of GBT-Bézier curves can be handled by changing
the values of shape parameters μ, ν and also exhibits the graphs of 2nd, 3rd, 4th, 5th, and
10th degree GBT-Bézier curves. Figure 3(a) shows the graphs of 4th degree GBT-Bézier
curves with μ,ν = 1 (purple), 0.5 (blue), 0 (red), –0.5 (black). The first flower presented
in Fig. 3(b) is designed by 5th degree GBT-Bézier curves when μ,ν = 1 (purple), 0.3 (red),
–0.3 (green), –1 (orange). Figure 3(c) shows the second flower created by 10th degree GBT-
Bézier curves with shape parameters μ,ν = 1 (purple), 0.3 (red), –0.3 (green). Figure 3(d)
represents a butterfly for multiple values of shape parameters μ,ν = 1 (blue), 0.25 (red),
–0.5 (green), which is generated by 2nd and 3rd degree GBT-Bézier curves.
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3 Continuity of GBT-Bézier curves
Practically, the outlook of many products is relatively complicated and cannot be pre-
sented by using a single curve. Therefore, contiguous curves are used to design such prod-
ucts. The technique of smooth continuity among curves is used to design complex curves
and also a meaningful study in computer-aided design/computer-aided manufacturing
(CAD/CAM). Two categories for estimating the continuity of piecewise curves are:

• Parametric continuity (Cm),
• Geometric continuity (Gm).

The requirements for parametric and geometric continuity among two GBT-Bézier curves
are given as follows:

Lemma 3.1 ([9]) The necessary and sufficient parametric continuity conditions among two
GBT-Bézier curves F(z) = �m

k=0Qkfk,m(z) and F1(z) = �n
k=0Q1kfk,n(z) with control points Q0,

Q1, Q2,..., Qm, m ≥ 3 and Q10, Q11, Q12, . . . , Q1n, n ≥ 3, respectively, are defined as follows:
1. Qm = Q10 for C0 continuity;
2. Qm = Q10, F ′(1) = F ′

1(0) for C1 continuity;
3. Qm = Q10, F ′(1) = F ′

1(0), F ′′(1) = F ′′
1 (0) for C2 continuity;

4. Qm = Q10, F ′(1) = F ′
1(0), F ′′(1) = F ′′

1 (0), F ′′′(1) = F ′′′
1 (0) for C3 continuity.

Lemma 3.2 ([9]) The necessary and sufficient constraints for geometric continuity among
two GBT-Bézier curves F(z) = �m

k=0Qkfk,m(z) and F1(z) = �n
k=0Q1kfk,n(z) are as follows:

1. For G0 continuity: Qm = Q10;
2. For G1 continuity: Qm = Q10, F ′(1) = γ F ′

1(0), γ > 0;
3. For G2 continuity: Qm = Q10, F ′(1) = γ F ′

1(0), γ > 0, and the curvature

κ(1) =
|F ′(1) × F ′′(1)|

|F ′(1)|3 =
|F ′

1(0) × F ′′
1 (0)|

|F ′
1(0)|3 = κ1(0),

where Q0, Q1, Q2, . . . .., Qm and Q10, Q11, Q12, . . . .., Q1n (m ≥ 3, n ≥ 3) are the control points
of GBT-Bézier curves.

The continuity conditions of GBT-Bézier curves in the context of terminal properties of
GBT-Bézier curves are given in the following theorem.

Theorem 2 The necessary and sufficient constraints for C3 continuity between two GBT-
Bézier curve segments F(z) = �m

k=0Qkfk,m(z) and F1(z) = �n
k=0Q1kfk,n(z) with control points

Q0, Q1, Q2, . . . , Qm, m ≥ 3 and Q10, Q11, Q12,. . . ,Q1n, n ≥ 3, respectively, are expressed as
follows:

1. Qm = Q10 for C0 continuity;
2. For C1 continuity,

⎧
⎨

⎩

Q10 = Qm,

Q11 = Qm + (2(m–2)+π (1+ν))
2(n–2)+π (1+μ1) (Qm – Qm–1);

(14)
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3. For C2 continuity,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Q10 = Qm,

Q11 = Qm + (2(m–2)+π (1+ν))
2(n–2)+π (1+μ1) (Qm – Qm–1),

Q12 = Qm + 1
a1

[a2(Qm – 2Qm–1 + Qm–2)

– π2(1 – μ)(Qm–1 – Qm–2) + a3(Qm – Qm–1)];

(15)

4. For C3 continuity,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q10 = Qm,

Q11 = Qm + a(Qm – Qm–1),

Q12 = Qm + 1
a1

[a2(Qm – 2Qm–1 + Qm–2)

– π2(1 – μ)(Qm–1 – Qm–2) + a3(Qm – Qm–1)],

Q13 = Qm + 1
b1

[b2(Qm – 3Qm–1 + 3Qm–2 – Qm–3)

+ a2
a1

b3(Qm – 2Qm–1 + Qm–2)

– π2(1–μ1)b3
a1

(Qm–1 – Qm–2) – b4(Qm – Qm–1)],

(16)

where

a =
2(m – 2) + π (1 + ν)
2(n – 2) + π (1 + μ1)

,

a1 = 4(n – 2)
(
n – 3 + π (1 + μ1)

)
+ π2(1 – ν1),

a2 = 4(m – 2)
(
m – 3 + π (1 + ν)

)
,

a3 =
(
2a1 + π2(1 + 2μ1 – ν1) + 2π2ν

)
,

b1 = 4(n – 2)(n – 3)
(
2(n – 4) + 3π (1 + μ1)

)
+ 6(n – 2)π2(1 – ν1),

b2 = 4(m – 2)(m – 3)
(
2(m – 4) + 3π (1 + ν)

)
,

b3 =
(
3c1 + 12(n – 2)π2(1 – μ1 – ν1)

)
,

b4 =
a3b3

a1
– a

(
c1 + 12(n – 2)π2(1 – μ1 – 4ν1) + π3(1 + μ1)

)
+ π3(1 + ν),

c1 = 4(n – 2)(n – 3)
(
2(n – 4) + 3π (1 + μ1)

)
.

Proof
1. C0 continuity is simply achieved from F(1) = F1(0).
2. From the C0 continuity condition, Qm = Q10 and F ′(1) = F ′

1(0). It is simple and
straightforward to achieve the C1 continuity conditions (14) by using the end point
conditions F ′(1) = (2(m – 2) + π (1 + ν))(Qm – Qm–1) and
F ′

1(0) = (2(n – 2) + π (1 + μ1))(Q11 – Q10).
3. C2 continuity conditions are C1 continuity conditions with addition to

F ′′(1) = F ′′
1 (0). Thus, the C2 continuity conditions (15) can be achieved simply by

using above-mentioned terminal properties (3)–(6).
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4. C3 continuity conditions are C2 continuity conditions additionally with
F ′′′(1) = F ′′′

1 (0). Thus, by using terminal properties (7)–(8), we can acquire C3

continuity requirements (16) comfortably. �

Theorem 3 For two GBT-Bézier curves F(z) = �m
k=0Qkfk,m(z) and F1(z) = �n

k=0Q1kfk,n(z)
segments having control points Q0, Q1, Q2,. . . ,Qm, m ≥ 3 and Q10, Q11, Q12,. . . ,Q1n, n ≥ 3,
respectively, the essential and adequate requirements for G2 continuity are described as
follows:

1. Q10 = Qm for G0 continuity;
2. For G1 continuity,

⎧
⎨

⎩

Q10 = Qm

Q11 = Qm + (2(m–2)+π (1+ν))(Qm–Qm–1)
(2(n–2)+π (1+μ1))γ ;

(17)

3. For G2 continuity,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Q10 = Qm

Q11 = Qm + (2(m–2)+π (1+ν))(Qm–Qm–1)
(2(n–2)+π (1+μ1))γ

Q12 = Qm + 1
γ 2cn

[2(m – 2)(m – 3 + π (1 + ν))(Qm–2 – 2Qm–1 + Qm)

+ π2

2 (1 – μ)(Qm–2 – Qm–1),

(18)

where

cn = 2(n – 2)
(
n – 3 + π (1 + μ1)

)
+

π2

2
(1 – ν1),

dn = 4(n – 2)
(
n – 3 + π (1 + μ1)

)
+

π2

2
(1 + 2μ1 – ν1).

Proof
1. Using straightforward computations, G0 continuity is simple.
2. From G1 continuity requirements Qm = Q10 and F ′(1) = γ F ′

1(0), γ > 0. Since
F ′(1) = (2(m – 2) + π (1 + ν))(Qm – Qm–1) and
F ′

1(0) = (2(n – 2) + π (1 + μ1))(Q11 – Q10). Thus, the required G1 continuity
conditions (17) can be obtained easily using these terminal conditions.

3. G2 continuity requirements are G1 continuity requirements with κ(1) = κ1(0). We
know that F(1) = Qm = Q10 = F1(0), F ′(1) = γ F ′

1(0), γ > 0, and the reverse normal
vector D = F ′(1) × F ′′(1) of F(z) and the vice normal vector D1 = F ′

1(0) × F ′′
1 (0) of

F1(z) in z = 1 have the same direction, so the four vectors F ′(1), F ′(0), F ′′(1), F ′′(0)
are coplanar such that F ′′(1) = δF ′′

1 (0) + λF ′
1(0), here δ > 0, λ is set arbitrarily. As

κ1(0) =
|F ′

1(0) × F ′′
1 (0)|

|F ′
1(0)|3 =

δλ|F ′
1(0) × F ′′

1 (0)|
γ 3|F ′

1(0)|3 =
|F ′(1) × F ′′(1)|

|F ′(1)|3 = κ(1)),

thus δ = γ 2, F ′′(1) = γ 2F ′′
1 (0) +λF ′

1(0). From Qm = Q10 and F ′(1) = γ F ′
1(0), γ > 0 and F ′(1) =

(2(m – 2) + π (1 + ν))(Qm – Qm–1), γ > 0, and putting F ′′(0), F ′′(1) into F ′′(1) = γ 2F ′′
1 (0) +

λF ′
1(0), the G2 continuity conditions are obtained. �
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Figure 4 C1 continuity among two GBT-Bézier curves with different shape parameters

4 Examples and discussions
Example 1 C1 continuity between cubic and quartic GBT-Bézier curves and control
over the shape of composite GBT-Bézier curves with control points Q0 = (0.2, 0.4), Q1 =
(0.15, 0.8), Q2 = (0.25, 0.9), Q3 = (0.4, 0.9), Q4 = (0.5, 0.6) = Q10, Q12 = (0.9, 0.3), Q13 =
(0.9, 0.7) are shown in Fig. 4. The curve exhibits C1 continuity for different values of shape
parameters. Using C1 continuity conditions (14) of GBT-Bézier curves, the point Q11 can
be calculated easily for each curve by using Theorem 2.

Example 2 Figure 5 depicts the shape control of combined GBT-Bézier curves which sat-
isfy the C3 continuity conditions at shared boundary. The control points of the both curves
are Q0 = (2, 3), Q1 = (1, 3), Q2 = (0, 2), Q3 = (0.5, 1), Q4 = (1.5, 0.5) = Q10. C3 continuity for
GBT-Bézier curves is achieved by modifying the values of shape parameters. The points
Q11, Q12, Q13 for each curve can be calculated by using C3 continuity conditions for GBT-
Bézier curves given in Theorem 2.
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Figure 5 GBT-Bézier curves together with C3 continuity and different shape parameters

Example 3 Figure 6 represents the control over the shape of composite GBT-Bézier curves
which meet by the G2 continuity constraints at a joint point. The control points of two
curves are Q0 = (0.2, 0.2), Q1 = (0.1, 0.5), Q2 = (0.4, 0.8), Q3 = (0.7, 0.5), Q4 = (0.67, 0.3) =
Q10, Q13 = (0.5, –0.5). By varying the values of shape parameters, the curves that achieved
G2 continuity, and the control points Q11, Q12 can be calculated by using continuity
conditions (18) given in Theorem 3 for each curve. The values of shape parameters
μ,ν = 1, 0.8, 0.6, 0.4, 0.2 are used to achieve the smooth curve.
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Figure 6 Shape adjustment of connected GBT-Bézier curves with G2 continuity conditions

5 Conclusions
In this study, we proposed the GBT-Bézier curves of degree m associated with two shape
parameters and studied their characteristics. These proposed GBT-Bézier curves have al-
most all characteristics of the classical Bézier curves but the shape-adjustable quality is an
additional quality if compared to the classical Bézier curves. Moreover, G2 and C3 con-
tinuity requirements for the construction of composite curves are derived. These special
continuity preserving curves have parameters that can control the shape and can be used
easily in CAD/CAM.

Modeling examples illustrate that the GBT-Bézier curves design can approach the con-
trol net closer than the traditional Bézier curves design, and also these designing examples
exhibit that the GBT-Bézier curves proposed in this research are simple to apply. In addi-
tion this approach gives the degree of freedom of shape and consequently can be utilized
to generate a variety of complicated special curves. Moreover, as the newly constructed
curves have only two shape parameters, hence the method of shape amendment becomes
convenient, and we can anticipate the result after modifying the shape parameter. We be-
lieve our work is meaningful and considerable because our proposal supports simplifying
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the development and computer realization of complicated curves. In the future, we shall
generalize these GBT-Bernstein basis functions in quantum and post quantum calculus
frame, and they may attract attention of researchers working in approximation theory and
CAGD.
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