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1 Introduction

The theory of integral equations is one of the most important topics in applied mathe-
matics and numerical analysis. Also, the singularity of the kernel is an important issue
in the classification of integral equations. Applying the nonsingular kernel derivatives,
Riemann-Liouville fractional integrals, Riemann—Liouville and Caputo fractional deriva-
tives, and AB derivatives in the study of the behavior of fractional differential models leads
to the singular integral equations [1-5]. Singular integral equations with Cauchy kernels
have many applications in a wide variety of physics and engineering fields like airfoils,
contact radiations, fracture mechanics, molecular conductions, and elastodynamics [6—
8]. Since it is very difficult to find analytical solutions of integral equations with weak
or strong singularity, many researchers have been developing several numerical methods
with significant accuracy to solve these equations [9-11].

Cauchy-type kernel of the singular integral equation is defined by

1
Ax(s) + ,u/ :(—t) dt=£&(s), se(-1,1), (1)
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where £(s) is a given function, A, u are constants, and x(s) is an unknown function. The
CSIEs have been solved via various numerical techniques such as using orthogonal Legen-
dre polynomial [6], Lagrangian interpolation with Gauss—Jacobi mechanical quadrature
[8], spline method [12, 13], Galerkin technique [14], collocation method [15-17], appli-
cation of Jacobi polynomials [18], using Chebyshev polynomials of the second kind [19],
quadrature formula [20-22], reproducing kernel Hilbert space method [23, 24], and other
schemes [25-27]. Recently, several types of operational matrix methods with truncated
series have been proposed for solving the integral and integro-differential equations (see
[16, 28]).

To obtain an approximate solution for the CSIEs-2, it is necessary to eliminate or weaken
singularity by applying a smooth transformation. Hence, we use a smooth transformation
in this article as well. The main part of this work deals with the use of Legendre polynomial
roots as collocation points and the operational matrix approach. The essential focus of the
scheme is the use of the numerical method designed based on Bessel basis functions for
the CSIEs-2. Determining the theoretical error bound for the two functions of the exact
and approximate solutions showed the convergence of the proposed method. The tested
functions as the exact and approximate solutions in the numerical examples confirm the
accuracy and efficiency of this method.

The rest of this work is outlined as follows: Sect. 2 discusses the Bessel basis polyno-
mials and removing singularity of Eq. (1) by a suitable smooth transformation. In Sect. 3,
we present the computational matrix approach for solving CSIEs-2. Error estimation and
convergence analysis are given in Sect. 4. Some numerical experiments with graphical re-
sults are provided in Sect. 5. Finally, a brief conclusion is given in Sect. 6.

2 Preliminaries
2.1 The Bessel polynomials
The Bessel polynomials of the first kind and order i are defined by the truncated series

e o
s (-1ys9 .
]L’(S)— (5) Z W’ 1—0,1,2,...,71, (2)

j=0
which is convergent absolutely and uniformly in [-1, 1].

2.2 Construction approximation of Bessel basis function

Letsg; k=0,1,...,n, for any positive integer 1, denote the n + 1 roots of p,,(s) where p,,(s) is
the Legendre polynomial of order #. On the other hand, assume that J;(s) can be expressed
by BBF as follows:

£6) = v (i(s). 3)
i=0

If the infinite series (3) is truncated for i = n, then the approximation of (3) can be repre-
sented in the following form:

&) =D s =Y w6 (4)
i=0

i=0
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By the operational matrices, we have

fls) =W j(s), (5)
where
Yo Jo(s)
Y1 J1(s)
= and J(s)=| .
Y Ju(S)

2.3 Removing singularity of Eq. (1)
For solving Eq. (1), it is clear that we need to use an equivalent presentation of Eq. (1). We

suggest to weaken the singularity of the integral part by the following technique:

1 1 1
f&dtzf Mdt+/ &dt, (6)

1t—S -1 t—s 1t—S

where [1 %9 g¢ = x(s) In(3=%) [23]. By applying this separation to the right part of the in-
Y ying g

-1 t-s T+s

tegral term of Eq. (1), the equivalent smooth form of Eq. (1) is as follows:

Lx(t) - 1-
Ax(s) + /L/ M dt + ux(s) ln(—s) =£&(s), se(-1,1), 7)
1 t-s 1+s
where x(ti:;c(s) =x/(s), when t — 5. Note that

. 1-s
lim ln(—> = 00,
s—>-1,1 1+s

therefore, for defining Eq. (7) at two endpoints of [-1, 1], we consider x(—1) = x(1) = 0 and

1-
lim x(s) ln<—s> =0.
s—>-1,1 1+s

3 Description of the method
3.1 Construction of the residual operator
In this section, we extend the collocation scheme for solving the CSIE-2. First, consider

the operation form of Eq. (1)

x@®)=¢, 8)
where x is in the Banach space S. Assume that a sequence of finite dimensional subspace

S, C S, n>1,has dimension # + 1. Choose S, that has a basis J = {Jy(s),/1(s),...,/.(s)} in S.
Assume x,(s) € S,;, which is the best approximate of x(s) such that

xa(s) = Y _xifils), sel-L1]. )
i=0
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So, we can approximate the unknown function x(s) in terms of BBF J;(s) as follows:

x(s) =y " xiJi(s) = X"J(s), (10)

where X = [x9,x1,...,%,]" is the unknown coefficients matrix. After applying the smooth
transformation, we substitute the main equation Eq. (7) into (1). So, by placing Eq. (7)
into (1), the unknown Bessel coefficients {x; | i = 0, 1,...,n} are determined by forcing the
equation to be accurate in some sense. However, we conduct it by the operational matrix.
The residual function t,(s) is obtained in approximating Eq. (7) by substituting x(s) with
%n(S)

n

n 1 n
ZORS RVCI Dt MZxJL(S)ln( ) £ (D
i=0 =0

i=0

and it can be demonstrated by the operational matrices

Tu(s) = A XTJ(s) + uX"J (2, S)+MXT](S)1H<1 ) £(s), (12)

where

1 Jo(®-Jo(s)
SALEA )dt
£—J1(s
~ lltsl dt

J(t,s) =

1 ]n(t ns)
R dt

The symbolic presentation of (11) is

Tu(s) = X (%4(5)) — ¢ (9), (13)

or with the Bessel series

Tu(s) = (ZM(S)) - £(s)- (14)

3.2 Construction of the operational fundamental matrices

Let us set 7,(s) to be zero approximately, so the unknown Bessel coefficients can be ap-
proximated. We peek distinct # + 1 roots of the Gauss—Legendre so, s1,...,s, € [-1,1], and
by using the collocation scheme, we consider the zero value of the residual function for
these separate points

T,(s)=0, j=0,1,...,m, (15)
therefore

X (2a(57)) = £ (s9) (16)
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and

X (Z xi]i(Sj)> =£(s). (17)
i=0

For determining {x;|i = 0, 1,...,n}, we have to solve the system of linear Fredholm integral
equations

n 1 n . _T. . n e
)»in]i(sj)+M/ Z%M dt+MZth(Sj)1n(l S]) =£(s)),
i=0 -1 29 5 -0 L+s

(18)
ssel-1,1], j=0,...,n
or we have to solve the operational matrix equation
AXTT + uXT] + uX7JL = Z, (19)
where
[Jo(so) Jo(s1) .. Jolsn)
- | iso)  Ji(s1) ... Jalsw)
J= ) . . ) )
_]n(SO) ]n(sl) ce ]n(sn) (20)
m 1 - 1 _ 1 —Jolsn
) o ]o(tziig(m) dt f_l Io(tzi(;m) dr ... f_l lo(tii(:l(s ) dt
J= : : : :
1 ]n —}n 1 n _]}’l 1 ]}’l —In\n
_f—l (tl)f—so(SO) dt f—l I (tz_s1(51) dr ... f—l (tZ—in(s ) dt
and
1-
ln(1+jg 0 0
0 ln(}:—zi 0
L=| T z=[gse g6y 6] @
0 0 ... In(32)

Since the integral term of Eq. (18) cannot be solved analytically, we suggest using one of
the quadrature rules such as the Gaussian-Legendre formula for approximating the value
integrals or the entries of the matrix J of relation (20). By applying the quadrature rule,
Eq. (18) is converted into

" “ (&) = Ji(s; L-s
in ()»],'(Sj) + M(Z wk](t];:fi(sj)) + M]i(Sj)1H< 17 ?)) =£(s)),

i=0 k=1 / /

(22)

ssel-1,1], j=0,...,n

with 7 Gauss nodes such that # is the kth root of Legendre polynomial P,,;(s) and the

weight functions are given by wy = 7+ Using this quadrature rule, the matrix

2
(1-5) (P} (tx

Page 5 of 15
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form of Eq. (19) does not change, while} could be written as

m Jo(tx)-Jo(so) m Jo(t)-Jo(s1) m Jo(x)~Jo(sn)
| TS Do s e M
j- ; z z . ®
m Jn(tx)—Tn(s0) m Jn(tk)—Tn(s1) m Jn(t)—Tn(sn)
Zk:l Wk ]fkfsg . Zk:l Wk ]fkfsl S Zk:l Wk ]t(kan

However, the linear equations in relation (22) and matrix equation (19) are the same and
are generally written as the following

XTOJ + 1 + wL) = Z. (24)
Note that, by considering A+ ;J + ;JL =Y, we have
X'y =2z (25)

Using the previously described process, Eq. (7) is changed to matrix equation (25). If
det(Y) # 0, then Eq. (25) has a unique solution, and we can obtain the coefficient matrix
by

xT=zy 1, (26)

After determining the Bessel coefficients {x; | i = 0,1,...,n} and by substituting x;, i =
0,1,...,n, in Eq. (9), the solution function x(s) can be efficiently approximated.

4 Error estimation analysis
Here, we explain the convergence analysis and error bound of the approximation solutions
of the presented scheme in Sect. 3 for solving Eq. (1).

Lemma 1 ([29]) Suppose that sy, s1,...,s, are n+ 1 distinct Legendre roots in [-1,1], and n
is a positive integer. If we approximate the function x(s) € C"*1[-1,1] by BBF ](s) and x(s)
is a sufficiently smooth function on [-1,1], then there exists 1 € (so, ) such that

x(n+1)

x(8) — %, (s) ‘(s—so)(s—sl)...(s—sn), se[-1,1], (27)

- 221+l (31 4 1)
where x,(s) is the approximation of x(s) by BBF. Now consider

n

H(S—Si)

i=0

’

M; = max ’x(’”l)(n)‘ and M = max
-1=n=<1 -1<s<1

then

MM
[#9) =2 )| < 3y

(m+ 1) (28)

Lemma 2 Suppose that x(s) is a sufficiently smooth function. Let x,, x and A be linear
operators on L*[-1,1] and defined for s € [-1,1] as follows:

An (x(s)) =Ax(s) + 1 Z M + ux(s) ln(2>, (29)

- 1
P tk— S +8
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where wy; k =0,1,...,m, are the weight functions and t, k = 0,1,...,m, are the abscissas
numbers of the Gauss—quadrature. If the Gaussian—quadrature rule is changed into the
real—valued integral term, then we have

L(t) — x(s)
t—s

X (%(s)) = Ax(s) + M/ dt + ux(s) ln<§>, (30)

where x (x(s)) = ¢(s). On the other hand, we can show Eq. (30) by the equivalent integral

equation
X(x(s))=Ax(s)+uli’walt+u/_j%d@ (31)
or
X(6(9) =150+ [ I "0 4, (32)

where x (x) = ¢, and by using linear operator A, we have
X (x(s)) =Ax(s) + uA (x(s)). (33)

Theorem 3 Suppose that the unknown function x(s) is n + 1-times continuously differ-
entiable on the interval [-1,1] and %,(s) = > .-, X:Ji(s) is the expansion of the exact solu-
tion x(s) with respect to the basis functions in J. Let x,(s) = > - x:Ji(s) be the approxi-
mate solution obtained by the purposed scheme in Sect. 3 and M, = maXe[-1,1] |+ (s)],
M =max_j<<1 | [[Lo(s — )|, then

MM _
||En(5)||2 <(Q1+ Qz)(ﬂm +é€lx —xll). (34)

Proof From the notation mentioned in Egs. (32) and (33), the exact and approximate so-
lutions of Eq. (1) can be written as follows:

1
X (x(s)) =Ax(s) + /1 % dt,

1
X(w9) =+ [ 2, 5

x (%(5)) = Ax(s) + A (%(s)),
1 (0(9)) = 22,(5) + A (30(5)),

SO

S (x(9) =2(5) + LA (w(5),

1 (36)
X (5(9) = 2,(5) + ZA(5(9)-

From Eq. (36), we get

E6) = 5 x(00(9) ~%(5) ~ S A (w6) ~x09). (37)
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Since x and A are bounded, there exist two constants €21 and 2, such that
|1Ea(®) ||, = (21 + ) |%a(s) — x(5) -
Therefore

[2(s) = xu(8) |, = [[2(5) = () + Znn(s) — 2 (s) [,

= ||x(S) — Xn(S) H2 + ”3_514(5) _xn(s)”z

oMM \? \?

= (/_1(22"+1(n+1)!) ds)
i 2\
+( / 1 (;j(xi—xim(s)) ds)

MM AN

= (4 1)l (/1 ds)
1/ n o 3/ n - 3
(o) (o)

J2M M

= 22+l (5 4 1)!

(38)

+ € ]|x — x||.
Now, we have

1£.65)], = (e +92)< amM ,+ez||5c—x||). (39)

22+l (7 4 1)1

5 Numerical experiments

In order to illustrate the efficiency and accuracy of the scheme presented in Sect. 3, four
numerical experiments are presented by testing the functional solutions. By considering
the smooth transform and nonuniform collocation points, the following experiments are
given for solving the CSIEs-2. These numerical results are computed, compared, and plot-
ted using a program written in Mathematica 12.0. The absolute error |E,(s)| can be defined
by |E,(s)| = |x(s) — x,(s)|. Graphs and tables of absolute errors for different values of n are
plotted in various examples. By changing the values of m1, the error also changes, which is
evident in the examples. The absolute errors of two numerical examples can be compared
with the results of the well-known method [17].

Example 1 ([17]) Consider the Cauchy singular integral equation Eq. (1) with

[ oo

1L-38

The exact solution is x(s) = —s® + s.

This example is solved for values of n = 3,5,7 and m = 16. Since the exact solution is
a polynomial of degree 3, then the best value for # is using a Bessel basis polynomial of
degree n > 3. The results well indicate the high accuracy of the method based on this
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0.4}

0.2f

0.0r

X(s) & xp(s)

-02¢F

= = = = Approx solution

Exact solution

-04r, . . . .
-1.0 -05 0.0 0.5 1.0
S

Figure 1 Comparison of solutions for Example 1 withn=7and m=16

15x10~ 11

1.x10~ 11

Absolute error

5.x 10712

Figure 2 Absolute errors |E,(s)| for Example 1 with m =16

important polynomial. The graph of the solution functions in Fig. 1, the figures of ab-
solute errors for n = 3,5,7 and m = 16 in Fig. 2, and Table 1 show the efficiency of the
current method BBE. In Fig. 2, we can say that by increasing the number of roots of
the Legendre polynomials as the collocation points, the maximum absolute error is in-

creased.

Example 2 Consider the CSIE-2

Ax(s) + u/l & dt=£&(s), se(-1,1),
_1t—=s
with A = = 1, &£(s) = sinh(s) — Chi(—s — 1) sinh(s) + Chi(1 — s) sinh(s) + In(—1 — s) sinh(s) —
In(1 — s) sinh(s) + In( _Eii:)s) sinh(s) + cosh(s)Shi(1 — s) + cosh(s)Shi(s + 1), and the exact solu-
tion is x(s) = sinh(s).
Here, we test the performance of the discussed method in Sect. 3 on an example with a
non-polynomial exact solution. In this example, we obtained absolute errors for n = 3,5,7

and m = 16, where we see the difference and improvement of the approximate solutions
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Table 1 Absolute error for Example 1

Node Exact solution Absolute error Absolute error Absolute error
n=3andm=16 n=5andm=16 n=7andm=16
-10 00 857103 x 10712 129419 x 107" 171944 x 107"
-09 —0.171 528733 x 10712 482814 x 10712 3.02805 x 10712
-08 -0.288 276978 x 10712 742573 x 10713 276779 x 10713
-0.7 -0.357 9.33587 x 10713 803413 x 10713 452971 x 10714
-06 -0.384 3.06755 x 10713 932199 x 10713 6.80345 x 10713
-05 -0.375 1.03606 x 1072 442868 x 10713 623890 x 10713
-04 -0.336 133976 x 10712 139888 x 10713 188183 x 1071
-03 -0.273 130285 x 1072 521860 x 10713 622891 x 10713
-0.2 -0.192 1.01039 x 10712 592443 x 10713 87802 x 10713
-0.1 -0.099 547729 x 10713 378711 x 10713 6.14328 x 10713
0.0 00 7.83203 x 1077 3.64086 x 1077 9.54481 x 1077
0.1 0.099 547895 x 10713 3.78794 x 10713 6.14148 x 10713
0.2 0.192 1.01058 x 10712 592471 x 10713 877770 x 10713
03 0273 130296 x 10712 521916 x 10713 6.22558 x 10713
04 0336 133993 x 10712 139944 x 10713 191513 x 1074
0.5 0375 1.03628 x 1072 442868 x 10713 624223 x 10713
06 0.384 306977 x 10713 932199 x 10713 6.80678 x 10713
0.7 0357 933309 x 10713 8.03468 x 10713 456302 x 1074
08 0.288 2.76945 x 10712 742573 x 10713 2.76501 x 10713
09 0.171 528688 x 10712 482803 x 1072 3.02883 x 10712
10 00 857059 x 10712 129418 x 107" 171959 x 107"
10t
05f
o
><Q
s 00f
@
x
-05}
= = = = Approx solution
-1.071 Exact solution

0.0
s

0.5

Figure 3 Comparison of solutions for Example 2 withn=7and m=16

1.0

by increasing n. The exact and approximate solution are plotted in Fig. 3. The obtained

absolute errors in this scheme are described in Fig. 4 and Table 2. Here, it is well seen

that by increasing #, the obtained absolute error decreases and the approximate solution

becomes more accurate.

Example 3 Consider the CSIE-2 Eq. (1) with

with A = 4 = 1, and the exact solution x(s) = cos(s).

Ci(-s — 1) cos(s) + Ci(1 — s) cos(s) — Si(1 — s) sin(s) — Si(s + 1) sin(s)

+ cos(s) + In(—s — 1) cos(s) — In(1 — s) cos(s) + In <—:—1> cos(s),

Page 10 of 15
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0.0020
Y Es(s)
1
oo0tsh | - Es(s)
1
5 ! E7(s)
@ 1
Q \
£ 0.0010 | ~
o) \ /N
2 \ Lo
< \ PN I, \
\ Re N \
0.0005+ ’ s -~ / \
\ e “ »” N / \‘
\N_7 \\ \ [I \
N/ \
v/
0.0000 -
-1.0 -05 05 1.0

Figure 4 Absolute errors |E,(s)

| for Example 2 with m =16

Table 2 Absolute error for Example 2

Node

Exact solution

Absolute error

Absolute error

Absolute error

n=3andm=16

n=5andm=16

n=7andm=16

-1.0
-0.9
-0.8
-0.7
-0.6
-0.5
-04
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
04
0.5
0.6
0.7
0.8
09
1.0

-1.17520
-1.02652
-0.888106
-0.758584
-0.636654
-0.521095
-0.410752
-0.30452
-0.201336
-0.100167
0.0
0.100167
0.201336
0.30452
0410752
0.521095
0.636654
0.758584
0.888106
1.02652
1.17520

191441 x 1073
7.55784 x 1074
3.26831 x 107
3.04940 x 1074
456464 x 1074
6.23736 x 107
7.12864 x 1074
6.82151 x 107
531044 x 107
2.89494 x 1074
761784 x 107°
2.54435 x 1074
436513 x 107
488499 x 1074
3.80444 x 107
1.12900 x 107
2.72436 x 107
6.81671 x 107
957141 x 107
865196 x 1074
832275 x 107

181254 x 10
456592 x 1076
270516 x 1070
337668 x 107°
3.09250 x 1070
148584 x 107°
485742 x 107/
169887 x 107°
150059 x 1070
6.72324 x 1078
2.34882 x 1070
435718 x 1076
515723 x 107
424896 x 1076
185014 x 107°
1.02282 x 1070
277923 x 1070
1.89035 x 1070
195203 x 107°
6.03881 x 107°
2.08619 x 1070

891703 x 1078
121329 x 1078
101281 x 1078
732927><109
2.74983 x 107"
138631 wo9
469581 x 1077
128989 x 1078
159589x108
1.08082 x 1078
543884x1010
7.79669 x 1070
7.95496 x 1079
1.03862 x 1079
132656x108
1.89303 x 1078
116573x108
3.30044 x 1077
744314 x 1079
132789 x 1078
123370x108

The behaviors of the exact and numerical solution with # = 10 and m = 10 are being
compared in Fig. 5. Table 3 and Fig. 6 report the obtained errors for n = 8,10 and m = 10.

Note that the computational numerical results improve by adding the value of n.

Example 4 ([17]) Consider the Cauchy singular integral equation Eq. (1) with

+s2+5° ln((l - s)/s).

The exact solution is x(s) = s°.

Page 11 of 15
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1.0F
09r
0
K3 081
[
0
< 07}
oslh = = = = Approx solution
Exact solution
-1.0 -0.5 0.0 0.5 1.0
S
Figure 5 Comparison of solutions for Example 3 with n=10and m=10

Table 3 Absolute error for Example 3

Node Exact solution Absolute error Absolute error
n=8andm=10 n=10and m=10
-10 0.540302 563786 x 107%? 13509 x 107"
-09 062161 5.08218 x 10710 673017 x 10713
-08 0.696707 488729 x 10710 973333 x 10713
-0.7 0.764842 2.94039 x 10710 564326 x 10713
-06 0825336 1.09171 x 10710 1.02507 x 10712
-05 0.877583 327639 x 10710 1.17395 x 10712
-04 0.921061 6.6095 x 10710 3.34288 x 10713
-03 0.955336 6.70017 x 10710 369038 x 10713
-0.2 0.980067 2.78499 x 10710 853762 x 1071
-0.1 0.995004 1.83289 x 10710 1.17184 x 10712
0.0 10 2.9988 x 10710 151223 x 10712
0.1 0.995004 6.01889 x 107" 587641 x 10713
0.2 0.980067 6.12546 x 10710 558442 x 107!
03 0.955336 865893 x 10710 471290 x 10713
04 0921061 543585 x 10710 868305 x 10713
0.5 0.877583 9.17413 x 107" 1.70097 x 1072
06 0.825336 352923 x 10710 6.77236 x 107!
0.7 0.764842 1.88950 x 10710 597855 x 10713
08 0.696707 8.80399 x 10710 623279 x 10713
09 0621610 435435 x 10710 1.58096 x 1072
1.0 0.540302 158424 x 10709 340161 x 10712

In this example, the exact solution function and the approximate solution function for
n =7 and m =5 are plotted in Fig. 7. In this numerical experiment, the exact solution is
given by an example of a degree 3 polynomial, therefore the best degree of BBF which
can be used is a Bessel polynomial of degree 3 where the corresponding absolute error is
plotted in Fig. 8. Clearly, all of the above points indicate the applicability and accuracy of
the proposed method.

6 Conclusion

This paper deals with a matrix scheme with truncated series to find the numerical solu-
tion for the second-type singular integral equation with Cauchy kernel based on the Bessel
basis function of the first kind. Using the smooth transform, the proposed scheme leads
to converting the CSIE-2 into a system of linear equations and matrix equations. Another
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part of this work was dedicated to using the roots of Legendre polynomials as the col-
location points and applying the Gaussian—Legendre quadrature rule. By increasing the
number of collocation points, we obtain the accurate numerical results for CSIEs-2, but
we cannot repeat the statement about increasing the value of m because the error of the
quadrature rule may reduce the accuracy of the approximate solution. In numerical exper-
iments with an exact solution in a polynomial form, the best number of n for approximate
solution is the degree of the corresponding polynomial. Finally, we provided the efficiency
and accuracy of the presented scheme by the computational examples. We suggest this
method for the CSFIEs by using different smooth transformations and quadrature rules.
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