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Abstract
The present study is devoted to developing a computational collocation technique
for solving the Cauchy singular integral equation of the second kind (CSIE-2).
Although, several studies have investigated the numerical approximation solution of
CSIEs, the strong singularity and accuracy of the numerical methods are still two
important challenges for these integral equations. In this paper, we focus on the
smooth transformation and implementation of Bessel basis polynomials (BBP). The
reduction of the CSIEs-2 into a system of algebraic equations with the
Gauss–Legendre collocation points simplifies this technique. The technique of
performing numerical approximation of the solution is well presented and illustrated
in the matrix form. Also, the convergence and error bound associated with the
scheme are established. Finally, several experiments show the reliability and
numerical efficiency of the proposed scheme in comparison with other methods.

Keywords: Collocation scheme; Cauchy singular integral equation; Bessel
polynomial

1 Introduction
The theory of integral equations is one of the most important topics in applied mathe-
matics and numerical analysis. Also, the singularity of the kernel is an important issue
in the classification of integral equations. Applying the nonsingular kernel derivatives,
Riemann–Liouville fractional integrals, Riemann–Liouville and Caputo fractional deriva-
tives, and AB derivatives in the study of the behavior of fractional differential models leads
to the singular integral equations [1–5]. Singular integral equations with Cauchy kernels
have many applications in a wide variety of physics and engineering fields like airfoils,
contact radiations, fracture mechanics, molecular conductions, and elastodynamics [6–
8]. Since it is very difficult to find analytical solutions of integral equations with weak
or strong singularity, many researchers have been developing several numerical methods
with significant accuracy to solve these equations [9–11].

Cauchy-type kernel of the singular integral equation is defined by

λx(s) + μ

∫ 1

–1

x(t)
t – s

dt = ξ (s), s ∈ (–1, 1), (1)
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where ξ (s) is a given function, λ, μ are constants, and x(s) is an unknown function. The
CSIEs have been solved via various numerical techniques such as using orthogonal Legen-
dre polynomial [6], Lagrangian interpolation with Gauss–Jacobi mechanical quadrature
[8], spline method [12, 13], Galerkin technique [14], collocation method [15–17], appli-
cation of Jacobi polynomials [18], using Chebyshev polynomials of the second kind [19],
quadrature formula [20–22], reproducing kernel Hilbert space method [23, 24], and other
schemes [25–27]. Recently, several types of operational matrix methods with truncated
series have been proposed for solving the integral and integro-differential equations (see
[16, 28]).

To obtain an approximate solution for the CSIEs-2, it is necessary to eliminate or weaken
singularity by applying a smooth transformation. Hence, we use a smooth transformation
in this article as well. The main part of this work deals with the use of Legendre polynomial
roots as collocation points and the operational matrix approach. The essential focus of the
scheme is the use of the numerical method designed based on Bessel basis functions for
the CSIEs-2. Determining the theoretical error bound for the two functions of the exact
and approximate solutions showed the convergence of the proposed method. The tested
functions as the exact and approximate solutions in the numerical examples confirm the
accuracy and efficiency of this method.

The rest of this work is outlined as follows: Sect. 2 discusses the Bessel basis polyno-
mials and removing singularity of Eq. (1) by a suitable smooth transformation. In Sect. 3,
we present the computational matrix approach for solving CSIEs-2. Error estimation and
convergence analysis are given in Sect. 4. Some numerical experiments with graphical re-
sults are provided in Sect. 5. Finally, a brief conclusion is given in Sect. 6.

2 Preliminaries
2.1 The Bessel polynomials
The Bessel polynomials of the first kind and order i are defined by the truncated series

Ji(s) =
(

s
2

)i [[ n–i
2 ]]∑

j=0

(–1)js2j

j!(j + i)!4j , i = 0, 1, 2, . . . , n, (2)

which is convergent absolutely and uniformly in [–1, 1].

2.2 Construction approximation of Bessel basis function
Let sk ; k = 0, 1, . . . , n, for any positive integer n, denote the n + 1 roots of pn(s) where pn(s) is
the Legendre polynomial of order n. On the other hand, assume that Ji(s) can be expressed
by BBF as follows:

f (s) =
∞∑
i=0

ψ(s)Ji(s). (3)

If the infinite series (3) is truncated for i = n, then the approximation of (3) can be repre-
sented in the following form:

f (s) =
∞∑
i=0

ψ(s)Ji(s) �
n∑

i=0

ψ(s)Ji(s). (4)
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By the operational matrices, we have

f (s) � �T .J(s), (5)

where

� =

⎡
⎢⎢⎢⎢⎣

ψ0

ψ1
...

ψn

⎤
⎥⎥⎥⎥⎦ and J(s) =

⎡
⎢⎢⎢⎢⎣

J0(s)
J1(s)

...
Jn(s)

⎤
⎥⎥⎥⎥⎦ .

2.3 Removing singularity of Eq. (1)
For solving Eq. (1), it is clear that we need to use an equivalent presentation of Eq. (1). We
suggest to weaken the singularity of the integral part by the following technique:

∫ 1

–1

x(t)
t – s

dt =
∫ 1

–1

x(t) – x(s)
t – s

dt +
∫ 1

–1

x(s)
t – s

dt, (6)

where
∫ 1

–1
x(s)
t–s dt = x(s) ln( 1–s

1+s ) [23]. By applying this separation to the right part of the in-
tegral term of Eq. (1), the equivalent smooth form of Eq. (1) is as follows:

λx(s) + μ

∫ 1

–1

x(t) – x(s)
t – s

dt + μx(s) ln

(
1 – s
1 + s

)
= ξ (s), s ∈ (–1, 1), (7)

where x(t)–x(s)
t–s = x′(s), when t → s. Note that

lim
s→–1,1

ln

(
1 – s
1 + s

)
= ∞,

therefore, for defining Eq. (7) at two endpoints of [–1, 1], we consider x(–1) = x(1) = 0 and

lim
s→–1,1

x(s) ln

(
1 – s
1 + s

)
= 0.

3 Description of the method
3.1 Construction of the residual operator
In this section, we extend the collocation scheme for solving the CSIE-2. First, consider
the operation form of Eq. (1)

χ (x) = ζ , (8)

where χ is in the Banach space S. Assume that a sequence of finite dimensional subspace
Sn ⊂ S, n ≥ 1, has dimension n + 1. Choose Sn that has a basis J = {J0(s), J1(s), . . . , Jn(s)} in S.
Assume xn(s) ∈ Sn, which is the best approximate of x(s) such that

xn(s) =
n∑

i=0

xiJi(s), s ∈ [–1, 1]. (9)
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So, we can approximate the unknown function x(s) in terms of BBF Ji(s) as follows:

x(s) �
n∑

i=0

xiJi(s) = XT J(s), (10)

where X = [x0, x1, . . . , xn]T is the unknown coefficients matrix. After applying the smooth
transformation, we substitute the main equation Eq. (7) into (1). So, by placing Eq. (7)
into (1), the unknown Bessel coefficients {xi | i = 0, 1, . . . , n} are determined by forcing the
equation to be accurate in some sense. However, we conduct it by the operational matrix.
The residual function τn(s) is obtained in approximating Eq. (7) by substituting x(s) with
xn(s)

τn(s) = λ

n∑
i=0

xiJi(s) + μ

∫ 1

–1

n∑
i=0

xi
Ji(t) – Ji(s)

t – s
dt + μ

n∑
i=0

xiJi(s) ln

(
1 – s
1 + s

)
– ξ (s) (11)

and it can be demonstrated by the operational matrices

τn(s) = λXT J(s) + μXT J̃(t, s) + μXT J(s) ln

(
1 – s
1 + s

)
– ξ (s), (12)

where

J̃(t, s) =

⎡
⎢⎢⎢⎢⎣

∫ 1
–1

J0(t)–J0(s)
t–s dt∫ 1

–1
J1(t)–J1(s)

t–s dt
...∫ 1

–1
Jn(t)–Jn(s)

t–s dt

⎤
⎥⎥⎥⎥⎦ .

The symbolic presentation of (11) is

τn(s) = χ
(
xn(s)

)
– ζ (s), (13)

or with the Bessel series

τn(s) = χ

( n∑
i=0

xiJi(s)

)
– ζ (s). (14)

3.2 Construction of the operational fundamental matrices
Let us set τn(s) to be zero approximately, so the unknown Bessel coefficients can be ap-
proximated. We peek distinct n + 1 roots of the Gauss–Legendre s0, s1, . . . , sn ∈ [–1, 1], and
by using the collocation scheme, we consider the zero value of the residual function for
these separate points

τn(sj) = 0, j = 0, 1, . . . , n, (15)

therefore

χ
(
xn(sj)

)
= ζ (sj) (16)
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and

χ

( n∑
i=0

xiJi(sj)

)
= ζ (sj). (17)

For determining {xi|i = 0, 1, . . . , n}, we have to solve the system of linear Fredholm integral
equations

λ

n∑
i=0

xiJi(sj) + μ

∫ 1

–1

n∑
i=0

xi
Ji(t) – Ji(sj)

t – sj
dt + μ

n∑
i=0

xiJi(sj) ln

(
1 – sj

1 + sj

)
= ξ (sj),

sj ∈ [–1, 1], j = 0, . . . , n,

(18)

or we have to solve the operational matrix equation

λXT J̄ + μXT ¯̃J + μXT J̄L = Z, (19)

where

J̄ =

⎡
⎢⎢⎢⎢⎣

J0(s0) J0(s1) . . . J0(sn)
J1(s0) J1(s1) . . . J1(sn)

...
...

. . .
...

Jn(s0) Jn(s1) . . . Jn(sn)

⎤
⎥⎥⎥⎥⎦ ,

¯̃J =

⎡
⎢⎢⎣

∫ 1
–1

J0(t)–J0(s0)
t–s0

dt
∫ 1

–1
J0(t)–J0(s1)

t–s1
dt . . .

∫ 1
–1

J0(t)–J0(sn)
t–sn

dt
...

...
. . .

...∫ 1
–1

Jn(t)–Jn(s0)
t–s0

dt
∫ 1

–1
Jn(t)–Jn(s1)

t–s1
dt . . .

∫ 1
–1

Jn(t)–Jn(sn)
t–sn

dt

⎤
⎥⎥⎦ ,

(20)

and

L =

⎡
⎢⎢⎢⎢⎣

ln( 1–s0
1+s0

) 0 . . . 0
0 ln( 1–s1

1+s1
) . . . 0

...
...

. . .
...

0 0 . . . ln( 1–sn
1+sn

)

⎤
⎥⎥⎥⎥⎦ , Z =

[
ξ (s0) ξ (s1) . . . ξ (sn)

]
. (21)

Since the integral term of Eq. (18) cannot be solved analytically, we suggest using one of
the quadrature rules such as the Gaussian–Legendre formula for approximating the value
integrals or the entries of the matrix ¯̃J of relation (20). By applying the quadrature rule,
Eq. (18) is converted into

n∑
i=0

xi

(
λJi(sj) + μ

( m∑
k=1

ωk
Ji(tk) – Ji(sj)

tk – sj

)
+ μJi(sj) ln

(
1 – sj

1 + sj

))
= ξ (sj),

sj ∈ [–1, 1], j = 0, . . . , n,

(22)

with m Gauss nodes such that tk is the kth root of Legendre polynomial Pn+1(s) and the
weight functions are given by ωk = 2

(1–tk )2(P′
i(tk ))2 . Using this quadrature rule, the matrix
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form of Eq. (19) does not change, while ¯̃J could be written as

¯̃J =

⎡
⎢⎢⎣

∑m
k=1 ωk

J0(tk )–J0(s0)
tk –s0

∑m
k=1 ωk

J0(tk )–J0(s1)
tk –s1

. . .
∑m

k=1 ωk
J0(tk )–J0(sn)

tk –sn
...

...
. . .

...∑m
k=1 ωk

Jn(tk )–Jn(s0)
tk –s0

∑m
k=1 ωk

Jn(tk )–Jn(s1)
tk –s1

. . .
∑m

k=1 ωk
Jn(tk )–Jn(sn)

tk –sn

⎤
⎥⎥⎦ . (23)

However, the linear equations in relation (22) and matrix equation (19) are the same and
are generally written as the following

XT (λJ̄ + μ
¯̃J + μJ̄L) = Z. (24)

Note that, by considering λJ̄ + μ
¯̃J + μJ̄L = Y , we have

XT Y = Z. (25)

Using the previously described process, Eq. (7) is changed to matrix equation (25). If
det(Y ) 	= 0, then Eq. (25) has a unique solution, and we can obtain the coefficient matrix
by

XT = ZY –1. (26)

After determining the Bessel coefficients {xi | i = 0, 1, . . . , n} and by substituting xi, i =
0, 1, . . . , n, in Eq. (9), the solution function x(s) can be efficiently approximated.

4 Error estimation analysis
Here, we explain the convergence analysis and error bound of the approximation solutions
of the presented scheme in Sect. 3 for solving Eq. (1).

Lemma 1 ([29]) Suppose that s0, s1, . . . , sn are n + 1 distinct Legendre roots in [–1, 1], and n
is a positive integer. If we approximate the function x(s) ∈ Cn+1[–1, 1] by BBF J(s) and x(s)
is a sufficiently smooth function on [–1, 1], then there exists η ∈ (s0, sn) such that

x(s) – xn(s) =
x(n+1)

22n+1(n + 1)!
(s – s0)(s – s1) . . . (s – sn), s ∈ [–1, 1], (27)

where xn(s) is the approximation of x(s) by BBF. Now consider

M1 = max
–1≤η≤1

∣∣x(n+1)(η)
∣∣ and M = max

–1≤s≤1

∣∣∣∣∣
n∏

i=0

(s – si)

∣∣∣∣∣,

then

∣∣x(s) – xn(s)
∣∣ ≤ M1M

22n+1(n + 1)!
. (28)

Lemma 2 Suppose that x(s) is a sufficiently smooth function. Let χn, χ and A be linear
operators on L2[–1, 1] and defined for s ∈ [–1, 1] as follows:

χn
(
x(s)

)
= λx(s) + μ

m∑
k=1

ωkx(tk) – ωkx(s)
tk – s

+ μx(s) ln

(
1 – s
1 + s

)
, (29)
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where ωk ; k = 0, 1, . . . , m, are the weight functions and tk , k = 0, 1, . . . , m, are the abscissas
numbers of the Gauss–quadrature. If the Gaussian–quadrature rule is changed into the
real–valued integral term, then we have

χ
(
x(s)

)
= λx(s) + μ

∫ 1

–1

x(t) – x(s)
t – s

dt + μx(s) ln

(
1 – s
1 + s

)
, (30)

where χ (x(s)) = ζ (s). On the other hand, we can show Eq. (30) by the equivalent integral
equation

χ
(
x(s)

)
= λx(s) + μ

∫ 1

–1

x(t) – x(s)
t – s

dt + μ

∫ 1

–1

x(s)
t – s

dt, (31)

or

χ
(
x(s)

)
= λx(s) + μ

∫ 1

–1

x(t)
t – s

dt, (32)

where χ (x) = ζ , and by using linear operator A, we have

χ
(
x(s)

)
= λx(s) + μA

(
x(s)

)
. (33)

Theorem 3 Suppose that the unknown function x(s) is n + 1-times continuously differ-
entiable on the interval [–1, 1] and x̄n(s) =

∑n
i=0 x̄iJi(s) is the expansion of the exact solu-

tion x(s) with respect to the basis functions in J . Let xn(s) =
∑n

i=0 xiJi(s) be the approxi-
mate solution obtained by the purposed scheme in Sect. 3 and M1 = maxs∈[–1,1] |x(n+1)(s)|,
M = max–1≤s≤1 |∏n

i=0(s – si)|, then

∥∥En(s)
∥∥

2 ≤ (�1 + �2)
(

ε1
M1M

22n+1(n + 1)!
+ ε2‖x – x̄‖

)
. (34)

Proof From the notation mentioned in Eqs. (32) and (33), the exact and approximate so-
lutions of Eq. (1) can be written as follows:

χ
(
x(s)

)
= λx(s) + μ

∫ 1

–1

x(t)
t – s

dt,

χ
(
xn(s)

)
= λxn(s) + μ

∫ 1

–1

xn(t)
t – s

dt,

χ
(
x(s)

)
= λx(s) + μA

(
x(s)

)
,

χ
(
xn(s)

)
= λxn(s) + μA

(
xn(s)

)
,

(35)

so

1
λ

χ
(
x(s)

)
= x(s) +

μ

λ
A

(
x(s)

)
,

1
λ

χ
(
xn(s)

)
= xn(s) +

μ

λ
A

(
xn(s)

)
.

(36)

From Eq. (36), we get

En(s) =
1
λ

χ
(
xn(s) – x(s)

)
–

μ

λ
A

(
xn(s) – x(s)

)
. (37)



Seifi Advances in Difference Equations        (2020) 2020:537 Page 8 of 15

Since χ and A are bounded, there exist two constants �1 and �2 such that

∥∥En(s)
∥∥

2 = (�1 + �2)
∥∥xn(s) – x(s)

∥∥
2.

Therefore

∥∥x(s) – xn(s)
∥∥

2 =
∥∥x(s) – x̄n(s) + x̄n(s) – xn(s)

∥∥
2

≤ ∥∥x(s) – x̄n(s)
∥∥

2 +
∥∥x̄n(s) – xn(s)

∥∥
2

≤
(∫ 1

–1

(
M1M

22n+1(n + 1)!

)2

ds
) 1

2

+

(∫ 1

–1

( n∑
i=0

(x̄i – xi)Ji(s)

)2

ds

) 1
2

≤ M1M
22n+1(n + 1)!

(∫ 1

–1
ds

) 1
2

+

(∫ 1

–1

( n∑
i=0

|x̄i – xi|2
)

ds

) 1
2
( n∑

i=0

∫ 1

–1

∣∣Ji(s)
∣∣2 ds

) 1
2

≤
√

2M1M
22n+1(n + 1)!

+ ε2‖x̄ – x‖.

(38)

Now, we have

∥∥En(s)
∥∥

2 ≤ (�1 + �2)
(

ε1M1M
22n+1(n + 1)!

+ ε2‖x̄ – x‖
)

. (39)�

5 Numerical experiments
In order to illustrate the efficiency and accuracy of the scheme presented in Sect. 3, four
numerical experiments are presented by testing the functional solutions. By considering
the smooth transform and nonuniform collocation points, the following experiments are
given for solving the CSIEs-2. These numerical results are computed, compared, and plot-
ted using a program written in Mathematica 12.0. The absolute error |En(s)| can be defined
by |En(s)| = |x(s) – xn(s)|. Graphs and tables of absolute errors for different values of n are
plotted in various examples. By changing the values of m, the error also changes, which is
evident in the examples. The absolute errors of two numerical examples can be compared
with the results of the well-known method [17].

Example 1 ([17]) Consider the Cauchy singular integral equation Eq. (1) with

∫ 1

–1

x(t)
t – s

dt =
4
3

– 2s2 +
(
s – s3) ln

(
(1 – s)/(1 + s)

)
.

The exact solution is x(s) = –s3 + s.
This example is solved for values of n = 3, 5, 7 and m = 16. Since the exact solution is

a polynomial of degree 3, then the best value for n is using a Bessel basis polynomial of
degree n ≥ 3. The results well indicate the high accuracy of the method based on this
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Figure 1 Comparison of solutions for Example 1 with n = 7 andm = 16

Figure 2 Absolute errors |En(s)| for Example 1 withm = 16

important polynomial. The graph of the solution functions in Fig. 1, the figures of ab-
solute errors for n = 3, 5, 7 and m = 16 in Fig. 2, and Table 1 show the efficiency of the
current method BBF. In Fig. 2, we can say that by increasing the number of roots of
the Legendre polynomials as the collocation points, the maximum absolute error is in-
creased.

Example 2 Consider the CSIE-2

λx(s) + μ

∫ 1

–1

x(t)
t – s

dt = ξ (s), s ∈ (–1, 1),

with λ = μ = 1, ξ (s) = sinh(s) – Chi(–s – 1) sinh(s) + Chi(1 – s) sinh(s) + ln(–1 – s) sinh(s) –
ln(1 – s) sinh(s) + ln( –(–1+s)

(1+s) sinh(s) + cosh(s)Shi(1 – s) + cosh(s)Shi(s + 1), and the exact solu-
tion is x(s) = sinh(s).

Here, we test the performance of the discussed method in Sect. 3 on an example with a
non-polynomial exact solution. In this example, we obtained absolute errors for n = 3, 5, 7
and m = 16, where we see the difference and improvement of the approximate solutions
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Table 1 Absolute error for Example 1

Node Exact solution Absolute error Absolute error Absolute error

n = 3 andm = 16 n = 5 andm = 16 n = 7 andm = 16

–1.0 0.0 8.57103× 10–12 1.29419× 10–11 1.71944× 10–11

–0.9 –0.171 5.28733× 10–12 4.82814× 10–12 3.02805× 10–12

–0.8 –0.288 2.76978× 10–12 7.42573× 10–13 2.76779× 10–13

–0.7 –0.357 9.33587× 10–13 8.03413× 10–13 4.52971× 10–14

–0.6 –0.384 3.06755× 10–13 9.32199× 10–13 6.80345× 10–13

–0.5 –0.375 1.03606× 10–12 4.42868× 10–13 6.23890× 10–13

–0.4 –0.336 1.33976× 10–12 1.39888× 10–13 1.88183× 10–14

–0.3 –0.273 1.30285× 10–12 5.21860× 10–13 6.22891× 10–13

–0.2 –0.192 1.01039× 10–12 5.92443× 10–13 8.7802× 10–13

–0.1 –0.099 5.47729× 10–13 3.78711× 10–13 6.14328× 10–13

0.0 0.0 7.83203× 10–17 3.64086× 10–17 9.54481× 10–17

0.1 0.099 5.47895× 10–13 3.78794× 10–13 6.14148× 10–13

0.2 0.192 1.01058× 10–12 5.92471× 10–13 8.77770× 10–13

0.3 0.273 1.30296× 10–12 5.21916× 10–13 6.22558× 10–13

0.4 0.336 1.33993× 10–12 1.39944× 10–13 1.91513× 10–14

0.5 0.375 1.03628× 10–12 4.42868× 10–13 6.24223× 10–13

0.6 0.384 3.06977× 10–13 9.32199× 10–13 6.80678× 10–13

0.7 0.357 9.33309× 10–13 8.03468× 10–13 4.56302× 10–14

0.8 0.288 2.76945× 10–12 7.42573× 10–13 2.76501× 10–13

0.9 0.171 5.28688× 10–12 4.82803× 10–12 3.02883× 10–12

1.0 0.0 8.57059× 10–12 1.29418× 10–11 1.71959× 10–11

Figure 3 Comparison of solutions for Example 2 with n = 7 andm = 16

by increasing n. The exact and approximate solution are plotted in Fig. 3. The obtained
absolute errors in this scheme are described in Fig. 4 and Table 2. Here, it is well seen
that by increasing n, the obtained absolute error decreases and the approximate solution
becomes more accurate.

Example 3 Consider the CSIE-2 Eq. (1) with

ξ (s) = –Ci(–s – 1) cos(s) + Ci(1 – s) cos(s) – Si(1 – s) sin(s) – Si(s + 1) sin(s)

+ cos(s) + ln(–s – 1) cos(s) – ln(1 – s) cos(s) + ln

(
–

s – 1
s + 1

)
cos(s),

with λ = μ = 1, and the exact solution x(s) = cos(s).
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Figure 4 Absolute errors |En(s)| for Example 2 withm = 16

Table 2 Absolute error for Example 2

Node Exact solution Absolute error Absolute error Absolute error

n = 3 andm = 16 n = 5 andm = 16 n = 7 andm = 16

–1.0 –1.17520 1.91441× 10–3 1.81254× 10–5 8.91703× 10–8

–0.9 –1.02652 7.55784× 10–4 4.56592× 10–6 1.21329× 10–8

–0.8 –0.888106 3.26831× 10–4 2.70516× 10–6 1.01281× 10–8

–0.7 –0.758584 3.04940× 10–4 3.37668× 10–6 7.32927× 10–9

–0.6 –0.636654 4.56464× 10–4 3.09250× 10–6 2.74983× 10–10

–0.5 –0.521095 6.23736× 10–4 1.48584× 10–6 1.38631× 10–9

–0.4 –0.410752 7.12864× 10–4 4.85742× 10–7 4.69581× 10–9

–0.3 –0.30452 6.82151× 10–4 1.69887× 10–6 1.28989× 10–8

–0.2 –0.201336 5.31044× 10–4 1.50059× 10–6 1.59589× 10–8

–0.1 –0.100167 2.89494× 10–4 6.72324× 10–8 1.08082× 10–8

0.0 0.0 7.61784× 10–6 2.34882× 10–6 5.43884× 10–10

0.1 0.100167 2.54435× 10–4 4.35718× 10–6 7.79669× 10–9

0.2 0.201336 4.36513× 10–4 5.15723× 10–6 7.95496× 10–9

0.3 0.30452 4.88499× 10–4 4.24896× 10–6 1.03862× 10–9

0.4 0.410752 3.80444× 10–4 1.85014× 10–6 1.32656× 10–8

0.5 0.521095 1.12900× 10–4 1.02282× 10–6 1.89303× 10–8

0.6 0.636654 2.72436× 10–4 2.77923× 10–6 1.16573× 10–8

0.7 0.758584 6.81671× 10–4 1.89035× 10–6 3.30044× 10–9

0.8 0.888106 9.57141× 10–4 1.95203× 10–6 7.44314× 10–9

0.9 1.02652 8.65196× 10–4 6.03881× 10–6 1.32789× 10–8

1.0 1.17520 8.32275× 10–5 2.08619× 10–6 1.23370× 10–8

The behaviors of the exact and numerical solution with n = 10 and m = 10 are being
compared in Fig. 5. Table 3 and Fig. 6 report the obtained errors for n = 8, 10 and m = 10.
Note that the computational numerical results improve by adding the value of n.

Example 4 ([17]) Consider the Cauchy singular integral equation Eq. (1) with

∫ 1

–1

x(t)
t – s

dt =
1
3

+
s
2

+ s2 + s3 ln
(
(1 – s)/s

)
.

The exact solution is x(s) = s3.
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Figure 5 Comparison of solutions for Example 3 with n = 10 andm = 10

Table 3 Absolute error for Example 3

Node Exact solution Absolute error Absolute error

n = 8 andm = 10 n = 10 andm = 10

–1.0 0.540302 5.63786× 10–09 1.3509× 10–11

–0.9 0.62161 5.08218× 10–10 6.73017× 10–13

–0.8 0.696707 4.88729× 10–10 9.73333× 10–13

–0.7 0.764842 2.94039× 10–10 5.64326× 10–13

–0.6 0.825336 1.09171× 10–10 1.02507× 10–12

–0.5 0.877583 3.27639× 10–10 1.17395× 10–12

–0.4 0.921061 6.6095× 10–10 3.34288× 10–13

–0.3 0.955336 6.70017× 10–10 3.69038× 10–13

–0.2 0.980067 2.78499× 10–10 8.53762× 10–14

–0.1 0.995004 1.83289× 10–10 1.17184× 10–12

0.0 1.0 2.9988× 10–10 1.51223× 10–12

0.1 0.995004 6.01889× 10–11 5.87641× 10–13

0.2 0.980067 6.12546× 10–10 5.58442× 10–13

0.3 0.955336 8.65893× 10–10 4.71290× 10–13

0.4 0.921061 5.43585× 10–10 8.68305× 10–13

0.5 0.877583 9.17413× 10–11 1.70097× 10–12

0.6 0.825336 3.52923× 10–10 6.77236× 10–13

0.7 0.764842 1.88950× 10–10 5.97855× 10–13

0.8 0.696707 8.80399× 10–10 6.23279× 10–13

0.9 0.621610 4.35435× 10–10 1.58096× 10–12

1.0 0.540302 1.58424× 10–09 3.40161× 10–12

In this example, the exact solution function and the approximate solution function for
n = 7 and m = 5 are plotted in Fig. 7. In this numerical experiment, the exact solution is
given by an example of a degree 3 polynomial, therefore the best degree of BBF which
can be used is a Bessel polynomial of degree 3 where the corresponding absolute error is
plotted in Fig. 8. Clearly, all of the above points indicate the applicability and accuracy of
the proposed method.

6 Conclusion
This paper deals with a matrix scheme with truncated series to find the numerical solu-
tion for the second-type singular integral equation with Cauchy kernel based on the Bessel
basis function of the first kind. Using the smooth transform, the proposed scheme leads
to converting the CSIE-2 into a system of linear equations and matrix equations. Another
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Figure 6 Absolute errors |En(s)| for Example 3 withm = 10

Figure 7 Comparison of solutions for Example 4 with n = 7 andm = 5

Figure 8 Absolute errors |En(s)| for Example 4 withm = 5
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part of this work was dedicated to using the roots of Legendre polynomials as the col-
location points and applying the Gaussian–Legendre quadrature rule. By increasing the
number of collocation points, we obtain the accurate numerical results for CSIEs-2, but
we cannot repeat the statement about increasing the value of m because the error of the
quadrature rule may reduce the accuracy of the approximate solution. In numerical exper-
iments with an exact solution in a polynomial form, the best number of n for approximate
solution is the degree of the corresponding polynomial. Finally, we provided the efficiency
and accuracy of the presented scheme by the computational examples. We suggest this
method for the CSFIEs by using different smooth transformations and quadrature rules.
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