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1 Introduction

In 2015, Khojasteh et al. [1] initiated the concept of simulation functions.

Definition 1.1 ([1]) A mapping ¢ : [0,00) x [0,00) — R is called a simulation function if
the following conditions hold:

(¢1) ¢(x,y)<y—xforall x,y>0;
(&2) if {xu}, {yn} are sequences in (0, 00) such that lim,_,c %, = lim,— o0 4, > 0, then

limsup ¢ (x, yu) < 0. (1.1)

n—0o0

We denote by Z the family of all above simulation functions.
Let (X, &) be a metric space and a : X x X — [0, 00) be a function. A mapping : X' —

X is called a-orbital admissible if the following condition holds:
a(v,fiv) > 1 implies o(hv, i*v) > 1, (1.2)

for all v € X'. Moreover, an «-orbital admissible mapping is called triangular «-orbital

admissible if for all v, w € X', we have

a(v,w)>1 and a(w hw)>1 = o, how)>1. (1.3)
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Definition 1.2 A set X is said to be regular with respect to a given functiono : X x X —
[0, o0) if for each sequence {v,} in X’ such that a(v,, v,,1) > 1 forallmand v, - v € X as
n— 00, then a(v,,v) > 1 for all n.

The notion of «-admissible Z-contractions with respect to a given simulation function
was merged and used by Karapinar in [2]. Using this new type of contractive mappings,
he investigated the existence and uniqueness of a fixed point in standard metric spaces.

Definition 1.3 ([2]) Let T be a self-mapping defined on a metric space (X, d). If there
exist a function ¢ € Z and @ : X x X — [0, 00) such that

{(a(v,w)d(Tv, Ta)),d(v,a))) >0 forallv,we X, (1.4)
then we say that T is an «-admissible Z-contraction with respect to ¢.

Theorem 1.4 ([2]) Let (X,d) be a complete metric space and let T : X — X be an «-
admissible Z-contraction with respect to ¢. Suppose that:

(@) T is triangular a-orbital admissible;

(b) there exists vo € X such that a(vg, Tvg) > 1;

(¢) T is continuous.
Then there is v, € X such that Tv,. = v,.

Remark 1.5 The continuity condition in Theorem 1.4 can be replaced by the “regularity”
condition, which is considered in Definition 1.2.

We will consider the following set of functions:
Z= {1// :[0,1] — [0,00) | ¥ is continuous at zero with (0) = ()}
and we denote
lvll = d(v,v), for an arbitrary but fixed vy € X.

Several interesting extensions and generalizations of the Banach contraction principle [3]
appeared in the literature. For instance, see [4—10]. Among these generalizations, we cite
the paper of Pata [11]. Since then, much work appeared in the same direction; see [12—15].

Theorem 1.6 ([11]) Let (X, d) be a complete metric space and let A > 0,1 > 1, 8 € [0,A]
be fixed constants. The mapping f: X — X has a fixed point in X if the inequality

£(hv, hw) < (1 -€)d(v,w) + Ae) Y (e)[1+ lv] + ||a)||]’3, (1.5)
is satisfied for every ¢ € [0,1] and ¢ € Z.

Definition 1.7 Let (X, &) be a metric space. We say that A: X — X is a Pata type Zam-
firescu mapping ifforallv,w € X, ¢ € Z and forevery ¢ € [0, 1], £, it satisfies the following
inequality:

d(Av, o) < (1 - )M (v,w) + Ae) Y (e)[1+ V]| + ol + lAv] + ||ﬁa)||]ﬂ, (1.6)
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where

M (v, 0) = max{cf(v,a)), d(v, V) + d(@, o) d(v, ho) + d(0, (V) }

2 ’ 2
and A >0, A >1and B8 € [0,A] are constants.

Theorem 1.8 ([16]) Let (X, d) be a complete metric space and let h: X — X be a Pata
type Zamfirescu mapping. Then h has a unique fixed point in X.

We state the following useful known lemma.

Lemma 1.9 Let (X, d) be a complete metric space and {u,} be a sequence in X such that
limy,—, oo d (14, t41) = 0. If the sequence {u,} is not Cauchy, then there exist e > 0 and subse-
quences {u,,} and {u,,} of {u,} such that

lim ‘{(unl+1r uml+1) =e (1.7)
n—00

and
hm d(uﬂl; u’m[) = hm d‘(ll’nl‘*’l} uml) = hm ‘f(unl) uml+1) =e (1'8)
n—00 n—00 n—00

In this paper, we combine the concepts of simulation functions and «-admissibility to
give a generalized Pata type fixed point result. At the end, we present an application on
fractional calculus.

2 Main results
We denote by Z the set of all functions  :[0,00) x [0,00) > R satisfying the following
condition:

(&) ¢(ty) <y-xforall x,y>0.

Definition 2.1 Let (X, d) be a metric space and ¢ € ®. Let A >0, A > 1 and 8 € [0,A]
be fixed constants. A triangular o-orbital admissible mapping A : X — X is called an a-
-E- Pata contraction if there exists a function ¢ € Z such that, for every ¢ € [0,1], the
following condition is satisfied:

Z(a(v, w)d (hv, Aw), (1 — €)E(v, ) + S(v, w)) >0 (2.1)
for all v,w € X, where

d(v,w) + |d (v, hv) — d(w, hw)|,
d(v,hv)+d (w,hw)+|d (v,hv)—d (0,hw)| (22)

)

E(v, w) = max

2
d(v,hw)+d (w,hv)+|d (v,hv)-d (0,hw)|
2

and

S,0) = AP E)[1+ ]| + o] + | Av] + [ heo]]]”. (2.3)
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Remark 2.2 Itis clear that any Pata type Zamfirescu mapping is also an a-¢ -£- Pata map-
ping. Indeed, letting «(v,w) = 1 and Z(x, y) = y — x, the inequality (2.1) becomes

d(hv, hw) < (1 -e)E(,») + S(v,®)

= (1-e)E(v,w) + Ae"Y(e)[1+ [v] + o] + [[Av]| + IIﬁwll]ﬁ.
Moreover, note that M (v,w) < E(v,w) forall v,w € X.

Theorem 2.3 Every a—L—E—Pata contraction f on a complete metric space (X, d) pos-
sesses a fixed point if
(i) there exists uy € X such that o(uy, hug) > 1;

(i) h is triangular a-orbital admissible;

(iii) either h is continuous, or the set X is regular.
If in addition we assume that the following condition is satisfied:

(iv) a(z*,v*)>1 forall z*,v* € Fixx(h),
then such a fixed point of k is unique.

Proof Let uy € X be a point such that a(u, fiig) > 1. On account of the assumption that £
is a triangular «-orbital admissible mapping, we derive that

alug, i) =1 = afhug, FPup) > 1,
and iteratively we find

a(ﬁ"uo, /i”*luo) >1 foreveryneN. (2.4)
Moreover, by (2.4) together with (1.3), we have

o(ug, i) > 1  and a(ﬁuo, ﬁzuo) >1 = Ol(uo,ﬁzuo) > 1.
Again, iteratively, one writes

a(uo, ﬁ”uo) >1 foreveryneN. (2.5)

Starting from this point u € X, we build an iterative sequence {u,} where u, = Ay, 1 =

A"y for n=1,2,3,... . We can presume that any two consequent terms of this sequence
are distinct. Indeed, if, on the contrary, there exists iy € N such that

Uiy = tig1 = g,
then 1, is a fixed point. To avoid this, we will assume in the following that for all » e N

Uy Zttpr & d (R, fuy) = d (1, ty01) > 0.

We mention that (2.4) can be rewritten as

(it thy41) 2 1, (2.6)
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respectively,
o(u, uy) > 1, (2.7)
for any n € N. In the sequel, we will denote 4 (v, 1) = ||v| for all v € X.
Since £ is an ot—g: -‘E-Pata contraction, we have
& (o1, ) (vyy_1, Fitty), (1 = €)E (W1, 1) + S (U1, 1)) = 0.
Thus, taking into account (1), together with (2.6) we get
d (thyy thy1) = d (A1, sy
< (tty1, thy)d (fitty_1, Fiey) (2.8)
< (1 - S)E(unflr un) + 5(”’1471’ un))
where
d (-1, ty) + | d (-1, htty_1) — d (14, Ay |
Z(un—l) 111,) = max x[(un,l,ﬁu,,,l)+x{(un,ﬁu,,)+2|d(un,1,ﬁu,,,l)—d(un,ﬁun)\
A (g1, )+ d (g, iy 1)+ d (11, g1 )= (i, finty) |
2
d (15 the) + | (thy—1, 1) — o (thy, te1)1,
= max ‘{(un—l:un)*"[(unrunﬂ)+2\¢{(un—1vun)—‘[(unrun+l)\
A (1, 1) +d (i, ) + | (g1, 1) = (a1 |
2
A (1 ) + | d (1, 1) — o (thy, 1)),
S max ‘{(Un—l,un)‘*'l[(’in:unﬂ)+2|J(“n—1vun)—d(’4n:un+1)\
A (1, 10) + (g g 1)+ (a1 1) = (1t 1y 11) |
B d (up-1, ) + |d (-1, 1) = d (ty, 1111,
= AN £y 1)+ 1)+ € -1 100) = s 8141)|
2
and
B
Sty tn) = AP (@)1 + llthuor | + Nl + 1A | + | ey ]]
B
= AP (&)1 + o | + Nl + Nt ]l + N1t II]
B
= AP ()1 + Nl | + 20l + lttia 1]
Denoting by y,, = 4 (u,-1, u,), we have
Y+ Yurl + [V = Vur1
‘E(un—l;un)fmax{yn‘*' [V = Vns1ls u = 5 ‘ s }
Thus, (2.8) becomes
Vi + Yol + [Vn = Vuu1|
)/n+15(1—8)max{)/n+|)/n—)/n+1|, a al ) - al }
(2.9)

+ A Y1+ Nt ||+ 2| + Nt 1]

Page 5 of 15
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We claim that the sequence {y,} is non-increasing. Indeed, if we suppose the contrary
that, for some p, y, < yp+1, and so max{y,, ¥p+1} = ¥p+1, then we have |y, — ypi1l = Vpi1 = ¥p.

E(thi-1, ) < Vsl (2.10)

Consequently, from (2.9), we get, for such an integer p,

Voot < (1= &)yper + AP @)1+ lupor |+ 2l o] + 01 (2.11)

The above inequality is true for all & € [0, 1]. In particular, for & = 0, we get V.1 < Vp+1,

which clearly is a contradiction. In this case, we find that the sequence {y,} is non-
increasing. So we can find a non-negative real number y such that

lim d(u,_1,u,) = lim y, = y.
n—0oQ n— 00

We claim that y = 0. In order to prove this, we have to show that the sequence {x,} is
bounded, where «,, = ||u,|| = 4 (1, up). Since the sequence {d (u, u,,1)} is non-increasing,

we have

A (ty 1) = Y < K1 = d (11, ).
By the triangle inequality, we get

K = d (g, up) < d (thy, thy1) + d (11, ) + d (11, 1p)
(2.12)

= d (un, ups1) + d (R, huo) + k1 < d (huy, hug) + 2k1.
On account of (2.5), regarding that £ is an -7 -Pata-Z contraction, we have

0 < ¢ (ox(uo, un)d (hitg, hity), (1 — &) E (o, ) + S(utg, 1))

< (1 - &)E(ug, un) + S(uo, tn) — (g, 1) d (hiig, issy).
Taking into account (2.7), this is equivalent to
d (s, hug) = d (Aug, hus,) < at(uio, ) d (Ao, Aut)

(1 — &) E(uo, uy) + S(uo, uy)

tf(uﬂ uy) + |d (1, hu,) — d (19, Auig)|,
— (1 8) max A (u, ) +d (ug, ﬁu())ﬂz{(un huy)—d (4o, hug )|

A (up, frug)+d (g, ﬁun)ﬂl{(un bty ) —d (g, fiup) |

+ AP YL+ lluall + lluoll + [1iwgl] + 1]}

tf(uﬂ,uo) + | d (tyy tne1) — d (ug, w1,
— (1 8) max A (st 1)+ (g, )+ (s 1) = (19,11 |

A (1) +d (g, ty 1)+ d (11041 )~ (g, )|
2

+ AP YL+ luall + luoll + litner I + 12 ll]”
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Ky + |yn_K1|7
_ Yn+K1+yn—k1l
<(1-¢)max | BT

KntK1+Kp+Yn+|yn—K1l

+ AW (E)L + Ky + Y + K+ k1]P
< (1 -¢&)max{ky, + k1 — Vu, K1, K1 + Ky}

+ Ay (e)[1 + 2k, + 2117,
Using (2.12) and the above inequality, we get

kn < d (huy, fug) + 2K
< (1 -¢e)max{k, + k1 — Yu, K1,K1 + K} + Aekw(e)[l + 2K, + 2K1]ﬂ + 2K

<(1-¢)(ky + K1) + AP (e)[1 + 2k, + 26117 + 2k1.
Moreover, since 8 < A, we have

ekn < 3= 8)k1 + Ae* Y ()1 + 2k + 261]°

< (3-8 + Ay ()1 + 2k, + 211"

A
= B =)y + AP (e)(1 + 2ic,)* [1 ! ]
1+ 2k,

1 A
< 3iy + Ae™y(e)2M? (1 +5 > (1 + 2K7)".
K

n
Now, supposing that the sequence {«,} is not bounded, there exists a subsequence {«,,}
of {k,,} such that «,,, - 00 as / — oc. In this case, letting ¢ = ¢, = %(6 [0,1]), the above

inequality yields

A
1< A2 k)] (1 + 2;<1)k<1 + 21 > V()

Kny
A
! ) (e

Kn,

< A2M(1 +3k)*(1 + 2;(1)*(1 5

1\
) Y(e) >0 asl— oo.

<A2*(1+ 3K1)”<1 +
2Ky,

This is a contradiction. Thus, we conclude that our presumption is false and then the
sequence {k,} is bounded. Furthermore, there exists X > 0 such that x,, < K for all » € N.
Let us go back now and prove that y = 0 (where y =lim,_, o ). In view of (2.10) and

the fact that the sequence {y,} is non-increasing, one writes
E(thn-1, ) < 2Vn — Vel
Recall that

Sitnry ) < AP @)1+ ol + 2l all + N1tnr ] < Ae* W (e)[1 + 4K1P.

Page 7 of 15
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Taking into account that £ is an a-7-E, contraction, keeping in mind (2.6) and using (21),

we have

0 < & (0t (thn-1, ) (ity_1, Fithy), (1 = €)E (1, ) + S (tt-1, t))
< (1 -&)A—&)E(uy_1, 1) + Z(thy_1, t4y) — 0t (-1, 1) & (Atty_1, hs).
We have

Vi = d (s ty1) < 0t (1, ty) d (Rt hinty)
< (1 - &)E(un-1, ) + S(ttn-1, )

< (1=8)2yn = yun)) + A& Y ()1 + 4K1°).

Letting n — 00 in the previous inequality, we obtain
y <@ -e)y + A1 +4K)Py(e),

which is equivalent to
y < AL +4K) Y (o).

When ¢ — 0, we get y < 0. Therefore,

y = lim d (s, tye1) = 0.

(2.13)

(2.14)

As a next step, we claim that {u,} is a Cauchy sequence. On the contrary, assuming

that the sequence is not Cauchy, it follows from Lemma 1.9 that there exist ¢ > 0 and

subsequences {u,,} and {u,,} such that (1.7) and (1.8) hold. Replacing v = u,, and @ = uy,

in (2.1), we have

0 < C(ct(thnyy tm ) (Bt Fitty,), (1 = €)E + S ity th)))

= (1 - 8)(5(1%11 u'ml) + S(unl) uml) - a(unp uml)d(ﬁunlx ﬁu’m;),
where

C[(unlr llml) + |L[(un[r ﬁunl) - L{(uﬂll; ﬁuml)lr
l[(unl;ﬁunl)+‘f(uml:ﬁuml)+|unl:ﬁunl)—d(uml:ﬁumlﬂ

E(thyys ;) = MAX 5
‘[(unlﬁuml)+f[(uml7ﬁunl)+|‘lnl,ﬁunl)*l{(uml,ﬁumlﬂ
2

C[(anl, um[) + |L[(un[’ u’nl+l) - L[(uml! u’m1+1)|:

l{(unlv”nl+1)+l{(uml'V'm1+1)+‘unl,unlﬂ)—l{(um[vumpl)‘
= max

2
d(unlvumpl)+d(uml:unl+1)+\"nl:unpl)—d(’imlvumpl)\

2
The triangular a-orbital admissibility of £ shows that o (u,;, ) > 1. Thus,

‘{(un”l) u’ml+1) = (1 - 8)£(u’nl; lel) + 5(”11[1 um])

(2.15)

(2.16)

Page 8 of 15
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Letting / — oo and taking into account (2.14) and Lemma 1.9, we have
Lim E(u,, 1)) = e. (2.17)
l—00

At the same time, one writes

Sty ) = DY @)1+ [t | + st || + || i || + ||ﬁum,||]ﬂ
= A Y ()1 + Ny Il + Nty I + Nt || + IIum,+1||]ﬂ

< Ae*y(e)[1 +4%]P.

Denoting by a; = d (441, ttyn1) and by = (1 — &) E(uy, th,) + S(tty, thr;), by Lemma 1.9, it
follows that

aj— ¢ and limsupb; < (1—¢g)e+ Ae*yr(e)[1 +4%]P.

-0

Thus, passing to the limit as / — oo in (2.16), we get

e =limsupa; < limsupb; < Ae*y(e)[1 +4K]P.

l—o00 l—o00

Furthermore,

e<(-e)et Ae*y(e)[1 +4K07,
ie.,

e< A" Ny (e)[1 +4%)°.

That is, e = 0. Therefore, {u,} is a Cauchy sequence in the complete metric space. For this
reason, there exists v* € X such that v, — v*, as n —> o0.

Furthermore, in the case that £ is a continuous mapping, we get Av* = v*, that is, v* is a
fixed point of 4.

Now, suppose that & is regular. From (2.1), one writes

s (a(u,,,, v*)z{(ﬁu,,,, ﬁv*), (1- s)f(u,,, v*) + S(u,,, v*)) (2.18)
Using the regularity of X’ and (), we get
L[(ﬁan, ﬁv*) < a(u,,, v*)z[(ﬁu,,, ﬁv*) <(1- s)f(uﬂ, v*) + S(uﬂ, v*) (2.19)

where

d (1, V*) + | d (1, i) — 4 (V, AV*)]

* * _ * *
f(un,v*) — max | L)+ d(0* v )+1d (s h)—d (V¥ BV )I’

2
A (up, iV ) +d (V) +| d gy, i) —d (v, V*)|
2

d(”’m ‘)*) + |E[(um urHl) - 5[(‘)*’ ﬁ\)*)l,

= max A (gt 1)+ 0 0™+ d (g, tp41) = (0, A0 *)| ,

2
A iV )+ d (VF g1 1) +1d (141 ) = (V5 0 ™)|
2




Karapinar et al. Advances in Difference Equations (2020) 2020:539 Page 10 of 15

and

Sty v*) = AP @)1+ Null + |v*]| + Wil + | Av* |17
= A Y@L+ Nl + [v*] + Ntr |+ | Av*]]°

= AP )1+ ko + V7] + ks + |7 ]
Taking into account the boundedness of the sequence {«,}, we have
S(v*) < AP L+ 250+ o] + [ v*]].
On the other hand,

lim Z(u,,v*) = £ (v, Av*).

n—>00
Letting n — oo in the inequality (2.19), we find

z[(v*, ﬁv*) <(1- s)zf(v*, ﬁv*) + As’\l//(s)[l + 2K + || v* H + || fAv* H]ﬂ,
which is equivalent to

4 (v Av*) < A (e)[1+2K + ||v* | + | Av* ||]/3
Obviously, we obtain for ¢ = 0 that £ (v*, Av*) <0, so v* = Av*. Thus, v* is a fixed point of
f. Finally, to prove the uniqueness of the fixed point, we suppose that there exist two fixed

points v*, w* € Fixy(#) such that v* # w*. We have

0 <& (a(v',0)d (Av', k"), (1 - )E(v",0%) + S (v, "))

<(1- s)f(v*,w*) + S(U*,w*) - ot(v*,a)*)c{(ﬁv*, ﬁw*).
Taking into account (iv), we obtain

c[(u*,w*) < a(u*,a)*)c[(ﬁv*, ﬁa)*) <(1- S)Z(U*,w*) + S(U*,w*)

= (1-e)d (v',0%) + Aty @)1+ 27| +2]0* ],
which leads to
d(v*,0%) < A )1+ 2] v + 2] ],

In the limit ¢ — 0, we get 4 (v*, w*) <0, that is, v* = w*, which is a contradiction. There-

fore, the fixed point of £ is unique. O

In the following, we present an example that supports our statement, that is, Theo-

rem 2.3 is a generalization of Theorem 1.8.
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Example 2.4 Take X = A x A, where A =[0,11] and 4 : X x X — [0,00) is the usual
distance. Define the mapping i : X — & by

(2,0), ifveBs,
hv=1(11,9), ifv=(11,0),
(5,0), otherwise,

where B = {(x,0)|x € [0,11)}. For v; = (11,0) and v, = (2,0), we have

A, 1) =9,  d(Aln), A(w)) = 4((11,9),(2,0)) = 92,
d(v2, A(1)) = d (v, 2) =0,  d(v1, (1)) = £((11,0),(11,9)) =9,
4 (v1, h(n)) = 4((11,0),(2,0)) =9, d(v2, h(v)) = d((2,0),(11,9)) = 92,

and
M (v, vy) = max{d’(vl, b, d(v1, A(v1)) -2F d(va, ﬁ(Vz))’ d (v, A1) ; d(v1, A(v1)) }
{ 9 9(1+f)} 91 +2)
=max{9, - = .
79’ 2 2
Thus,

d(h(v1), A(v2)) = 9v2 > 2 +2‘/_ = M(v1, 1),

so that the inequality (1.6) does not hold for ¢ = 0. That is, £ is not a Pata type Zamfirescu

mapping.
Consider the function o : X x X — [0, 00) given as

2, ifv,weB,
a(v,w)=11, ifv=(11,0),w =(2,0),

0, otherwise.

Since the assumptions (i)—(iv) are obviously satisfied, we have to prove that £ is an o-C-E-
Pata contraction. Take o = 8 = 1, A = 6 and the functions W(¢) = %, Z(x, Yy)=y—Xx.

For v,w € B, we have 4 (A(v), i(w)) = 0, so that (2.1) holds.

For v = (11,0) and w = (2,0) we have

a(v, a))z{(ﬁ(v), ﬁ(w))
3 3
=9v2< L 18= Z(9+|9—0|)
= Z(z{(v,a)) + |z{(v, av) — d(w, /ia))|)
<(1- 8)(1[(1),&)) + ‘d(v, ) — d(w, ﬁa))D

+ (Z +8—1)(£f(\),a))+ |4 (v, iv) - d (o, how)|)
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4(e - 1)
3

<(1-e)E(v,w)+ ?_L(l + )(cf(v,w) +d(v, i) + 4 (w, (o))

<(1-8)EW,w)+ ;82(21[(1), Vo) + 24 (v, w) + d (vg, Av) + d (v, ﬁa)))

< (1-e)EW, ) +36*(1+ V] + llol + | Av] + |ho])

=(1-8)E(v,0)+5W,w).
Due to the way the function o was defined, we omit the other cases.

3 An application on a fractional boundary value problem
In this section, we ensure the existence of a solution of a nonlinear fractional differen-
tial equation (for more related details, see [17-23]). Denote by X = C[0,1] the set of all

continuous functions defined on [0, 1]. We endow X" with the metric given as
d(p, @) = 1P - @l = max [o(s) - w(s)]
Consider the fractional differential equation
D" p(t) :f(t,p(t)), O<t<1l,l<pu<2, (3.1)

with boundary conditions

0)=0,
0(0) (32)
Ip(1) = p'(0).
Here, °D* corresponds for the Caputo fractional derivative of order p, given as
1 1
D)= s [ =7 00ds, (33
I'(n—p) Jo

where n — 1< <nand n=[u] +1, and I*f is the Riemann—-Liouville fractional integral

of order p of a continuous function f, defined by

1

I"f(t) = m

/t(t —s)“f(s)ds, wu>O0. (3.4)
0

In [24], it is showed that the problem (3.1) and (3.2) can be written in the following integral

form:

p0= s [ =516 p0) ds e s | 1 [6=nreomyaras 6o

Theorem 3.1 Assume that
1. f:[0,1] x R — R is continuous;



Karapinar et al. Advances in Difference Equations (2020) 2020:539

2. forall p,w € X, we have

(5 0(9) ~f(506)] = =T + D]p(s) - 06, 6
4

foreach s € [0,1], where ¢ € [0,1].

Then the problem 3.1 and 3.2 possesses a unique solution.

Proof Consider the functional

Tp(t):—/ot(t s“lfs,o ds+ ffs r) 1fr,o(r drds. (3.7)

()

Note that a solution of (3.5) is also a fixed point of 7. We mention that T is well posed.
For all p,w € X and s € [0, 1], we have

|Tp(t) - T(w(0)]

_ L ' _ -1 2t L ps e
_‘F(u)/o(t s) f(s,p(S))ds+F(M)/0 /O(s " (r, p(r)) dr ds

F_M) /(;t(t - s)ﬂ—lf(s, a)(s)) ds — % 01 fos(s ~ r)u—lf(r’ a)(r)) drds

=< ‘ﬁ /t(t —S)“_lf(s,p(s)) ds — % /t(t—S)M_lf(S’w(S)) ds

‘F(M//S S (e ) drds——/fs Y (r,o(r)) drds

—g)Ht (s,p(s) ds /(t st (s, (s))

m/(; /O(S_'")M_lf(’"rp(r))drds—/; fo(s_r)u_lf(r,w(r))drds

<8T$:“ ;wﬂwlww—mgmg
282F(/L+ 1) =
4F(M) / /(S r) |p(r) a)(r)|drds

- ZF(M+1) )f(t s“lds

2s2r 26T (k +1) 1) L
4[‘( ) )/ /(s r)*drds

2 () (e +1)
—d
e P TR
() +1)

+2e2B(u + 1, 1)74F(M)F(u T

d(p, w)

2 2
f%ﬂa@+%ﬂmw

< &2d(p,w),

Page 13 0of 15
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where B is the beta function. Consequently, one has

d(Tp, Tw) < e*d(p, »)
= ed(p, w) — £°d(p, w) + 26°d(p, w)
< (1-2)E(p, w) +26%d(p, )
< (1-e)E(p,w) +26*[d(p, 0) + d(0,w)]
= (1-¢e)E(p, @) + 2*[ [l ol + llll]

<(1-9)Z(p,w) + AP (&)1 + Il + |l + I Tpll + | T,

where ¥(¢) = ¢, B =1 =1and A = 2. Applying Theorem 2.3, the functional 7" admits a
unique fixed point, that is, the problem (3.1) and (3.2) possesses a unique solution. O

4 Conclusion and remarks

Our results merged from and generalized several existing results in the related literature.
First of all, as underlined in Remark 2.2, the main result of [16] is a consequence of our
given theorem. On the other hand, by choosing the auxiliary functions in a proper way, we
may state a long list of corollaries. More precisely, by choosing the mapping « in a proper
way, we can get the analogue of our result in the setting of partially ordered metric spaces,
or in the set-up of cyclic mappings. Note that, if we take «(x,y) = 1 for all x, y, we get
the standard fixed point theorems in the context of complete metric spaces; see [25—29].
In addition, by choosing the appropriate simulation function, one can get several more
results; see [30-35].
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