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Abstract
The objective of this paper is to present two numerical techniques for solving
generalized fractional differential equations. We develop Haar wavelets operational
matrices to approximate the solution of generalized Caputo–Katugampola fractional
differential equations. Moreover, we introduce Green–Haar approach for a family of
generalized fractional boundary value problems and compare the method with the
classical Haar wavelets technique. In the context of error analysis, an upper bound for
error is established to show the convergence of the method. Results of numerical
experiments have been documented in a tabular and graphical format to elaborate
the accuracy and efficiency of addressed methods. Further, we conclude that
accuracy-wise Green–Haar approach is better than the conventional Haar wavelets
approach as it takes less computational time compared to the Haar wavelet method.

Keywords: Wavelets; Caputo–Katugampola derivative; Generalized fractional
differential equations

1 Introduction
The mathematical theory of fractional calculus can be described as that of derivatives as
well as integrals of any order possible. Primarily, fractional calculus is a generalized form of
integer order calculus. Fractional calculus has been exploited as a crucial tool for applica-
tions that concern science and engineering. These applications of fractional calculus have
been elaborated previously by several authors. In essence, fractional calculus has been de-
ployed for modeling the transfer of heat in heterogeneous media [1], nonlinear oscillation
of earthquakes [2], signal processing [3], neural networks [4–6], fluid dynamic traffic flow
[7], electromagnetism [8], bioengineering [9], economics [10], anomalous diffusions and
fractal-like nature [11, 12]. For the qualitative analysis of fractional differential equations,
we refer the reader to [1, 2, 13–15] and the references therein.

Several books have been written on the philosophy and development of fractional cal-
culus [16–19]. In fractional calculus the fractional derivative is introduced via fractional
integral. Riemann, Liouville, Caputo, Hadamard, Grunwald and Letinkow are the pioneer-
ing researchers who have been contributing and publishing extensively about these appli-
cations. Meanwhile, the literature has witnessed the appearance of different types of frac-
tional derivatives that improve and generalize the classical fractional operators defined by
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the above listed authors [20–22]. Recently, Katugampola rediscovered a new type of frac-
tional integral operator which covers both Riemann–Liouville and Hadamard operators
and represents them in a single form [23, 24].

The study of wavelet theory dates back to mid-20th century. Once it had been intro-
duced, the theory has had prominent contributions in mathematical studies [25]. It is a
significant tool for science and engineering. Wavelets are being used for analyzing sig-
nals, for representation of waveform and segmentation, optimal control, numerical anal-
ysis, fast algorithm for easy implementation, and time–frequency analysis [26]. There are
many kinds of wavelets, for example, Haar [27–30], Daubechies [31], B-spline [32], Battle–
Lemarie [33], Legender [34], as well as Green–CAS [30]. A naive form of orthonormal
wavelets which employ compact support has been used by many researchers and is called
the Haar wavelet. Mathematically, Haar wavelet family consists of rectangular functions.
Further, it contains the lower member of Daubechies family of wavelets which is appropri-
ate for computer implementations. Primarily, Haar wavelets convert a fractional differen-
tial equation into an algebraic system of equations with finite variables. The Haar wavelets
approximation for tackling linear and nonlinear systems has been discussed in [35–39].

The prospective study has been established to solve the generalized fractional differen-
tial equations numerically. The numerical computation utilizes Haar wavelets, as well as
Green–Haar approach for this purpose. Operational matrices have been developed us-
ing Haar wavelet approach. These matrices are thus employed to solve generalized frac-
tional differential equations. The integral operator used for the purpose of computing op-
erational matrix is the generalized Reinmann–Liouville fractional integral operator. An
error analysis for convergence of the proposed technique has been undertaken through
a generalized Caputo-type fractional differential operator. The method has been further
elaborated in terms of efficiency and accuracy by considering a number of documented
examples. A comparison of these results has also been presented against previous studies
[40] to further emphasize the accuracy and efficiency of the proposed technique.

One important feature of the method is that it does not require an operational matrix
at all. Stability and convergence of this method have also been derived for further applica-
tions. The undertaken study shows that the method is even more computationally efficient
against the standard Haar wavelet technique discussed in the same study. Interestingly,
the accuracy is not compromised, but rather enhanced by using Green–Haar method for
solving generalized fractional boundary-value problems.

The present study is structured as follows: In Sect. 2, we review basic mathematical
expressions of fractional calculus with their respective definitions. Furthermore, we re-
flect on Haar wavelets which is an essential preliminary topic for subsequent sections in
this paper. In Sect. 3, we develop operational matrices using a generalized integral oper-
ator and Haar wavelets which help in estimating the numerical solution of a generalized
Caputo-type fractional differential equation. Moreover, we establish an upper bound for
the proposed technique through Haar wavelets for the generalized fractional differential
equation. Further, numerical solutions are given to elaborate the accuracy and efficiency
of the numerical scheme. We propose a new method called Green–Haar method for the
boundary value problems and compare our results against the Haar wavelet approach in
Sect. 4. We summarize the outcomes of this paper in the last section.
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2 Preliminaries
In this section, for the sake of convenience, we will review some necessary definitions.
These definitions serve as essential preliminaries for fractional calculus and Haar wavelets.
These definitions are going to assist in upcoming sections.

2.1 Fractional calculus
Definition 2.1 ([23, 24]) Consider α, ρ ∈ R

+ such that α > 0. The generalized fractional
integral (Iα,ρ

a f ) (in the sense of Katugampola) is given by

(
Iα,ρ

a f
)
(t) =

ρα–1

�(α)

∫ t

a

(
tρ – τρ

)α–1
τρ–1f (τ ) dτ . (1)

Now we introduce the Caputo-type generalized fractional derivative such that, at two
convenient limits, this generalized Caputo-type fractional derivative recovers the well-
known Caputo–Hadamard and Caputo fractional derivatives.

Definition 2.2 ([23, 24]) Consider α, ρ ∈ R
+ such that α > 0 and n = �α� + 1. The gener-

alized Caputo-type fractional derivative is defined by

(
Dα,ρ

a f
)
(t) =

ρα–n+1

�(n – α)

∫ t

a

τρ–1

(tρ – τρ)n–α–1

(
τ 1–ρ d

dt

)n

f (τ ) dτ (2)

=
(
In–α,ρ

a δn
ρ f
)
(t), (3)

where δn
ρ = (t1–ρ d

dt )n and α represents the order of the fractional operators.

Lemma 2.3 ([41]) Let α,ρ ∈R
+ with α > 0,α /∈N, and n = �α� + 1. Then

lim
ρ→1

(
Dα,ρ

a f
)
(t) = Dα

a f (t) =
1

�(n – α)

∫ t

a
(t – τ )n–α–1f (n)(τ ) dτ , (4)

lim
ρ→0

(
Dα,ρ

a f
)
(t) = Dα

∗af (t) =
1

�(n – α)

∫ t

a

(
ln

t
τ

)n–α–1

δnf (τ ) dτ . (5)

The fractional operators in (4) and (5) represent Caputo and Caputo–Hadamard frac-
tional derivative, respectively.

Definition 2.4 ([42]) The Mittag-Leffler function Eγ ,β depending on two parameters α

and β is defined by the following series:

Eγ ,β(t) =
∞∑

k=0

tk

�(γ k + β)
, γ ,β > 0.

As a particular case, when β = 1, we have a one-parameter Mittag-Leffler function,

Eγ (t) =
∞∑

k=0

tk

�(γ k + 1)
, γ > 0.
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Lemma 2.5 ([41]) For θ ∈R, γ > 0, and β ≥ 1, we have

Dα,ρ
a
(
tρ – aρ

)β–1
Eγ ,β

[
θ
(
tρ – aρ

)γ ] =

⎧
⎨

⎩

ρα
Eγ ,β–α [θ (tρ–aρ )γ ]

(tρ–aρ )α–β+1 , if β > 1;
θρα

Eγ ,γ –α+1[θ (tρ–aρ )γ ]
(tρ–aρ )γ –1 , if β = 1.

(6)

Example 2.6 ([23]) Let β ,ρ ∈R, with β ,ρ > 0 and f (t) = tρβ . Taking the limit as a → 0, we
get

Dα,ρ
0+
(
tρ
)β =

ρα�(β + 1)
�(β – α + 1)

tρ(β–α).

2.2 Haar wavelets and function approximation
The domain of Haar wavelets is an essential component of a set of those wavelets which
employ compact support. The functions forming the family of Haar wavelets consists of
step functions over the real line. These are the functions which are restrained to only the
values –1, 0, and 1. These functions have two characteristics. Firstly, they are discontin-
uous in their nature. Secondly, their derivative vanishes. Each function that falls into the
category of Haar wavelets is essentially defined over the interval t ∈ [a, b) except for the
scaling function conveyed as [39]

hi(t) =

⎧
⎪⎪⎨

⎪⎪⎩

1, for t ∈ [ξ1(i), ξ2(i)];

–1, for t ∈ [ξ2(i), ξ3(i)];

0, otherwise.

(7)

where, ξ1(i) = a + (b – a) k
m , ξ2(i) = a + (b – a) 2k+1

2m , ξ3(i) = a + (b – a) k+1
m . We define the

quantity m = 2j, where j = 0, 1, 2, 3, . . . , J and k = 0, 1, 2, 3, . . . , m–1. Here parameter j is used
as a representation for the level of wavelet or dilation parameter, translation is represented
by t, while the maximal level of resolution for the Haar wavelet is represented by J . The
relation between the parameter m, k, and i is as i = m + k + 1.

Equation (7) is valid for i ≥ 3. It is presumed that the values i = 1 and i = 2 correspond
to the following scaling functions, respectively:

h1(x) =

⎧
⎨

⎩
1, for x ∈ [a, b];

0, otherwise,
(8)

and

h2(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1, x ∈ [a, a+b
2 );

–1, x ∈ [ a+b
2 , b);

0, otherwise.

(9)

If u(t) is a function defined on the interval [0, 1], it should decompose as

u(t) =
∞∑

i=0

cihi(t), (10)



ur Rehman et al. Advances in Difference Equations        (2020) 2020:515 Page 5 of 25

where ci = 〈u(t), hi(t)〉. In particular, the first m terms are considered, such that m is a
power of 2,

u(t) ∼= um(t) =
m–1∑

i=0

cihi(t). (11)

Lemma 2.7 ([43]) Suppose that a function v(t) is differentiable and has bounded first
derivative over (0, 1), that is, there exits M > 0 such that |v′(t)| ≤ M for all t ∈ (0, 1), and
also assume that vk(t) is an approximation of v(t), then we have

∥∥v(t) – vk(t)
∥∥

E ≤ M√
3K

.

3 Operational matrices method
Operational matrices have been widely used to deal with fractional order systems. Several
authors established Haar wavelets operational matrices to deal with various problems,
such as to find the numerical solutions of linear and nonlinear initial as well as boundary
value problems of fractional order [29, 30, 44, 45]. Hsiao and Chen [46] established an op-
erational matrix to study lumped dynamical systems with distributed–parameters. Wang
and Hsiao [47] have solved an optimal control system by linearly changing through Haar
wavelets. Dai and Cochran Jr. [48] have considered a Haar wavelet technique to transform
an optimal control system in the direction to nonlinear programming (NLP) parameters
using collocation points. This NLP can be solved using a nonlinear programming solver
such as SNOPT and exploiting Haar wavelet operational matrices for the purpose of ana-
lyzing the optimal control system [49].

Now our aim is to integrate the Haar wavelets. The generalized fractional integration of
Haar vector H = [h0, h1, h2, . . . , hm–1] is given as

pα,ρ(t) =
(ρ)1–α

(α – 1)!

∫ t

a

(
tρ – τρ

)α–1
τρ–1hi(τ ) dτ , (12)

where Pα,ρ(t) is a square m-dimensional operational matrix of generalized integrals. In
general these generalized fractional integrals can be calculated analytically as

pα,ρ(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, for x < ξ1(i);
ρ–α

α! [tρ – ξ
ρ
1 (i)]α , for t ∈ [ξ1(i), ξ2(i)];

ρ–α

α! [(tρ – ξ
ρ
1 (i))α – 2(tρ – ξ

ρ
2 (i))α], for t ∈ [ξ2(i), ξ3(i)];

ρ–α

α! [(tρ – ξ
ρ
1 (i))α – 2(tρ – ξ

ρ
2 (i))α

+ (tρ – ξ
ρ
3 (i))α], for t > ξ3(i).

(13)

This formula holds for i > 1. For i = 1, we obtain

pα,ρ(t) =
(ρ)–α

α!
[
tρ – aρ

]α . (14)

The generalized fractional order integration matrix Pα,ρ(t) can be obtained by using collo-
cation points in equations (13) and (14). In particular, the Haar wavelet operational matrix
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for the fixed variables α = 0.75, m = 8, and ρ = 1.5 is

P0.75,1.5
8×8 =

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢
⎢⎢
⎣

0.0355 0.1221 0.2169 0.3167 0.4202 0.5266 0.6355 0.7465
0.0355 0.1221 0.2169 0.3167 0.2057 0.0171 –0.1397 –0.2847
0.0355 0.1221 0.0479 –0.0977 –0.1182 –0.0934 –0.0814 –0.0739

0 0 0 0 0.1073 0.2548 0.1397 –0.0659
0.0355 –0.013 –0.0471 –0.0354 –0.0304 –0.0274 –0.0252 –0.0236

0 0 0.0845 0.0132 –0.0360 –0.0233 –0.0186 –0.0161
0 0 0 0 0.1073 0.0225 –0.0359 –0.0217
0 0 0 0 0 0 0.1240 0.0286

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥
⎥⎥
⎦

.

(15)

Furthermore, in Sect. 4 we will present a new approach to solve certain classes of linear
or nonlinear boundary value problems of generalized fractional differential equations nu-
merically, called Green–Haar wavelet method. This technique will be free of operational
matrices

3.1 Error analysis
An error analysis for a function approximation by Haar wavelets is carried out in [43]. Here
we derive an inequality in the context of an upper bound for the Caputo–Katugampola
fractional differential operator which shows the convergence of the Haar wavelet tech-
nique. The proof of the following theorem is similar to that in [50].

Theorem 3.1 Suppose that u(n) is continuous on (a, b) and there exists M > 0, such that
|t1–ρu(n)(t)| ≤ M for all t ∈ [a, b] where a, b ∈R

+, andDα,ρ
a um is an approximation ofDα,ρ

a u,
then we have

∥
∥Dα,ρ

a u(t) – Dα,ρ
a um(t)

∥
∥

E ≤ ρM
�(n – α)(n – α)

b(n–α)(ρ–1)

[1 – 22(α–n)] 1
2

1
m(n–α) .

Proof The function Dα,ρ
a u defined over [a, b] can be approximated as

Dα,ρ
a u(t) =

∞∑

i=0

cihi(t), (16)

where

ci =
〈
Dα,ρ

a u(t), hi(t)
〉

=
∫ b

a
Dα,ρ

a u(t)hi(t) dt. (17)

Consider the first m terms of the sum, denoted by Dα,ρ
a um, which approximate Dα,ρ

a u(t),
that is,

Dα,ρ
a u(t) ∼= Dα,ρ

a um(t) =
m–1∑

i=0

cihi(t), (18)

where m = 2β+1, β = 1, 2, 3, . . . , then

Dα,ρ
a u(t) – Dα,ρ

a um(t) =
∞∑

i=m

cihi(t) =
∞∑

i=2β+1

cihi(t),



ur Rehman et al. Advances in Difference Equations        (2020) 2020:515 Page 7 of 25

∥∥Dα,ρ
a u(t) – Dα,ρ

a um(t)
∥∥2

E =
∫ t

a

[
Dα,ρ

a u(t) – Dα,ρ
a um(t)

]2 dt

=
∞∑

i=2β+1

∞∑

i′=2β+1

cici′
∫ t

a
hi(t)hi′ (t) dt.

By orthogonality, we have
∫ b

a hm(t)hm(t) dt = Im, where Im is the identity matrix of order m.
Therefore,

∥
∥Dα,ρ

a u(t) – Dα,ρ
a um(t)

∥
∥2

E =
∞∑

i=2β+1

c2
i . (19)

From equation (17) we have

ci =
∫ b

a
Dα,ρ

a u(t)hi(t) dt

= 2
j
2

{∫ a+(b–a)(k+ 1
2 )2–j

a+(b–a)k2–j
Dα,ρ

a u(t) dt –
∫ a+(b–a)(k+1)2–j

a+(b–a)(k+ 1
2 )2–j

Dα,ρ
a u(t) dt

}
.

Recall the mean value theorem of integration: ∃t1, t2, a + (b – a)k2–j ≤ t1 < a + (b – a)(k +
1
2 )2–j, a + (b – a)(k + 1

2 )2–j ≤ t2 < a + (b – a)(k + 1)2–j such that

ci = 2
j
2 (b – a)

{(
a +

(
k +

1
2

)
2–j –

(
a + k2–j)

)
Dα,ρ

a+ u(t1)

–
(

a + (k + 1)2–j –
(

a +
(

k +
1
2

)
2–j
))

Dα,ρ
a+ u(t2)

}

= 2
j
2 (b – a)

{
2–j–1(Dα,ρ

a u(t1) – Dα,ρ
a u(t2)

)}
.

Therefore,

c2
i = 2–j–2(b – a)2(Dα,ρ

a u(t1) – Dα,ρ
a u(t2)

)2. (20)

Together with the definition of Caputo–Katugampola fractional derivative and
|t1–ρun(t)| ≤ M ∀t ∈ [a, b], we have

∣
∣Dα,ρ

a u(t1) – Dα,ρ
a u(t2)

∣
∣

=
ρα–n+1

�(n – α)

∣∣∣
∣

∫ t1

a

un(τ )
(tρ

1 – τρ)α–n+1 dτ –
∫ t2

a

un(τ )
(tρ

2 – τρ)α–n+1 dτ

∣∣∣
∣

=
ρα–n+1

�(n – α)

∣
∣∣
∣

∫ t1

a

un(τ )
(tρ

1 – τρ)α–n+1 dτ –
∫ t1

a

un(τ )
(tρ

2 – τρ)α–n+1 dτ

–
∫ t2

t1

un(τ )
(tρ

2 – τρ)α–n+1 dτ

∣
∣∣
∣

≤ ρα–n+1

�(n – α)

(∣∣
∣∣

∫ t1

a

un(τ )
(tρ

1 – τρ)α–n+1 dτ –
∫ t1

a

un(τ )
(tρ

2 – τρ)α–n+1 dτ

∣∣
∣∣

+
∣
∣∣∣

∫ t2

t1

un(τ )
(tρ

2 – τρ)α–n+1 dτ

∣
∣∣∣

)
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=
ρα–n+1

�(n – α)

(∣∣
∣∣

∫ t1

a
un(τ )τ (1–ρ)

[
τρ–1

(tρ
1 – τρ)α–n+1 –

τρ–1

(tρ
2 – τρ)α–n+1

]
dτ

∣∣
∣∣

+
∣
∣∣
∣

∫ t2

t1

un(τ )τ (1–ρ)τρ–1

(tρ
2 – τρ)α–n+1 dτ

∣
∣∣
∣

)

≤ ρα–n+1

�(n – α)

(∫ t1

a

∣∣
∣∣u

n(τ )τ (1–ρ)
[

τρ–1

(tρ
1 – τρ)α–n+1 –

τρ–1

(tρ
2 – τρ)α–n+1

]∣∣
∣∣dτ

+
∫ t2

t1

∣
∣∣
∣
un(τ )τ (1–ρ)τρ–1

(tρ
2 – τρ)α–n+1

∣
∣∣
∣dτ

)

≤ ρα–n+1M
�(n – α)

(∫ t1

a

[
τρ–1

(tρ
1 – τρ)α–n+1 –

τρ–1

(tρ
2 – τρ)α–n+1

]
dτ

+
∫ t2

t1

τρ–1

(tρ
2 – τρ)α–n+1 dτ

)

=
ρα–n+1M

�(n – α)(n – α)
([(

tρ
1 – aρ

)n–α +
(
tρ
2 – tρ

1
)n–α –

(
tρ
2 – aρ

)n–α]

+
(
tρ
2 – tρ

1
)n–α).

Since t1 < t2, one gets (tρ
1 – aρ)n–α – (tρ

2 – aρ)n–α < 0 for ρ > 0.
Therefore

∣
∣Dα,ρ

a u(t1) – Dα,ρ
a u(t2)

∣
∣≤ 2ρα–n+1M

�(n – α)(n – α)
(
tρ
2 – tρ

1
)n–α .

By the mean value theorem, ∃ξ ∈ [t1, t2] ⊆ [a, b],

∣∣Dα,ρ
a u(t1) – Dα,ρ

a u(t2)
∣∣≤ 2ρα–n+1M

�(n – α)(n – α)
ρn–αξ (n–α)(ρ–1)(t2 – t1)n–α

≤ 2ρMb(n–α)(ρ–1)

�(n – α)(n – α)
1

2j(n–α)

which implies that

(
Dα,ρ

a u(t1) – Dα,ρ
a u(t2)

)2 ≤ 4ρ2M2

�(n – α)2(n – α)2
b2(n–α)(ρ–1)

22j(n–α) . (21)

Substituting equation (21) into (20), we get

c2
i ≤ 2–j–2(b – a)2

(
4ρ2M2

�(n – α)2(n – α)2
b2(n–α)(ρ–1)

22j(n–α)

)

=
(b – a)2ρ2M2

�(n – α)2(n – α)2
b2(n–α)(ρ–1)

22j(n–α)+j . (22)

Putting equation (22) into equation (19), we have

∥
∥Dα,ρ

a u(t) – Dα,ρ
a um(t)

∥
∥2

E =
∞∑

i=2β+1

c2
i =

∞∑

j=β+1

( 2j+1–1∑

i=2j

c2
i

)

≤
∞∑

j=β+1

(
(b – a)2ρ2M2

�(n – α)2(n – α)2
b2(n–α)(ρ–1)

22j(n–α)+j

(
2j+1 – 1 – 2j + 1

))
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=
∞∑

j=β+1

(b – a)2ρ2M2

�(n – α)2(n – α)2
b2(n–α)(ρ–1)

22j(n–α)

=
(b – a)2ρ2M2b2(n–α)(ρ–1)

�(n – α)2(n – α)2

∞∑

j=β+1

1
22j(n–α)

=
(b – a)2ρ2M2

�(n – α)2(n – α)2
b2(n–α)(ρ–1)

1 – 22(α–n)
1

22(β+1)(n–α) .

Let m = 2β+1, then we have

∥∥Dα,ρ
a u(t) – Dα,ρ

a um(t)
∥∥2

E ≤ (b – a)2ρ2M2

�(n – α)2(n – α)2
b2(n–α)(ρ–1)

1 – 22(α–n)
1

m2(n–α)

≤ (b – a)ρM
�(n – α)(n – α)

b(n–α)(ρ–1)

[1 – 22(α–n)] 1
2

1
m(n–α) .

Hence, one can achieve the error bound for the given partial sum, provided a numerical
value of M is given.

To get an estimate for M, we proceed as follows. Since u(n)(t) is bounded and continuous
on the interval [a, b],

u(n)(t) ∼=
m–1∑

i=0

cihi(t) = CtHm(t), (23)

where C = [c0, c1, c2, . . . , cm–1]t and Hm(t) = [h0(t), h1(t), h2(t), . . . , hm–1(t)].
The integral of Haar wavelets of order α is given as

Iα,ρ
a Hm(t) dt ∼= Pα,ρ

m×mHm(t), t ∈ [a, b).

Integrating equation (23) yields

u(n–1)(t) =
∫ t

a
u(n)(x) dx + u(n–1)(a) =

∫ t

a
u(n)(x) dx ∼= CtP1,ρ

m×mHm(t). (24)

Similarly, equation (24) is integrated as

u(n–2)(t) =
∫ t

a
u(n–1)(x) dx + u(n–2)(a) =

∫ t

a
u(n–1)(x) dx ∼= CtP2,ρ

m×mHm(t).

Therefore,

u(t) ∼= CtPn,ρ
m×mHm(t). (25)

Equation (25) can be written as

u(tj) ∼= CtPn,ρ
m×mHm(tj), where tj =

j – 1/2
m

, j = 1, 2, . . . , k. (26)

Writing equation (26) in matrix form, we get

Ut ∼= CtPn,ρ
m×mHm×m, where Ut =

[
u(t1), u(t2), u(t3), . . . , u(tm)

]t . (27)
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By solving the linear system in (27), we can determine the vector Ct , and putting this vector
into equation (23), u(n)(t) can be calculated for each t ∈ [a, b].

Now assuming xi ∈ [a, b] and u(n)(xi) are calculated for i = 1, 2, 3, . . . ,�, where the � points
are equidistant, an estimate of M may be considered as ε + max |u(n)(xi)|1≤i≤�. Clearly, the
estimate shall be relatively more precise if � increases and ε is chosen, for example, equal
to b. �

Corollary 3.2 Assume that Dα,ρ
a u(t) is a Haar wavelet approximation of Dα,ρ

a u(t), then

∥∥u(t) – um(t)
∥∥

E ≤ (b – a)ρ2–αM
�(α)�(n – α) · α(n – α)

b(n–α)(ρ–1)

[1 – 22(α–n)] 1
2

1
m(n–α) . (28)

From equation (28) it is evident that ‖u(t) – um(t)‖E −→ 0 when m −→ ∞.

3.2 Numerical examples
In this part we present a few numerical examples which can help us compare the solutions
obtained by the numerical methods with exact solutions and solutions by other meth-
ods.

Example 3.3 Consider the αth order Cauchy-type generalized fractional differential equa-
tion

Dα,ρ
1+ u(t) = u(t) +

2ρα

�(3 – α)
(
tρ – 1

)2–α –
(
tρ – 1

)2, t ∈ [1, 2], (29)

with the initial condition u(1) = 0, where 0 < α ≤ 1 and ρ > 0. It is easy to check that the
analytic solution of system (29) is u(t) = (tρ – 1)2. To find the approximate solution, we
apply Haar wavelets technique to equation (29). Let

Dα,ρ
1+ u(t) = Ct

mHm(t), (30)

then computing the α order integral of (30) along with initial condition leads to

u(t) = Ct
mI

α,ρ
1+ Hm(t) = Ct

mPα,ρ
m×mHm(t). (31)

Putting the values from (30) and (31) into equation (29), we have

Ct
mHm(t) = Ct

mPα,ρ
m×mHm(t) + FmHm(t), (32)

where FmHm(t) = 2ρn

�(3–n) (tρ–1)2–n – (tρ – 1)2 – 1. After solving (32) for Haar coefficient vec-
tor Ct

m, and using the result in equation (31), we get the required approximate solution.
This problem is also solved in [41] by a decomposition formula. The maximum absolute
difference of the numerical and exact solutions of equation (29) for distinct values of α,
ρ is documented in Table 1. The numerical results are in good agreement with the exact
solutions.
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Table 1 Maximum absolute error for distinct values of ρ , α , andm = 64

ρ α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1

1.0 5.12628× 10–3 1.92497× 10–3 7.04195× 10–4 2.78423× 10–4 1.64627× 10–4

1.1 7.06032× 10–3 2.65359× 10–3 9.69607× 10–4 3.79441× 10–4 2.17187× 10–4

1.2 9.58301× 10–3 3.60524× 10–3 1.31617× 10–3 5.10260× 10–4 2.83042× 10–4

1.3 1.28529× 10–2 4.84046× 10–3 1.76601× 10–3 6.78862× 10–4 3.65372× 10–4

1.4 1.70703× 10–2 6.43578× 10–3 2.34715× 10–3 8.95350× 10–4 4.68170× 10–4

1.5 2.24878× 10–2 8.48797× 10–3 3.09507× 10–3 1.17252× 10–3 5.96461× 10–4

1.6 2.94248× 10–2 1.11194× 10–2 4.05472× 10–3 1.52660× 10–3 7.56576× 10–4

1.7 3.82855× 10–2 1.44853× 10–2 5.28316× 10–3 1.97820× 10–3 9.56508× 10–4

1.8 4.95818× 10–2 1.87825× 10–2 6.85289× 10–3 2.55349× 10–3 1.20636× 10–3

1.9 6.39638× 10–2 2.42609× 10–2 8.85614× 10–3 3.28582× 10–3 1.51898× 10–3

2.0 8.22581× 10–2 3.12390× 10–2 1.14105× 10–2 4.21773× 10–3 1.91063× 10–3

Figure 1 Exact and numerical solutions for
m = 64, ρ = 1.6, and α = 0.75

Example 3.4 Consider an initial value problem

Dα,ρ
0 u(t) + a(t)u(t) = g(t), t ∈ [0, 1], u(0) = 0, 0 < α ≤ 1, and ρ > 0. (33)

For a(t) = –(1 + t) and g(t) = 4πρα(tρ)1–αE2,2–α(–(4π tρ)2) + ρα�(α + 1) – (1 + t)(sin(4π tρ) +
(tρ)α), one may verify that u(t) = sin(4π tρ) + (tρ)α is the analytical solution for equation
(33). For a numerical solution, we approximate Dα,ρ

0 u(t) by Haar wavelets as

Dα,ρ
0 u(t) = Ct

mHm(t). (34)

Applying the integral operator of order α, we get

u(t) = Iα,ρ
0 Ct

mHm(t) = Ct
mPα,ρ

m×mHm(t). (35)

Using (34) and (35) in (33), we have

Ct
mHm(t) + Ct

mP̂α,ρ
m×mHm(t) = Gt

mHm(t), (36)

where g(t) is estimated as g(t) = Gt
mHm(t) and a(t)Pα,ρ

m×mHm(t) = P̂α,ρ
m×mHm(t).

The numerical and exact solutions are shown in Fig. 1 for the fixed values of m = 64,
ρ = 1.6, and α = 0.75. Also numerical solutions of the initial value problem (33) at distinct
values of ρ are shown in Fig. 2. We evaluate the maximum absolute error between the exact
and approximate solutions for distinct values of ρ and m and represent it in Table 2. Also
the maximum absolute error is presented graphically in Fig. 3. Furthermore, numerical as
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Figure 2 Numerical solutions form = 64, α = 0.75,
and several values of ρ

Table 2 Maximum absolute difference for distinct values of ρ ,m, and α = 0.75

ρ m = 32 m = 64 m = 128

1.0 6.17588× 10–2 1.71998× 10–2 4.84671× 10–3

1.3 7.67533× 10–2 2.20497× 10–2 6.18045× 10–3

1.5 8.58385× 10–2 2.52834× 10–2 7.14877× 10–3

1.7 9.37929× 10–2 2.84450× 10–2 8.12565× 10–3

2.0 1.12846× 10–1 3.42542× 10–2 9.76407× 10–3

Figure 3 The absolute error form = 64, ρ = 1.75,
and different values of α

Figure 4 Exact and numerical solutions form = 64,
ρ = 1.75

well as exact solutions are graphically presented in Fig. 4 for different values of α. Graphical
results show that the numerical and exact solutions match with each other.

Example 3.5 Consider a fractional differential equation with variable coefficient defined
as

Dα,ρ
1+ u(t) + a(t)u(t) = g(t), t ∈ [1, 2], (37)
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Table 3 Maximum absolute error for ρ = 2 and for different values ofm, α

α Haar wavelets Discretization [40]

m = 32 m = 64 m = 128 N = 50 N = 100 N = 150

0.1 1.21995× 10–3 6.33836× 10–4 3.29129× 10–4 1.6210× 10–3 8.1343× 10–4 5.4294× 10–4

0.3 4.32828× 10–3 2.33135× 10–3 1.24446× 10–3 1.8582× 10–3 9.2920× 10–4 6.2016× 10–4

0.5 6.69472× 10–3 3.56979× 10–3 1.87378× 10–3 2.1584× 10–3 1.0832× 10–3 7.2299× 10–4

0.7 6.35515× 10–3 3.30417× 10–3 1.69410× 10–3 2.5221× 10–3 1.2684× 10–3 8.4704× 10–4

0.9 2.78724× 10–3 1.41985× 10–3 7.17205× 10–4 2.8986× 10–3 1.4644× 10–3 9.7946× 10–4

with the initial condition u(1) = 1, where 0 < α ≤ 1. For a(t) = (1 + t) and g(t) = 2α

�(2–α) (tρ –
1)1–α + (1 + t)tρ , it can be verified that the analytic solution for equation (37) is u(t) = tρ .
We apply the Haar wavelets technique with the aid of Haar matrices while seeking an
approximate solution. Let

Dα,ρ
1+ u(t) = Ct

mHm(t). (38)

After applying integral Iα,ρ
1+ on both sides of equation (38), we obtain

u(t) = Iα,ρ
1+ CmHm(t) + 1 = Ct

mPα,ρ
m×mHm(t) + 1. (39)

Using equations (38) and (39) in equation (37), we obtain

Ct
mHm(t) + Ct

mP̂α,ρ
m×mHm(t) = Ft

mHm(t), (40)

where f (t) = g(t) – (1 + t) is approximated as f (t) = Ft
mHm(t) and a(t)Pα,ρ

m×mHm(t) =
P̂α,ρ

m×mHm(t).
For ρ = 2 and several fixed values of α and m, Table 3 contains the maximum absolute

error obtained from the exact and approximate results achieved through the Haar wavelets
along with the method discussed in [40]. The tabulated results show that the presented
method is nearly as accurate as the discretization method but with comparatively fewer
nodes.

Example 3.6 Consider the generalized Bagley–Torvik equation,

aDα,ρ
0 u(t) + bD

3
2 ,ρ
0 u(t) + cu(t) = g(t), t ∈ [0, 1], (41)

with the initial conditions u(0) = 0, u′(0) = 0, where 1 < α ≤ 2, a, b, c ∈ R, a �= 0, and ρ > 0.

For a = b = c = 1 and f (t) = ρα�(α + 1) + ρ
3
2 �(α+1)

�(α– 3
2 +1)

(tρ)α– 3
2 + (tρ)α , the exact solution is

u(t) = (tρ)α , and for ρ = 1 and n = 2, equation (41) becomes Bagley–Torvik equation con-
sidered in [51]. To find an approximate solution, we use Haar wavelets technique as fol-
lows. Letting

Dα,ρ
0 u(t) = Ct

mHm(t) (42)

and performing integration Iα,ρ
0 on both sides, as well as using initial conditions, we have

u(t) = Iα,ρ
0 Ct

mHm(t) = Ct
mPα,ρ

m×mHm(t) (43)
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Table 4 Absolute error for ρ = 1.75, α = 1.45 and for several fixed values ofm

t m = 4 m = 8 m = 16 m = 32 m = 64

0.1 4.77999× 10–4 7.90277× 10–5 1.86536× 10–6 5.33416× 10–8 8.53090× 10–10

0.2 5.75722× 10–4 1.08342× 10–5 3.09691× 10–7 4.95289× 10–9 1.05969× 10–9

0.3 3.43114× 10–4 4.84304× 10–6 6.18953× 10–8 1.39901× 10–9 6.35918× 10–10

0.4 9.53197× 10–5 1.84784× 10–6 2.87574× 10–8 6.15238× 10–9 6.80386× 10–11

0.5 2.66831× 10–4 3.29075× 10–6 1.06124× 10–7 6.61476× 10–9 4.14510× 10–10

0.6 8.41128× 10–5 6.91436× 10–8 8.25259× 10–9 3.69202× 10–9 4.35226× 10–11

0.7 2.66130× 10–4 6.16696× 10–7 4.53524× 10–8 5.76875× 10–10 1.76469× 10–10

0.8 3.88939× 10–4 1.46953× 10–6 1.31607× 10–8 4.02575× 10–10 1.48906× 10–10

0.9 2.76094× 10–4 9.02855× 10–6 7.52801× 10–8 6.29366× 10–10 2.23421× 10–11

and

D
3
2 ,ρ
0 u(t) = D

3
2 ,ρ
0 Ct

mPα,ρ
m×mHm(t) = Ct

mPα– 3
2

m×mHm(t). (44)

In the same way, the input function g(t) can be approximated by Haar functions as

g(t) = Gt
mHm(t). (45)

Putting equations (42), (43), (44), and (45) into equation (41), we have

Ct
mHm(t) + Ct

mPα– 3
2

m×mHm(t) + Ct
mPα,ρ

m×mHm(t) = Gt
mHm(t). (46)

By solving (46), we can get the Haar coefficients Ct
m. Then using equation (43), we can

obtain the required output u(t). The absolute error is shown in Table 4 for ρ = 1.5, m = 64,
and distinct values of α.

Example 3.7 Consider a generalized fractional differential equation of inhomogeneous
type with boundary conditions:

Dα,ρ
0+ u(t) + a(t)u(t) = f (t), t ∈ [0, 1], (47)

with u(0) = u0, u(1) = u1, and 1 < α ≤ 2. For a(t) = 1, f (t) = ραtρ + (tρ )α+1

�(α+2) , u0 = 0, and u1 =
1

�(α+2) , the analytic solution of the differential equation is u(t) = (tρ )α+1

�(α+2) . To find a numerical
solution, the integral form of equation (47) is given by

u(t) = –Iα,ρ
0+ a(t)u(t) + tρIα,ρ

0+ a(1)u(1) + g(t), (48)

where g(t) = Iα,ρ
0+ f (t) – tρIα,ρ

0+ f (1) + u0 + tρ(u1 – u0). Let

u(t) = Ct
mHm(t). (49)

Integrating on both sides of equation (49), we have

Iα,ρ
0+ u(t) = Iα,ρ

0+ Ct
mHm(t) = Ct

mPα,ρ
m×mHm(t). (50)
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Using (49) and (50) in (48) yields

Ct
mHm(t) = –Ct

mPα,ρ
m×mHm(t) + Ct

mMα,ρ
m×mHm(t) + Gt

mHm(t), (51)

where the approximations g(t) = Gt
mHm(t) and tρIα,ρ

0+ u(1) = Ct
mMα,ρ

m×mHm(t) are used for
convenience. To obtain the value of Ct

m, we have to solve the algebraic linear system in
equation (51) and, putting value of Ct

m into equation (49), we have an approximate solu-
tion. The maximum absolute error of the exact and numerical solutions for ρ = 1.5 and
different values of α and m is given in Table 6; see Sect. 4.

3.3 Nonlinear problems
A nonlinear differential equation can be transformed to a sequence of linear differential
equations. One of the possible way to achieve this goal is the application of quasilineariza-
tion method. The quasilinearization technique was presented by Kalabas and Bellman [52]
as a generalization of a specific method (Newton–Raphson) [53] which assists in solving
nonlinear functional equations. Further, Haar wavelets with the quasilinearization tech-
nique have been applied for the numerical solution of the individual or system of nonlin-
ear fractional differential equations [44]. Here we apply the quasilinearization technique
to solve generalized nonlinear fractional differential equations.

Example 3.8 Consider the nonlinear Caputo–Katugampola fractional differential equa-
tion

aD2,ρ
0+ u(t) + bDα1,ρ

0+ u(t) + cDα2,ρ
0+ u(t) + d

[
u(t)

]3 = f (t), t ∈ [0, 1], (52)

subject to initial conditions u(0) = 0, u′(0) = 0.
Applying the quasilinearization technique to (52), we get

aD2,ρ
0+ ur+1(t) + bDα1,ρ

0+ ur+1(t) + cDα2,ρ
0+ ur+1(t) + d

[
u3

r (t) + 3
(
ur+1(t) – ur(t)

)
u2

r (t)
]

= f (t) (53)

or

aD2,ρ
0+ (t) + bDα1,ρ

0+ ur+1(t) + cDα2,ρ
0+ ur+1(t) + 3du2

r (t)ur+1(t) = f (t) + 2du3
r (t), (54)

which is a linear fractional differential equation. Let

D2,ρ
0+ ur+1(t) = Ct

mHm(t). (55)

Equivalent integral equations for the equations in (55) are

ur+1(t) = I2,ρ
0+ Ct

mHm(t) = Ct
mP2,ρ

m×Hm(t) (56)

and

Dα1,ρ
0+ ur+1(t) = Ct

mP2–α1,ρ
m×m Hm(t). (57)
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Table 5 Absolute error for ρ = 1.45, α1 = 1.55, α2 = 0.75, and for different fixed values ofm

t m = 8 m = 16 m = 32 m = 64

0.1 6.32880× 10–5 3.00445× 10–7 1.25591× 10–7 1.99284× 10–8

0.3 1.09542× 10–5 9.66989× 10–6 1.55214× 10–6 8.73622× 10–7

0.5 5.35004× 10–5 3.25183× 10–5 1.55037× 10–5 6.56296× 10–6

0.7 2.80508× 10–4 1.31354× 10–4 5.49232× 10–5 2.15731× 10–5

0.9 6.65574× 10–4 3.15256× 10–4 1.11750× 10–4 2.89674× 10–5

Also we have

Dα2,ρ
0+ ur+1(t) = Ct

mP2–α2,ρ
m×m Hm(t). (58)

Substituting equations (55), (56), (57), and (58) into (54), we have

Ct
m
[
aHm(t) + bP2–α1,ρ

m×m Hm(t) + cP2–α2,ρ
m×m Hm(t) + dP2,ρ

m×Hm(t)
]

= Gt
mHm(t), (59)

where the function g(t) = f (t) + 2du3
r (t) is approximated as g(t) = Gt

mHm(t), taking 0 < α1 ≤
1, 1 < α2 ≤ 2, and a, b, c, d ∈ R. The exact solution of the nonlinear initial value prob-
lem (52) is u(t) = 1

3 (tρ)3 provided a = b = c = d = 1 and f (t) = 2ρ2

�(2) tρ + 2ρα1
�(4–α1) (tρ)3–α1 +

2ρα2
�(4–α2) (tρ)3–α2 + [ 1

3 (tρ)3]3. The absolute error for fixed values of α1 = 1.55, α2 = 0.75,
ρ = 1.45, and for distinct values of m are presented in the tabular form in Table 5.

4 Green–Haar method
The fractional Green’s function was defined by K.S. Miller and B. Ross [54] who applied it
to fractional differential equations consisting of derivatives of order kα only, where k ∈ Z.
In this section we present a numerical method which is based on standard Haar wavelets
and the Green function. This method applies to boundary value problems of a certain
type. An interesting feature of the method is that in does not require fractional operational
matrices or specific metrics reserved for solving boundary value problems. The study un-
dertaken shows that the method is computationally efficient against the standard Haar
wavelet technique discussed in the previous section. Thus the efficiency of the method is
found to be considerably higher than that of some relevant numerical methods. Interest-
ingly, the accuracy is not compromised, but rather enhanced.

At this stage, we shall consider following class of fractional boundary value problems:

Dα,ρ
0 u(t) = f

(
t, u(t)

)
, u(0) = u0, u(1) = u1. (60)

Lemma 4.1 Let 0 < α ≤ 2, and suppose f (t, u(t)) : [0, 1] ×R −→R is continuous. Then u(t)
is the solution of equation (60) if and only if u(t) satisfies the following Fredholm integral
equation:

u(t) =
∫ 1

0
G(t, τ )f

(
τ , u(τ )

)
dτ + g(t), (61)

where

G(t, τ ) =

⎧
⎨

⎩

ρ1–α

�(α) [(tρ – τρ)α–1 – tρ · (1 – τρ)α–1]τρ–1, if 0 ≤ τ < t;

–tρ · ρ1–α

�(α) (1 – τρ)α–1τρ–1, if t ≤ τ ≤ 1.
(62)
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Proof Suppose u(t) is the solution of (60), then the integral form of equation (60) is given
by

u(t) = Iα,ρ
0 f

(
t, u(t)

)
+ c1 + c2tρ . (63)

Using the boundary condition, we obtain

u(t) = Iα,ρ
0 f

(
t, u(t)

)
– Iα,ρ

0 f
(
1, u(1)

)
+ g(t) (64)

or

u(t) =
ρ1–α

�(α)

∫ t

0

(
tρ – τρ

)α–1
τρ–1f

(
τ , u(τ )

)
dτ

– tρ · ρ1–α

�(α)

∫ 1

0

(
1 – τρ

)α–1
τρ–1f

(
τ , u(τ )

)
dτ + g(t),

where g(t) = u0 + tρ(u1 – u0) and

u(t) =
ρ1–α

�(α)

∫ t

0

[(
tρ – τρ

)α–1 – tρ
(
1 – τρ

)α–1]
τρ–1f

(
τ , u(τ )

)
dτ

– tρ · ρ1–α

�(α)

∫ 1

t

(
1 – τρ

)α–1
τρ–1f

(
τ , u(τ )

)
dτ + g(t),

namely

u(t) =
∫ 1

0
G(t, τ )f

(
τ , u(τ )

)
dτ + g(t), (65)

where

G(t, τ ) =

⎧
⎨

⎩

ρ1–α

�(α) [(tρ – τρ)α–1 – tρ · (1 – τρ)α–1]τρ–1 if 0 ≤ τ < t,

–tρ · ρ1–α

�(α) (1 – τρ)α–1τρ–1 if t ≤ τ ≤ 1.
(66)

Conversely, assume that u(t) satisfies the Fredholm integral equation. Taking generalized
Caputo-type fractional derivative on both sides of equation (64), we end up with equation
(60). �

The graph for the function in equation (66) at the values of α = 2, ρ = 1, and m = 64 is
shown in Fig. 5.

Figure 5 Green function for fixed values ofm = 128,
ρ = 1 and for α = 2
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4.1 Linear case
In this part we present numerical solution of a class of generalized linear fractional differ-
ential equations with boundary conditions.

Example 4.2 We consider the fractional boundary value problem in equation (47) with
Dirichlet boundary conditions u(0) = u0, u(1) = u1.

The integral representation for this boundary value problem is given by

u(t) = –Iα,ρ
0+ a(t)u(t) + tρIα,ρ

0+ a(1)u(1) + g(t),

or

u(t) =
∫ 1

0
G(t, τ )u(τ ) dτ + g(t), (67)

where

G(t, τ ) =

⎧
⎨

⎩

ρ1–α

�(α) [ – (tρ – τρ)α–1 + tρ · (1 – τρ)α–1]τρ–1a(t) if 0 ≤ τ < t,

tρ · ρ1–α

�(α) (1 – τρ)α–1τρ–1a(t) if t ≤ τ ≤ 1,
(68)

and g(t) = Iα,ρ
0+ f (t) – tρIα,ρ

0+ f (1) + u0 + tρ(u1 – u0).
For a(t) = 1 and f (t) = ραtρ + (tρ )α+1

�(α+2) , u0 = 0, and u1 = 1
�(α+2) , the analytic solution of the

boundary value problem is u(t) = (tρ )α+1

�(α+2) . Let

u(t) = Ct
mHm(t), (69)

G(t, τ ) = Ht
m(t)Kt

mHm(τ ). (70)

Using (69) and (70) in (67), we have

Ct
mHm(t) = Ct

mHm(t)Kt
m + Gt

mHm(t), (71)

where g(t) = ρ–α

�(2α+2) [(tρ)2α+1 – tρ] + 1
�(α+2) (tρ)α+1 is approximated as g(t) = Gt

mHm(t), and
using the orthonormality of the sequence {hi(t)} on [0, 1), we obtain

∫ 1

0
Hm(τ )Ht

m(τ ) dτ = Im×m, (72)

where Im×m represents an identity matrix of dimension m × m. We can solve the algebraic
equation (71) for the Green–Haar coefficient vector Ct

m and, by equation (69), we get the
required numerical solution. For ρ = 1.5 and different values of α and m, the tabular data
in Table 6 presents the maximum absolute error given by Haar wavelet method in Ex-
ample 3.7 and Green–Haar wavelet method, respectively. Green–Haar wavelet technique
provides significantly more accurate numerical results in comparison with Haar wavelet
technique. Moreover, it is also computationally less intensive and takes less time compared
to the Haar wavelet method.
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Table 6 Maximum absolute error for ρ = 1.5 and different values ofm, α

α Green–Haar Haar wavelets

m = 32 m = 64 m = 128 m = 32 m = 64 m = 128

1.2 2.58675× 10–3 1.16561× 10–3 5.16207× 10–4 1.76246× 10–3 1.32897× 10–3 1.09360× 10–3

1.4 8.41668× 10–4 3.31043× 10–4 1.27794× 10–4 2.03527× 10–3 1.85434× 10–3 1.75024× 10–3

1.6 2.55297× 10–4 8.74546× 10–5 2.93947× 10–5 1.64896× 10–3 1.58655× 10–3 1.54691× 10–3

1.8 7.23063× 10–5 2.15293× 10–5 6.29425× 10–6 1.14441× 10–3 1.13167× 10–3 1.12055× 10–3

2.0 1.90839× 10–5 4.92776× 10–6 1.25169× 10–6 7.21298× 10–4 7.25691× 10–4 7.25400× 10–4

Example 4.3 Again we consider the fractional boundary value problem in equation (47)
with Dirichlet boundary conditions u(0) = u0, u(1) = u1, but this time with different data.
Particularly, we take g(t) = ρα(�(α + 1) – �(α + 2)tρ) + (tρ)α – (tρ)α+1. The exact solution
of fractional differential equation is u(t) = (tρ)α – (tρ)α+1. The corresponding integral rep-
resentation for the boundary value problem is given by

u(t) = –Iα,ρ
0 u(t) + Iα,ρ

0 u(1) + f (t) (73)

or

u(t) = –
∫ 1

0
G(t, τ )u(τ ) dτ + f (t), (74)

where

G(t, τ ) =

⎧
⎨

⎩

ρ1–α

�(α) [(tρ – τρ)α–1 – tρ · (1 – τρ)α–1]τρ–1 if 0 ≤ τ < t,

–tρ · ρ1–α

�(α) (1 – τρ)α–1τρ–1 if t ≤ τ ≤ 1,
(75)

and f (t) = ρ–α�(α+1)
�(2α+1) ((tρ)2α – tρ) – ρ–α�(α+2)

�(2α+2) ((tρ)2α+1 – tρ) + (tρ)α – (tρ)α+1. Let

u(t) = Ct
mHm(t), (76)

G(t, τ ) = Ht
m(t)Kt

mHm(τ ). (77)

Using (76) and (77) in (74), and using the orthonormality of the sequence {hi(t)} on [0, 1)
in equation (72), we obtain

Ct
mHm(t) = –Ct

mHm(t)Kt
m + Ft

mHm(t), (78)

where f (t) is approximated as f (t) = Ft
mHm(t). The vector Ct

m can be obtained by solving
the algebraic linear system in equation (78), which leads to the numerical solution when
inserted into (76). The numerical solution is in good agreement with the exact solution
as shown in Fig. 6. The absolute error for several fixed values of m is given in Table 7.
Furthermore, the numerical solutions for ρ = 1.45, m = 64, and different values of α are
given in Fig. 7. Figure 8 shows the numerical solutions for m = 64, α = 1.55, and several
values of ρ .
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Figure 6 Exact and numerical solutions form = 64,
ρ = 1.55, and different values of α

Table 7 Absolute error for ρ = 1.55, α = 1.75, and for different values ofm

t m = 16 m = 32 m = 64 m = 128 m = 256

0.1 3.60950× 10–6 2.42491× 10–7 7.30854× 10–8 2.12324× 10–8 6.16528× 10–9

0.2 4.88875× 10–6 1.37248× 10–6 4.00509× 10–7 1.16958× 10–7 3.46220× 10–8

0.3 1.58731× 10–5 4.38410× 10–6 1.29239× 10–6 3.81683× 10–7 1.13268× 10–7

0.4 3.51820× 10–5 1.03294× 10–5 3.03806× 10–6 9.01298× 10–7 2.67628× 10–7

0.5 6.72107× 10–5 1.94333× 10–5 5.73319× 10–6 1.70032× 10–6 5.05051× 10–7

0.6 1.04467× 10–4 3.06970× 10–5 9.06727× 10–6 2.69073× 10–6 7.99224× 10–7

0.7 1.42073× 10–4 4.13297× 10–5 1.22141× 10–5 3.62072× 10–6 1.07517× 10–6

0.8 1.59246× 10–4 4.61856× 10–5 1.36000× 10–5 4.02485× 10–6 1.19420× 10–6

0.9 1.33174× 10–4 3.70488× 10–5 1.07864× 10–5 3.17673× 10–6 9.40128× 10–7

Figure 7 Numerical solutions form = 64, ρ = 1.45,
and distinct values of α

Figure 8 Numerical solutions form = 64, α = 1.55,
and different values of ρ
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4.2 Nonlinear case
In this part we focus on solving nonlinear fractional differential equations using Green–
Haar approach. The quasilinear technique is used to convert the nonlinear equations into
sequences of linear equations.

Example 4.4 Consider the the generalized nonlinear Caputo–Katugampola fractional dif-
ferential equation

Dα,ρ
0+ u(t) +

[
a(t)u(t)

]n = g(t), t ∈ [0, 1], (79)

subject to the boundary conditions u(0) = u0, u(1) = u1, where α, n ∈ R and 0 < α ≤ 2.
Applying the quasilinearization technique to equation (79), for n = 3 we have

Dα,ρ
0+ ur+1(t) + a3(t)

[
u3

r (t) + 3
(
ur+1(t) – ur(t)

)
u2

r (t)
]

= g(t), (80)

or

Dα,ρ
0+ ur+1(t) + 3a3(t)u2

r (t)ur+1(t) = g(t) + 2a3(t)u3
r (t). (81)

The integral representation for equation (81) is

ur+1(t) = –3Iα,ρ
0+
[
a3(t)u2

r (t)ur+1(t)
]

+ 2Iα,ρ
0+ a3(t)u3

r (t)

+ tρ
{

3Iα,ρ
0+ a3(1)u2

r (1)ur+1(1) – 2Iα,ρ
0+ a3(1)u3

r (1)
}

+ f (t), (82)

or

ur+1(t) = 3
∫ 1

0
G1(t, τ )ur+1(τ ) dτ – 2

∫ 1

0
G2(t, τ ) dτ + f (t), (83)

where

G1(t, τ ) =

⎧
⎨

⎩

ρ1–α

�(α) [ – (tρ – τρ)α–1 + tρ · (1 – τρ)α–1]τρ–1a3(t)u2
r (τ ) if 0 ≤ τ < t,

tρ · ρ1–α

�(α) (1 – τρ)α–1τρ–1a3(t)u2
r (τ ) if t ≤ τ ≤ 1,

(84)

G2(t, τ ) =

⎧
⎨

⎩

ρ1–α

�(α) [ – (tρ – τρ)α–1 + tρ · (1 – τρ)α–1]τρ–1a3(t)u3
r (τ ) if 0 ≤ τ < t,

tρ · ρ1–α

�(α) (1 – τρ)α–1τρ–1a3(t)u3
r (τ ) if t ≤ τ ≤ 1,

(85)

and f (t) = Iα,ρ
0+ g(t) – tρIα,ρ

0+ g(1).
Since ur(t) is known at the collocation points ti = 2i–1

2m , i = 1, 2, . . . , m, we cannot directly
integrate G2 on the interval [0, 1]. For the numerical approximation of

∫ 1
0 G2(t, τ ) dτ , we

use a quadrature rule which is a mixture of trapezoidal and Simpson’s rules. Since ti = 2i–1
2m ,

i = 1, 2, . . . , m, give an even number of collocation points and divide the domain into m – 1
intervals, we use the Simpson’s rule on m – 2 even intervals and apply the trapezoidal on
the last two collocation points tm–1 and tm. Considering

ur+1(t) = Ct
mHm(t), (86)

G1(t, τ ) = Ht
m(t)Kt

mHm(τ ), (87)
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Table 8 Maximum absolute error for ρ = 1 and for different values ofm and α

α m = 16 m = 32 m = 64 m = 128 m = 256

1.1 4.35855× 10–2 2.64920× 10–2 1.49614× 10–2 7.70796× 10–3 3.78128× 10–3

1.2 3.24244× 10–2 1.83863× 10–2 9.56595× 10–3 4.55750× 10–3 2.07502× 10–3

1.3 2.36366× 10–2 1.24713× 10–2 5.98615× 10–3 2.64235× 10–3 1.11818× 10–3

1.4 1.69178× 10–2 8.29045× 10–3 3.67638× 10–3 1.50554× 10–3 5.92702× 10–4

1.5 1.19129× 10–2 5.41408× 10–3 2.22022× 10–3 8.44162× 10–4 3.09306× 10–4

1.6 8.26865× 10–3 3.47996× 10–3 1.32018× 10–3 4.66118× 10–4 1.58967× 10–4

1.7 5.66691× 10–3 2.20472× 10–3 7.73457× 10–4 2.53490× 10–4 8.04443× 10–5

1.8 3.84067× 10–3 1.37818× 10–3 4.46573× 10–4 1.35720× 10–4 4.00515× 10–5

1.9 2.57738× 10–3 8.50595× 10–4 2.54024× 10–4 7.14679× 10–5 1.95911× 10–5

2.0 1.71447× 10–3 5.20049× 10–4 1.42243× 10–4 3.69504× 10–5 9.39348× 10–6

Figure 9 Exact and numerical solutions for fixed
values ofm = 64, ρ = 1, and α = 1.6

and using equations (86) and (86) in equation (83), together with the orthonormality con-
dition in equation (72), we get

Ct
mHm(t) = Ct

mHm(t)Kt
m + Gt

mHm(t) + Ft
mHm(t), (88)

where f (t) = Ft
mHm(t), Gt

mHm(t) =
∫ 1

0 G2(t, τ ) dτ , which are calculated by using trapezoidal
and Simpson’s rules together.

If we choose a3(t) = –1 and f (t) = �(2α+1)
�(α+1) (tρ)α –(tρ)6α , then the exact solution of equation

(79) is u(t) = (tρ)2α . The maximum absolute error of the numerical and exact solutions is
given in Table 8 for various fixed values of α, m, and ρ = 1. Also exact and numerical
solutions for equation (79) are shown in Fig. 9. Graphical results show that the numerical
and exact solutions match with each other.

4.3 Error analysis
In this section we establish a bound of the absolute error for the Green–Harr wavelets.

Theorem 4.5 Suppose that function u′(t) is continuous and bounded on (0, 1), that is, there
exits M > 0 such that |u′(t)| ≤ M for all t ∈ (0, 1), and also assume that uk(t) is an approx-
imation of u(t), Then we have

∥∥u(t) – uk(t)
∥∥

E ≤
√

ρ1–α

3�(α + 1)
M
K

.

Proof The function u(t) defined over [0, 1] can be approximated as

u(t) =
∞∑

n=0

cnhn(t). (89)
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Let us consider the first k terms of the sum, denoted by uk(t), that is,

u(t) ∼= uk(t) =
k–1∑

n=0

cnhn(t), (90)

where k = 2α+1, α = 0, 1, . . . . By Lemma 2.7, we have

∥
∥v(t) – vk(t)

∥
∥2

E ≤ M2

3K2 . (91)

Now

∥∥u(t) – uk(t)
∥∥2

E ≤
∣
∣∣
∣

∫ 1

0
G(t, τ ) dτ

∣
∣∣
∣ ·
∥∥u(t) – uk(t)

∥∥2

=
M2

3K2

∣∣
∣∣

∫ 1

0
G(t, τ ) dτ

∣∣
∣∣, (92)

∫ 1

0
G(t, τ ) dτ =

ρ1–α

�(α)

{∫ t

0

[(
tρ – τρ

)α–1 – tρ
(
1 – τρ

)α–1]
τρ–1 dτ

– tρ

∫ 1

t

(
1 – τρ

)α–1
τρ–1 dτ

}

=
ρ1–α

�(α + 1)
{(

tρ
)α –

(
tρ
)α+1 + tρ

(
1 – tρ

)α}

as long as –tρ ≤ 0 because t ∈ [0, 1] for ρ > 0. Therefore

∫ 1

0
G(t, τ ) dτ ≤ ρ1–α

�(α + 1)
{(

tρ
)α + tρ

(
1 – tρ

)α},

namely

∫ 1

0
G(t, τ ) dτ ≤ ρ1–α

�(α + 1)
. (93)

Hence, equation (92) yields

∥∥u(t) – uk(t)
∥∥

E ≤
√

ρ1–α

3�(α + 1)
M
K

. (94)
�

5 Conclusion
The main findings of the paper are concluded as follows:

• The Haar wavelets operational matrices are derived for generalized fractional
integrals.

• A variety of numerical examples are solved by Haar wavelet technique, including
certain classes of linear and nonlinear fractional differential equations with initial and
boundary conditions. Results are analyzed in terms of computational efficiency and
accuracy.
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• Green–Haar method has been proposed for numerical solutions of linear and
nonlinear fractional boundary value problems.

• A comparison has been conducted for the proposed method with conventional Haar
wavelet technique. We conclude that Green–Haar method is relatively more efficient
and accurate.

• The convergence and stability of Green–Haar method have also been discussed.
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