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1 Introduction

The mathematical theory of fractional calculus can be described as that of derivatives as
well as integrals of any order possible. Primarily, fractional calculus is a generalized form of
integer order calculus. Fractional calculus has been exploited as a crucial tool for applica-
tions that concern science and engineering. These applications of fractional calculus have
been elaborated previously by several authors. In essence, fractional calculus has been de-
ployed for modeling the transfer of heat in heterogeneous media [1], nonlinear oscillation
of earthquakes [2], signal processing [3], neural networks [4—6], fluid dynamic traffic flow
[7], electromagnetism [8], bioengineering [9], economics [10], anomalous diffusions and
fractal-like nature [11, 12]. For the qualitative analysis of fractional differential equations,
we refer the reader to [1, 2, 13—15] and the references therein.

Several books have been written on the philosophy and development of fractional cal-
culus [16—-19]. In fractional calculus the fractional derivative is introduced via fractional
integral. Riemann, Liouville, Caputo, Hadamard, Grunwald and Letinkow are the pioneer-
ing researchers who have been contributing and publishing extensively about these appli-
cations. Meanwhile, the literature has witnessed the appearance of different types of frac-
tional derivatives that improve and generalize the classical fractional operators defined by
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the above listed authors [20—22]. Recently, Katugampola rediscovered a new type of frac-
tional integral operator which covers both Riemann-Liouville and Hadamard operators
and represents them in a single form [23, 24].

The study of wavelet theory dates back to mid-20th century. Once it had been intro-
duced, the theory has had prominent contributions in mathematical studies [25]. It is a
significant tool for science and engineering. Wavelets are being used for analyzing sig-
nals, for representation of waveform and segmentation, optimal control, numerical anal-
ysis, fast algorithm for easy implementation, and time—frequency analysis [26]. There are
many kinds of wavelets, for example, Haar [27-30], Daubechies [31], B-spline [32], Battle—
Lemarie [33], Legender [34], as well as Green—CAS [30]. A naive form of orthonormal
wavelets which employ compact support has been used by many researchers and is called
the Haar wavelet. Mathematically, Haar wavelet family consists of rectangular functions.
Further, it contains the lower member of Daubechies family of wavelets which is appropri-
ate for computer implementations. Primarily, Haar wavelets convert a fractional differen-
tial equation into an algebraic system of equations with finite variables. The Haar wavelets
approximation for tackling linear and nonlinear systems has been discussed in [35-39].

The prospective study has been established to solve the generalized fractional differen-
tial equations numerically. The numerical computation utilizes Haar wavelets, as well as
Green—Haar approach for this purpose. Operational matrices have been developed us-
ing Haar wavelet approach. These matrices are thus employed to solve generalized frac-
tional differential equations. The integral operator used for the purpose of computing op-
erational matrix is the generalized Reinmann—-Liouville fractional integral operator. An
error analysis for convergence of the proposed technique has been undertaken through
a generalized Caputo-type fractional differential operator. The method has been further
elaborated in terms of efficiency and accuracy by considering a number of documented
examples. A comparison of these results has also been presented against previous studies
[40] to further emphasize the accuracy and efficiency of the proposed technique.

One important feature of the method is that it does not require an operational matrix
at all. Stability and convergence of this method have also been derived for further applica-
tions. The undertaken study shows that the method is even more computationally efficient
against the standard Haar wavelet technique discussed in the same study. Interestingly,
the accuracy is not compromised, but rather enhanced by using Green—Haar method for
solving generalized fractional boundary-value problems.

The present study is structured as follows: In Sect. 2, we review basic mathematical
expressions of fractional calculus with their respective definitions. Furthermore, we re-
flect on Haar wavelets which is an essential preliminary topic for subsequent sections in
this paper. In Sect. 3, we develop operational matrices using a generalized integral oper-
ator and Haar wavelets which help in estimating the numerical solution of a generalized
Caputo-type fractional differential equation. Moreover, we establish an upper bound for
the proposed technique through Haar wavelets for the generalized fractional differential
equation. Further, numerical solutions are given to elaborate the accuracy and efficiency
of the numerical scheme. We propose a new method called Green—Haar method for the
boundary value problems and compare our results against the Haar wavelet approach in

Sect. 4. We summarize the outcomes of this paper in the last section.
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2 Preliminaries
In this section, for the sake of convenience, we will review some necessary definitions.
These definitions serve as essential preliminaries for fractional calculus and Haar wavelets.

These definitions are going to assist in upcoming sections.

2.1 Fractional calculus
Definition 2.1 ([23, 24]) Consider «, p € R* such that « > 0. The generalized fractional
integral (Z;”f) (in the sense of Katugampola) is given by

pa—l t

o (& - ) e f(v) dr. )

(Zef) @) =

Now we introduce the Caputo-type generalized fractional derivative such that, at two
convenient limits, this generalized Caputo-type fractional derivative recovers the well-

known Caputo—Hadamard and Caputo fractional derivatives.

Definition 2.2 ([23, 24]) Consider o, p € R* such that « >0 and n = [« ] + 1. The gener-
alized Caputo-type fractional derivative is defined by

a-n+l t -1

o T’

AN
Fn-a) ), tr—cry-et (T pa) Sf(o)dr @)

= (Zy"8,1) (@), 3)

(Da’f)@® =

where 87 = (£=° %)” and « represents the order of the fractional operators.

Lemma 2.3 ([41]) Leta,p e R* witha >0,a ¢ N,and n=|a] + 1. Then
lim (D2£)(0) = D2 (6) = ——— / (¢ oy dr @)
p—1° ¢ Fn-o) ), ’
. o o 1 ! ¢ ot n
tim (D37f)(6) = Dif () = m[ﬂ (ln;) §"f(v) dx. )

The fractional operators in (4) and (5) represent Caputo and Caputo—Hadamard frac-

tional derivative, respectively.

Definition 2.4 ([42]) The Mittag-Leffler function E, g depending on two parameters o
and B is defined by the following series:

tk

E, s(t) = —, y,B>0.
! kX(; L(yk+p)

As a particular case, when 8 = 1, we have a one-parameter Mittag-Leffler function,

o k

t
]Ey(t)zkizo:m, ]/>0.
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Lemma 2.5 ([41]) For6 € R,y >0, and B > 1, we have

pa]Ey,B—a [0(tP-al)] . 1
D (1) B0 - )= T ©

eﬂaEy,y—uH [6(tP —a”)7]

(tP—aPyr-1 ’ Lfﬁ =L

Example 2.6 ([23]) Let B, p € R, with 8, p > 0 and f(£) = ¢°#. Taking the limit as @ — 0, we
get

D (i) = LD e

F(f-a+l)
2.2 Haar wavelets and function approximation
The domain of Haar wavelets is an essential component of a set of those wavelets which
employ compact support. The functions forming the family of Haar wavelets consists of
step functions over the real line. These are the functions which are restrained to only the
values —1, 0, and 1. These functions have two characteristics. Firstly, they are discontin-
uous in their nature. Secondly, their derivative vanishes. Each function that falls into the
category of Haar wavelets is essentially defined over the interval ¢ € [a, b) except for the
scaling function conveyed as [39]

1, fortel&(),&30);
hi(t)={ -1, forte[53),&0)]; 7)

0, otherwise.

where, &1(i) =a + (b - a)%, &) =a+ - a)2§;11, E()=a+ (b- a)]%l. We define the
quantity m = 2, wherej=0,1,2,3,...,Jand k=0,1,2,3,...,m—1. Here parameter j is used
as arepresentation for the level of wavelet or dilation parameter, translation is represented
by t, while the maximal level of resolution for the Haar wavelet is represented by J. The
relation between the parameter m, k,and iisasi=m + k + 1.

Equation (7) is valid for i > 3. It is presumed that the values i = 1 and i = 2 correspond

to the following scaling functions, respectively:

1, forx€la,b];
hi(x) = (8)
0, otherwise,

and

1, «x€la %)
ha(x)={-1, xe[%L b) ©)

0, otherwise.

If u(t) is a function defined on the interval [0, 1], it should decompose as

u(t) =) ehi(o), (10)
i=0
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where ¢; = (u(t), h;(¢)). In particular, the first m terms are considered, such that m is a

power of 2,
m-1
u(t) = wn(t) =Y (o). (11)
i=0

Lemma 2.7 ([43]) Suppose that a function v(t) is differentiable and has bounded first
derivative over (0,1), that is, there exits M > 0 such that |V (t)| < M for all t € (0,1), and
also assume that v (t) is an approximation of v(t), then we have

M
[v(®) - vi®)] < Nea
3 Operational matrices method
Operational matrices have been widely used to deal with fractional order systems. Several
authors established Haar wavelets operational matrices to deal with various problems,
such as to find the numerical solutions of linear and nonlinear initial as well as boundary
value problems of fractional order [29, 30, 44, 45]. Hsiao and Chen [46] established an op-
erational matrix to study lumped dynamical systems with distributed—parameters. Wang
and Hsiao [47] have solved an optimal control system by linearly changing through Haar
wavelets. Dai and Cochran Jr. [48] have considered a Haar wavelet technique to transform
an optimal control system in the direction to nonlinear programming (NLP) parameters
using collocation points. This NLP can be solved using a nonlinear programming solver
such as SNOPT and exploiting Haar wavelet operational matrices for the purpose of ana-
lyzing the optimal control system [49].

Now our aim is to integrate the Haar wavelets. The generalized fractional integration of
Haar vector H = [hy, hy,hy, ..., h,-1] is given as

()

(o = 1)!

per(t) = /t(t" - ‘L'p)a_l‘rp_lhi(‘[)d‘[, (12)

where P*”(t) is a square m-dimensional operational matrix of generalized integrals. In

general these generalized fractional integrals can be calculated analytically as

0, for x < &, (i);
e L O] for £ € [£1(0), £()];
PO = R - &) - 20 —EL)"), for t € [£:0), E5()); (13)
[0 - EL () - 2" — EL (D))"
+ (2 - E5 ()], for t > &(i).

This formula holds for i > 1. For i = 1, we obtain

(0

p*r(o) =
o!

[t -a"]". (14)

The generalized fractional order integration matrix P**(¢) can be obtained by using collo-
cation points in equations (13) and (14). In particular, the Haar wavelet operational matrix
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for the fixed variables « = 0.75, m = 8,and p = 1.5 is

[0.0355 0.1221 02169  0.3167 04202  0.5266  0.6355  0.7465 ]
0.0355 0.1221 02169 0.3167 02057 0.0171 -0.1397 -0.2847
0.0355 0.1221 0.0479 —0.0977 -0.1182 —0.0934 -0.0814 —0.0739
pOT5L5 _ 0 0 0 0 0.1073 02548  0.1397 -0.0659
8x8 7 10.0355 -0.013 -0.0471 -0.0354 -0.0304 -0.0274 -0.0252 —0.0236 |
0 0 0.0845  0.0132 —0.0360 -0.0233 -0.0186 -0.0161
0 0 0 0 0.1073  0.0225 —0.0359 -0.0217
) 0 0 0 0 0 0.1240  0.0286 |
(15)

Furthermore, in Sect. 4 we will present a new approach to solve certain classes of linear
or nonlinear boundary value problems of generalized fractional differential equations nu-
merically, called Green—Haar wavelet method. This technique will be free of operational

matrices

3.1 Error analysis

An error analysis for a function approximation by Haar wavelets is carried out in [43]. Here
we derive an inequality in the context of an upper bound for the Caputo—Katugampola
fractional differential operator which shows the convergence of the Haar wavelet tech-
nique. The proof of the following theorem is similar to that in [50].

Theorem 3.1 Suppose that u™ s continuous on (a,b) and there exists M > 0, such that
|, U (t)| < M forall t € [a,b) where a,b € R*,and Dy’ u,, is an approximation of Dy’ u,

then we have

oM pln-a)(p-1) 1
C(n-a)(n—-a)[q - p2e-n]3 mn=o)’

| D u(t) - D (1) |, <

Proof The function D’ u defined over [a, b] can be approximated as

Derult) =y cihil), (16)
i=0
where
b
ci = (D ule), h(®)) = / D& u(t)hi(t) dt. (17)
Consider the first m terms of the sum, denoted by D u,,, which approximate Dy u(t),
that is,
m-1
DL u(t) = D um(t) = Y cihi(t), (18)

-0
where m = 28+1, 8 =1,2,3,..., then

[e¢} o]

DEu(t) — DePun(t) = Y cihi(t) = > cihi(e),

i=m i=2B+1
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t
D2 ut) = D2 uy2) |2 = / [DLPu(t) - DL ()] dit

Z Z cicy / hi(t)hy (2) dt.

j=2B+1 1 —oB+1

By orthogonality, we have fab Ny () hy(t) dt = 1, where I,,, is the identity matrix of order m.
Therefore,

| D u(t) - D2 un(®) = Y 2 (19)

i=2/3+1

From equation (17) we have
b
¢ = / DS u(t)h;(t) dt

a+(b-a)k+3)27 a+(b-a)(k+1)27
{f DI u(t) dt—/ Dy u(t) dt}.
a (

+(b-a)k2 a+(b-a)(k+1)27

[N

=2

Recall the mean value theorem of integration: 3¢1,ty, a + (b —a)k27 < t; <a+ (b—a)(k +
)2 Ta+b-a)k+ i 7)2 J<ty<a+ (b-a)k+1)27 such that

c; = 2£(b—u){< <k+ 5)2 T —(a +k2_j)>’DZ;pu(t1)
- (a +(k+1)27 - (a + <k+ %)2"))@2;%(@)}

=25 (b - a) {271 (D2 ulty) - D2 u(ty)) ).
Therefore,
&2 =272(b - a) (DX ult) - DX u(ty))’. (20)

Together with the definition of Caputo—Katugampola fractional derivative and
|12y (t)| < MVt € [a, b], we have

D u(tr) - DY ul(ty)|
b u'(T) 2 uw(r)
drt - ———d
[; (tf _ Tp)a—n+l T -/a (tg _ T,o)oz—rﬁ-l T‘

nouw'(x) u"(t)
/ (tp _ -L—p)a—rHl / (tz _ ‘L’p)“ n+1

u"(t) ‘
T

f (tz _-L-p)a n+1

a—n+l t n t n
P u"(t) / u"(t)
= g | —L 4
= F(n—a)( /u @ eyt 7 @G =y

")
\/fl (tg_l-p)a—nﬂ dl’})

a-n+l

P
"Tm-a)

a—n+l

0

- F(n—

+

Page 7 of 25
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_ pa—n+1 /tl Mn(l_)t(l—p) .L.p—l ~ 7:p—l e
F(}’Z _ Ol) p (tf _ T,o)a—rul (tg _ .L-p)oz—n+1
ty un(t)r(lfp).[pfl
+ / L a—n+1 d‘[’)
t (t2 - .’:p)
poz—n+1 /tl Mn(r)r(l—p) 7_.,o—l ~ .L,p—l Ir
F(l’l _ Ol) p (tf _ -,_-p)ot—n+1 (tg _ .Cp)a—rHl
ty un(.,;)t(lfp)tpfl
+/ L a—n+1 dT)
t (t2 - Tp)
ot—n+1M t p—1 p-1
< " / ! - ! dr
F(}'l _ Ol) p (tf _ .L—p)ct—n+1 (tg _ tp)o{—n+1
ty .[,071
+ —dt
/;1 (té’ _ -L-p)a—n+l >

a-n+l pr n-a e Y
T ey L =) (=) - (- a)]

(-,

Since ¢ < t,, one gets (¢] —a”)"™* — () —a”)"* <0 for p > 0.

IA

Therefore

2 o— n+1M

|Dg'pu(t1) - 'Dg”’u(tz | = m(t

-)"

By the mean value theorem, 3¢ € [£1, ;] C [a, b],

a-n+l

2p
b)| € ———
F'n-—a)(n-oa)
szb(n—a)(p—l) 1
< -
“I'n-a)n-a) 2H-)

| D5 utr) = Dy u( p" gD by — gy )

which implies that

4',02M2 bz(n—ot)(p—l)

o, 0 o, 0
(D l/l(tl) D I/l(tg)) = F(n a)z(n c\{)2 22j(n—a) (21)
Substituting equation (21) into (20), we get
) 4 2M2 bZ(n—oz)(p—l)
<272(b— a)? P ,
C(n—a)?(n-—a)> 2%
b— 2 2M2 bz(n—a)(p—l)
__b=arp . (22)

C(n—a)?(n—oa)? 2%n-a)
Putting equation (22) into equation (19), we have

) 2+l
| D& u(e) - D2 (@)} = Z Z(Z )

i=2B+1 j=B+1 =2

—Z

j=B+1

(b-a)*p?M?>  p*r-)-D) 19+ 1)
C(n—a)2(n—a)? 2%n-o4

Page 8 of 25
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oo

(b _ a)zpzMz bz(n—a)(p—l)
B Z F(n-a)(n-a)? 2%0-0

j=B+1

([9 _ a)zpzMzbZ(n—a)(p—l) 0 1

—a)2(n-a)? 2j(n—a)
F'n-a)(n-oa) j:ﬁ+12/"°‘

(b _ ﬂ)2p2M2 b2(n—a)(p—1) 1
T TUi—a)(n—a)? 1= 2@ 2EDna"

Let m = 28+1, then we have

(b—aPp?M> pn-ao-D ]
I(n-a)2(n-a)? 1 - 22" y2n-a)
(b-a)pM  pr-)e-D 1
TTn-a)n-a)[ - zz(a—n)]% min-a)’

| D27 u() - D2 (0)] <

Hence, one can achieve the error bound for the given partial sum, provided a numerical
value of M is given.

To get an estimate for M, we proceed as follows. Since " (t) is bounded and continuous
on the interval [a, b],

m—1
u? () =) cihit) = C'H,(0), (23)

i=0

where C = [cp,¢1,C2,. .., Cm1]t and H,,(t) = [ho(t), 1 (8), iy (8), ..., hpme1(8)].
The integral of Haar wavelets of order « is given as

Iy Hu(t)dt = P, Hiu(t),  t € [a,b).

Integrating equation (23) yields
t t
u" () = / U (x) dx + u"(a) = / U (x)dx = C' P Hin(2). (24)
a a
Similarly, equation (24) is integrated as
t t
u"2(t) = / u" V() dx + u"?(a) = / u"V(x)dx = C'P2.., Hy(t).
Therefore,

ut) = C'PY  Hu(t). (25)

Equation (25) can be written as

j—1/2

u(t) = C'P H,(t), wheret;=1"—"=j-1,2,.. k. (26)
m

Writing equation (26) in matrix form, we get

U= C'PY Hyems  Where U = [u(t), u(ty), u(ts), ..., u(tn)]'. (27)
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By solving the linear system in (27), we can determine the vector C*, and putting this vector
into equation (23), " (¢) can be calculated for each ¢ € [a, b].

Now assuming x; € [, b] and 4 (x;) are calculated fori = 1,2,3, ..., £, where the £ points
are equidistant, an estimate of M may be considered as € + max |u")(x;)|<;<¢. Clearly, the
estimate shall be relatively more precise if £ increases and € is chosen, for example, equal
to b. O

Corollary 3.2 Assume that D, u(t) is a Haar wavelet approximation of Dy u(t), then

(b-a)p>*M pln—a)(p-1) 1
(@) (n-a)-a(n-a) [ —p2e-n]s mr-o’

)= un )], = = (28)

From equation (28) it is evident that | u(¢) — u,,(¢)|| g — 0 when m — oco.

3.2 Numerical examples
In this part we present a few numerical examples which can help us compare the solutions
obtained by the numerical methods with exact solutions and solutions by other meth-

ods.

Example 3.3 Consider the ath order Cauchy-type generalized fractional differential equa-
tion
2p%

Diu®) = u) + o5 (0 =) = (1), req12) (29)

with the initial condition (1) = 0, where 0 < @ <1 and p > 0. It is easy to check that the
analytic solution of system (29) is u(t) = (¢° — 1)2. To find the approximate solution, we

apply Haar wavelets technique to equation (29). Let

DY u(t) = CHy(t), (30)
then computing the « order integral of (30) along with initial condition leads to

u(t) = CL LV Hy () = CLPyY i Hon(8). (31)
Putting the values from (30) and (31) into equation (29), we have

CrHu(t) = o Pyl Hon(8) + FruHo(2), (32)

where F,,H,,(t) = %(ﬂ"l)z‘” — (t* = 1)®> — 1. After solving (32) for Haar coefficient vec-
tor C!,, and using the result in equation (31), we get the required approximate solution.
This problem is also solved in [41] by a decomposition formula. The maximum absolute
difference of the numerical and exact solutions of equation (29) for distinct values of «,
p is documented in Table 1. The numerical results are in good agreement with the exact

solutions.
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Table 1 Maximum absolute error for distinct values of p, &, and m =64

o) a=02 a=04 a=06 a=08 a=1

10 512628 x 1073 192497 x 1073 704195 x 1074 278423 x 1074 164627 x 1074
1.1 706032 x 1073 265359 x 1073 969607 x 107 3.79441 x 107 217187 x 107
12 958301 x 1073 360524 x 1073 131617 x 1073 5.10260 x 1074 283042 x 1074
13 1.28529 x 1072 4.84046 x 1073 176601 x 1073 6.78862 x 107 365372 x 107
14 1.70703 x 1072 643578 x 1073 234715 x 1073 895350 x 107 468170 x 1074
15 224878 x 1072 848797 x 1073 3.09507 x 1073 1.17252 x 1073 596461 x 107
16 2.94248 x 1072 111194 x 1072 405472 x 1073 152660 x 1073 7.56576 x 1074
17 3.82855 x 1072 144853 x 1072 528316 x 107 197820 x 1073 9.56508 x 107
18 495818 x 1072 1.87825 x 1072 6.85289 x 1073 255349 x 1073 120636 x 1073
19 639638 x 1072 242609 x 1072 885614 x 1073 328582 x 1073 151898 x 1073
2.0 822581 x 1072 3.12390 x 1072 1.14105 x 1072 421773 x 1073 191063 x 1073

Figure 1 Exact and numerical solutions for 2

m=64,p=16anda =075 m

0 0.2 0.4 0.6 0.8 1

Example 3.4 Consider an initial value problem
Dy u(t) + a(t)u(t) =g(t), te€[0,1],u(0)=0,0<a <1,and p > 0. (33)

Fora(t) = —(1 +¢) and g(¢) = 4w p* (¢t*) ¥ Epy o (—(47tP)?) + p T (e + 1) = (1 + £)(sin(47r P +
(¢)%), one may verify that u(t) = sin(4w£”) + (¢°)* is the analytical solution for equation
(33). For a numerical solution, we approximate Dy u(t) by Haar wavelets as

Dy’ u(t) = C. Hy,(2). (34)
Applying the integral operator of order o, we get

u(t) = Iy" C Hy(t) = CL P Hoy(2). (35)
Using (34) and (35) in (33), we have

C! H,(t) + C. P20 H,(t) = G H,(2), (36)

m- mxXm

where g(¢) is estimated as g(t) = G*, H,,(¢) and a(t)P%2 ,,Hy(t) = DL Hu(2).

The numerical and exact solutions are shown in Fig. 1 for the fixed values of m = 64,
p =1.6,and @ = 0.75. Also numerical solutions of the initial value problem (33) at distinct
values of p are shown in Fig. 2. We evaluate the maximum absolute error between the exact
and approximate solutions for distinct values of p and m and represent it in Table 2. Also

the maximum absolute error is presented graphically in Fig. 3. Furthermore, numerical as
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Figure 2 Numerical solutions for m = 64, & = 0.75,
and several values of p

0O 01 02 03 04 05 06 07 08 09 1
t

Table 2 Maximum absolute difference for distinct values of p, m, and a = 0.75

0 m=32 m=64 m=128

10 617588 x 1072 1.71998 x 1072 4.84671 x 1073
13 767533 x 1072 220497 x 1072 6.18045 x 1073
15 858385 x 1072 252834 x 1072 7.14877 x 1073
17 937929 x 1072 284450 x 1072 812565 x 1073
20 1.12846 x 1071 342542 x 1072 9.76407 x 1073

Figure 3 The absolute error form=64, p = 1.75,
and different values of o

o
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o
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o
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o
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0.005

Figure 4 Exact and numerical solutions for m = 64,
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—0.54
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well as exact solutions are graphically presented in Fig. 4 for different values of @. Graphical
results show that the numerical and exact solutions match with each other.

Example 3.5 Consider a fractional differential equation with variable coefficient defined
as

Wult) +a(tyu(t) =g@t), tel1,2], (37)
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Table 3 Maximum absolute error for p =2 and for different values of m, «

o Haar wavelets Discretization [40]
m=32 m =64 m=128 N=50 N =100 N =150
01 121995 x 103 633836 x 107*  329129x 10* 16210 x 10> 81343 x 107% 54294 x 1074

1 1 1

03  432828x 102 233135x 107 124446 x 10 18582 x 107 92920 x 10™* 62016 x 107
05 669472 x 107 356979 x 1073 187378 x 1073 21584 x 10> 1.0832x 1073 72299 x 1074
0.7 635515x 10 330417 x 107 169410 x 107 25221 x 107 12684 x 107 84704 x 107
1 1 1

09 278724 x 103 141985 x 1073 717205 x 107* 28986 x 10> 14644 x 1073 9.7946 x 1074

with the initial condition #(1) = 1, where 0 < « < 1. For a(t) = (1 + £) and g(t) = 1ﬂé—:()(t” -

1)1 + (1 + £)¢*, it can be verified that the analytic solution for equation (37) is u(t) = ¢°.
We apply the Haar wavelets technique with the aid of Haar matrices while seeking an
approximate solution. Let

DY’ u(t) = CLH,(2). (38)
After applying integral Z%” on both sides of equation (38), we obtain

u(t) = )7 CuHy(t) + 1 = CL Py H(£) + 1. (39)
Using equations (38) and (39) in equation (37), we obtain

Ct H,(t) + CL P20 H,,(t) = Ft H,(2), (40)
where f(¢) = g(¢) — (1 + ¢) is approximated as f(¢) = F. H,,(¢) and a(t)P;",, H,(t) =
Pt Hon(0)-

For p = 2 and several fixed values of « and m, Table 3 contains the maximum absolute
error obtained from the exact and approximate results achieved through the Haar wavelets
along with the method discussed in [40]. The tabulated results show that the presented
method is nearly as accurate as the discretization method but with comparatively fewer
nodes.

Example 3.6 Consider the generalized Bagley—Torvik equation,
3
aDy u(t) + bD u(t) + cult) = g(t), te[0,1], (41)

with the initial conditions %#(0) = 0, #/(0) = 0, where 1 <« <2, a,b,c € R, a #0, and p > 0.
3
Fora=b=c=1and f(¢) = p*T (@ + 1) + ’;;r—(g‘:i;(t”)“‘% + (t°)%, the exact solution is
-3
u(t) = (t*)%, and for p = 1 and n = 2, equation (41) becomes Bagley—Torvik equation con-

sidered in [51]. To find an approximate solution, we use Haar wavelets technique as fol-
lows. Letting
Dy’ u(t) = Ct,Hp(t) (42)

and performing integration Z;" on both sides, as well as using initial conditions, we have

u(t) =I5 C H,u(t) = C P Hy(£) (43)
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Table 4 Absolute error for p = 1.75, = 1.45 and for several fixed values of m

t m=4 m=38 m=16 m=32 m =64
0.1 477999 x 1074 790277 x 107 1.86536 x 107° 533416 x 1078 853090 x 10710
0.2 575722 x 1074 1.08342 x 10™ 3.09691 x 107/ 495289 x 107 1.05969 x 107
03 343114 x 1074 484304 x 1070 6.18953 x 1078 139901 x 1079 635918 x 10710
04 953197 x 10™ 1.84784 x 107 287574 x 1078 6.15238 x 107 6.80386 x 107"
05 266831 x 1074 3.29075 x 107© 1.06124 x 1077 661476 x 1079 414510 x 10710
06 841128 x 10™ 691436 x 1078 825259 x 107 369202 x 1077 435226 x 107"
0.7 266130 x 1074 6.16696 x 107/ 453524 x 1078 5.76875 x 10710 1.76469 x 10710
0.8 3.88939 x 107 146953 x 107 131607 x 1078 402575 x 10710 148906 x 10710
0.9 2.76094 x 1074 9.02855 x 1070 7.52801 x 1078 6.29366 x 10710 223421 x 1071
and
3
2P P At s
Dy ul(t) = D2 CmP‘,’nxm H,(t) = m WZW,H (®). (44)
In the same way, the input function g(¢) can be approximated by Haar functions as
t
g(t) = G, Hyu(?). (45)
Putting equations (42), (43), (44), and (45) into equation (41), we have
t t 3 t t
CrHu () + Py Hin(t) + C,, P Ho(8) = Gl Hy (). (46)

By solving (46), we can get the Haar coefficients C’,. Then using equation (43), we can
obtain the required output u(t). The absolute error is shown in Table 4 for p = 1.5, m = 64,
and distinct values of «.

Example 3.7 Consider a generalized fractional differential equation of inhomogeneous

type with boundary conditions:

Dy u(t) + a(®)u(t) =f(), te[0,1], (47)
with #(0) = uo, u(1) =4y, and 1 <« < 2. For a(t) = 1, f(¢) = p*t* + C (o)¢+2)’ ug=0,and y; =
m the analytic solution of the differential equation is u(¢) = ﬂ()a . To find a numerical
solution, the integral form of equation (47) is given by

u(t) = ~Zy  a(@)u(t) + Iy a(1)u(1) + g(8), (48)
where g(t) = Zo7°f (¢) — "1 f (1) + uo + t°(u1 — uo). Let

u(t) = Ct H,(2). (49)

Integrating on both sides of equation (49), we have

Pu(t) = Iy CL H(t) = CL, Py Hon(2). (50)

Page 14 of 25
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Using (49) and (50) in (48) yields
CLHu(t)=-C. P Hu(t) + CLM," Hy(t) + G Hyu(2), (51)

where the approximations g(¢) = G!,H,,(t) and *Z;."u(1) = Ct,M,,". . H,, () are used for
convenience. To obtain the value of C’, we have to solve the algebraic linear system in
equation (51) and, putting value of C’, into equation (49), we have an approximate solu-
tion. The maximum absolute error of the exact and numerical solutions for p = 1.5 and

different values of « and m is given in Table 6; see Sect. 4.

3.3 Nonlinear problems

A nonlinear differential equation can be transformed to a sequence of linear differential
equations. One of the possible way to achieve this goal is the application of quasilineariza-
tion method. The quasilinearization technique was presented by Kalabas and Bellman [52]
as a generalization of a specific method (Newton—Raphson) [53] which assists in solving
nonlinear functional equations. Further, Haar wavelets with the quasilinearization tech-
nique have been applied for the numerical solution of the individual or system of nonlin-
ear fractional differential equations [44]. Here we apply the quasilinearization technique
to solve generalized nonlinear fractional differential equations.

Example 3.8 Consider the nonlinear Caputo—Katugampola fractional differential equa-
tion

aDélpu(t) +bDy u(t) + cDy?’ ult) + al[u()f)]3 =f@®), telo,1], (52)

subject to initial conditions #(0) = 0, #/(0) = 0.
Applying the quasilinearization technique to (52), we get

aDy! 1 (8) + DD 1 (8) + DG o (&) + [ (®) + 3 (411 () — 4,(0) 2 (2) ]

=f(0) (53)

or

aDyl (&) + b 1y 1 (8) + €D 1y 1 (£) + Bdu® (8 (£) = £ (£) + 2du (), (54)
which is a linear fractional differential equation. Let

DLty (£) = CLHy(8). (55)
Equivalent integral equations for the equations in (55) are

U1 (8) = Lo CLHyn(8) = CL Pl Ho(D) (56)
and

DV u, 1 (8) = C. Pt Hy(2). (57)

m- mxXm
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Table 5 Absolute error for p =1.45, 0y = 1.55, p = 0.75, and for different fixed values of m

t m=28 m=16 m=32 m=064

0.1 632880 x 10  3.00445 x 107 1.25591 x 107 1.99284 x 1078
03  1.09542 x 10™ 966989 x 10° 155214 x 10° 873622 x 107/
05 535004 x 10 325183 x 10 155037 x 10 6.56296 x 107°
1 1
1 1

0.7 280508 x 10 131354 x 10 549232 x 10 215731 x 107
09 665574 x 10% 315256 x 10 1.11750 x 10%  2.89674 x 10~

Also we have

Dy (£) = Chy Pt Hip(0). (58)
Substituting equations (55), (56), (57), and (58) into (54), we have

Ct [aHm(8) + Pyl Hon(8) + cPopi’ H(8) + AP Hy(2)] = GL H(2), (59)

where the function g(¢) = f(¢) + 2du?(¢) is approximated as g(£) = G, H,,(¢), taking 0 < a7 <

1, 1<y <2,and a,b,c,d € R. The exact solution of the nonlinear initial value prob-
lem (52) is u(t) = 3(¢*)° provided a = b=c=d =1 and f(t) = 2"2 1+ o ;1)(tﬂ)3 a gy
rzp_“jz (t°)>2 + [3(¢/)*]%. The absolute error for fixed values of a1 = 1.55, ay = 0.75,

p = 1.45, and for distinct values of m are presented in the tabular form in Table 5.

4 Green-Haar method

The fractional Green’s function was defined by K.S. Miller and B. Ross [54] who applied it
to fractional differential equations consisting of derivatives of order ka only, where k € Z.
In this section we present a numerical method which is based on standard Haar wavelets
and the Green function. This method applies to boundary value problems of a certain
type. An interesting feature of the method is that in does not require fractional operational
matrices or specific metrics reserved for solving boundary value problems. The study un-
dertaken shows that the method is computationally efficient against the standard Haar
wavelet technique discussed in the previous section. Thus the efficiency of the method is
found to be considerably higher than that of some relevant numerical methods. Interest-
ingly, the accuracy is not compromised, but rather enhanced.

At this stage, we shall consider following class of fractional boundary value problems:

Dy ult) = f (¢, u(t)), u(0) = uo, u(l) = u;. (60)

Lemma4.1 Let0 <« <2, and suppose f(t,u(t)) : [0,1] x R — R is continuous. Then u(t)
is the solution of equation (60) if and only if u(t) satisfies the following Fredholm integral
equation:

1
u(t) = /0 G(t, ‘E)f(‘L', u(r)) drt +g(t), (61)
where

Pl_a p pye-1 p pya—11,p-1 : .
tP -1 —-t*-(1-1 P, if0<t<t

o) = | F T i e e -
—th. ” (1—t’°)°‘ Lep-1) ift<t<l1.
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Proof Suppose u(z) is the solution of (60), then the integral form of equation (60) is given
by

u(t) = I3 f (8, u(t)) + c1 + cot”. (63)

Using the boundary condition, we obtain

u(t) = I3 f (6, u(t)) — Zg " f (L, u(1)) + g(¢) (64)
or
u(t)—l_‘(a)/0 (& =17)" " (v, u(x)) de

o [ e o) de o)

where g(£) = ug + t°(uy — up) and

l-a t
u(t) = ﬁ(a) / (¢ - ) = (1= o) e (r,ulx)) de
0
pl—oz 1 w1,
-’ r@) /z (L=2")"" 2" (v, u(r)) dt + g(0),
namely
1
u(t) = /0 G(&7)f (v, u(r)) dr + g(1), (65)
where
Gl 1) = /1)“1(_:;[(#) —P)l g (1 —7P)* Pl ifo<T <8, (66)

1-«
—tr . %(1 — gp)e-lge-l ift<t<l.

Conversely, assume that () satisfies the Fredholm integral equation. Taking generalized
Caputo-type fractional derivative on both sides of equation (64), we end up with equation
(60). O

The graph for the function in equation (66) at the values of @ =2, p =1, and m = 64 is
shown in Fig. 5.

Figure 5 Green function for fixed values of m =128,
p=1andfora=2
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4.1 Linear case
In this part we present numerical solution of a class of generalized linear fractional differ-
ential equations with boundary conditions.

Example 4.2 We consider the fractional boundary value problem in equation (47) with

Dirichlet boundary conditions u(0) = uo, (1) = u;.

The integral representation for this boundary value problem is given by

u(t) = ~Zy  a(@)u(t) + Iy a(1)u(1) + g(8),

or
1
u(t) :/ G(t, r)u(t)dr +g(t), 67)
0
where
G(t,7) = ‘;1(:; [=(@ - rp)afl +t7-(1- rﬂ)afl]fpfla(t) if0<rtc<t, (68)
) £ %(1 — P)eler-lg(y) ift<t<1,

and g(t) = Iy f () — P L f (1) + uo + 7 (uy — o).

For a(t) =1 and f(£) = p*t* + (152(1;1) ,uo=0,and u; = ﬁ, the analytic solution of the
o+1
boundary value problem is u(t) = (Fﬂ();ﬂ) . Let
u(t) = C, H,(2), (69)
G(t,7) = H.,(t)K} H, (7). (70)
Using (69) and (70) in (67), we have
CLHu(t) = C\,H,(t)K}, + G H,(2), (71)

where g(t) = r(%iz)[(t")z‘”l — ]+ F(;+2)(t”)“+1 is approximated as g(t) = G, H,,(t), and

using the orthonormality of the sequence {/;(¢)} on [0, 1), we obtain

1
/ Hon(£)H (2)d = Ly, (72)
0

where [, represents an identity matrix of dimension m x m. We can solve the algebraic
equation (71) for the Green—Haar coefficient vector C’, and, by equation (69), we get the
required numerical solution. For p = 1.5 and different values of « and m, the tabular data
in Table 6 presents the maximum absolute error given by Haar wavelet method in Ex-
ample 3.7 and Green—Haar wavelet method, respectively. Green—Haar wavelet technique
provides significantly more accurate numerical results in comparison with Haar wavelet
technique. Moreover, it is also computationally less intensive and takes less time compared
to the Haar wavelet method.
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Table 6 Maximum absolute error for p = 1.5 and different values of m, o

o Green—Haar Haar wavelets
m=32 m =64 m=128 m=32 m =64 m=128
12 258675x 1073 1.16561 x 1073 516207 x 10 1.76246 x 10> 1.32897 x 10> 1.09360 x 103
14 841668 x 107 331043 x 1074 127794 x 107 203527 x 107 1.85434 x 107> 1.75024 x 1073
16 255297 x 107 874546 x 10> 2.93947 x 10 1.64896 x 10> 1.58655 x 10> 1.54691 x 1073
18 723063 x 107 215293 x 107 6.29425 x 10 114441 x 10 1.13167 x 107> 1.12055 x 1073
1 1

1
20 190839 x 107° 492776 x 10°° 125169 x 1070 721298 x 10°*  7.25691 x 10°*  7.25400 x 107*

Example 4.3 Again we consider the fractional boundary value problem in equation (47)
with Dirichlet boundary conditions #(0) = ug, #(1) = u;, but this time with different data.
Particularly, we take g(¢) = p%(I'(a + 1) — T'(a + 2)t°) + (t°)® — (¢?)**!. The exact solution
of fractional differential equation is u(t) = (¢°)* — (¢°)**1. The corresponding integral rep-

resentation for the boundary value problem is given by

u(t) = =Ly u(t) + Iy u(1) + f(2) (73)
or
1
u(t) = —/ G(t, t)u(r)dr +f(¢), (74)
0
where
G(t,7) = %[(t" -t -t (- et if0 <t <y, 75)
—tP . %(1 —gP)elge-l ift<t<l1,

and f(£) = i (@07 = ) = Bl (@) = 10) + () = (7). Let

u(t) = G, Hu(2), (76)

G(t,7) = H (t)K! H,,(7). (77)

Using (76) and (77) in (74), and using the orthonormality of the sequence {/;(¢)} on [0,1)
in equation (72), we obtain

C! Hy(t) = -C! H,,(t)K., + F., H,,(¢), (78)

where f(¢) is approximated as f () = F., H,,(t). The vector C’, can be obtained by solving
the algebraic linear system in equation (78), which leads to the numerical solution when
inserted into (76). The numerical solution is in good agreement with the exact solution
as shown in Fig. 6. The absolute error for several fixed values of m is given in Table 7.
Furthermore, the numerical solutions for p = 1.45, m = 64, and different values of « are
given in Fig. 7. Figure 8 shows the numerical solutions for m = 64, « = 1.55, and several

values of p.
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Figure 6 Exact and numerical solutions for m = 64,
; 0.35
p =155, and different values of I Numerical
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Table 7 Absolute error for p = 1.55, & = 1.75, and for different values of m

t

m=16

m=32

m=064

m=128

m =256

0.1
0.2
03
04
0.5
0.6
0.7
0.8
0.9

3.60950 x 1076
488875 x 1070
158731 x 107
351820 x 10™
6.72107 x 10
1.04467 x 1074
142073 x 107
159246 x 107
133174 x 107

242491 x 107/
137248 x 107°
438410 x 107
1.03294 x 10™
194333 x 107
3.06970 x 10~
413297 x 107
461856 x 107
3.70488 x 107

7.30854 x 1078
400509 x 107/
129239 x 107°
3.03806 x 1070
573319 x 107
9.06727 x 1070
122141 x 107
136000 x 10™
1.07864 x 107

212324 x 1078
1.16958 x 10~/
381683 x 107/
9.01298 x 107~/
1.70032 x 1070
269073 x 1070
362072 x 1070
402485 x 1070
3.17673 x 1070

6.16528 x 107°
346220 x 1078
1.13268 x 107~/
267628 x 107/
5.05051 x 107~/
799224 x 107/
107517 x 1070
1.19420 x 107°
940128 x 107/

- ! ) 0.25 ;
Figure 7 Numerical solutions for m =64, p = 145, ——
and distinct values of « — =13
0.2H —0=1.5
=17
a=1.9
015}
u(t)
01t
0.05}
0 . . . .
(] 0.2 0.4 06 0.8
t

Figure 8 Numerical solutions for m =64, a = 1.55,
and different values of p
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4.2 Nonlinear case
In this part we focus on solving nonlinear fractional differential equations using Green—
Haar approach. The quasilinear technique is used to convert the nonlinear equations into

sequences of linear equations.

Example 4.4 Consider the the generalized nonlinear Caputo—Katugampola fractional dif-
ferential equation

Dyl ult) + [aOu(®)]" =g(t), te[0,1], (79)

subject to the boundary conditions u#(0) = ug, #(1) = u;, where «,n € R and 0 < @ < 2.
Applying the quasilinearization technique to equation (79), for n = 3 we have

D ura () + @ @O[ud(0) + 3 (41 (6) = u,(8) )i} (8)] = (1), (80)
or

D 1 (8) + 3@ O)ul ()1 (2) = g(8) + 24 (£)u) (8). (81)
The integral representation for equation (81) is

Upi1 (8) = =3L5 [@® )l (O a1 ()] + 22027 a® (£ (£)

+ 7 {313 a® (V)u? (Vtrsr (1) - 2702 a® ()} (1)} + £(0), (82)
or
1 1
() = 3 / Gyt Dty (1) dt —2 / Galt, 1) dr + £(0), (83)
0 0
where
o a-1 a-11-p-1,3(5),,2 ;
—(t° —t” +t° - (1-1° 114 Hus(t) if0<rt<t,
G1 (t,‘E) _ T [17’1( ) ( T ) ] a ( )M,( ) Mo<7< (84.)
t (- tP) Lo, 13 (h)ud(t) ift<t<l,
LUt =) - (1= P) e a3 ()ud(t) if0<t<t,
Goltr) = | T@ [1_a( ) ( )] (Ou; () < (85)
t0 - (- 0)* 1P g3 (H)ud (v) ift<t<1,

and f(£) = I () -t I g(1).

Since u,(t) is known at the collocation points ¢; = %, i=1,2,...,m, we cannot directly
integrate G, on the interval [0, 1]. For the numerical approximation of fol Gy(t,T)dt, we
use a quadrature rule which is a mixture of trapezoidal and Simpson’s rules. Since ¢; = %,
i=1,2,...,m, give an even number of collocation points and divide the domain into m — 1
intervals, we use the Simpson’s rule on m — 2 even intervals and apply the trapezoidal on

the last two collocation points ¢,,_; and ¢,,. Considering

ur+l(t) = Canm(t)’ (86)
Gi(t,T) = H (K. H (1), (87)

Page 21 of 25
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Table 8 Maximum absolute error for p = 1 and for different values of m and «

o m=16 m=32 m =64 m=128 m =256
1.1 435855 x 1072 264920 x 1072 149614 x 1072 7.70796 x 1073 378128 x 1073
1.2 324244 x 1072 1.83863 x 1072 9.56595 x 1073 455750 x 1073 207502 x 1073
13 2.36366 x 1072 124713 x 1072 598615 x 1073 264235 x 1073 111818 x 1073
14 169178 x 1072 8.29045 x 1073 367638 x 1073 150554 x 1073 592702 x 107
15 1.19129 x 1072 541408 x 1073 222022 x 1073 844162 x 1074 3.09306 x 1074
16 8.26865 x 107 347996 x 1073 132018 x 1073 466118 x 107 158967 x 107
17 566691 x 1073 220472 x 1073 7.73457 x 1074 253490 x 1074 8.04443 x 107
18 3.84067 x 1073 137818 x 1073 446573 x 1074 135720 x 107 400515 x 107
19 257738 x 1073 850595 x 107* 254024 x 1074 7.14679 x 107 195911 x 107
20 1.71447 x 1073 520049 x 107 142243 x 1074 369504 x 107 039348 x 107

Figure 9 Exact and numerical solutions for fixed 1

valuesof m=64, p=1,anda =16  Nemerica

0.2 . . . . . . . . .
0 01 02 03 04 05 06 07 08 09 1
t

and using equations (86) and (86) in equation (83), together with the orthonormality con-
dition in equation (72), we get

CLHu(t) = CtL Hu()K!, + G' H,(t) + F: H,y(2), (88)

where f(¢) = F.,H,(¢), G, Hp () = fol G»(¢, T) dt, which are calculated by using trapezoidal
and Simpson’s rules together.

If we choose a®(¢) = —1 and f(¢) = 2((25:11)) (£°)* — ("), then the exact solution of equation
(79) is u(t) = (¢°)**. The maximum absolute error of the numerical and exact solutions is

given in Table 8 for various fixed values of «, m, and p = 1. Also exact and numerical
solutions for equation (79) are shown in Fig. 9. Graphical results show that the numerical
and exact solutions match with each other.

4.3 Error analysis

In this section we establish a bound of the absolute error for the Green—Harr wavelets.

Theorem 4.5 Suppose that function u'(t) is continuous and bounded on (0, 1), that is, there
exits M > 0 such that |u'(t)] < M for all t € (0,1), and also assume that u(t) is an approx-
imation of u(t), Then we have

pl—a M
“”(t) — ui(t) “E = m X

Proof The function u(¢) defined over [0, 1] can be approximated as

u(®) =Y cul(t). (89)
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Let us consider the first k terms of the sum, denoted by u (), that is,

k-1
u(t) = ue(t) =y culn(0), (90)
n=0
where k =2%*1, o =0, 1,.... By Lemma 2.7, we have
2 M?
”V(t) —vi(2) ”E =< By (91)

Now

Nue) - )|

) 1
Hu(t) - uk(t)HE < ‘/0 G(t,t)dt
2

1
- fo G(t,7)dz), (92)
/1 G(t,t)drt = P /t [(¢" - r”)a_l -t(1- r”)a_l]t”‘l dr
0 ' T | Jo
1
—tf / (1 - t”)a_lrp_l dt}
t
_ ,Ol_a P\Y _ (4021 p(1_ #0)\Y
as long as —t” < 0 because ¢ € [0, 1] for p > 0. Therefore
! P p «
/0 G(t,t)dt < TarD {(#)" +2(1-¢")"},
namely
1 1-a
/(; G(t,t)dtr < e+ D) (93)

Hence, equation (92) yields

pl—oz M
”M(t) — ui(£) ”E =y m X (94D)

5 Conclusion
The main findings of the paper are concluded as follows:
+ The Haar wavelets operational matrices are derived for generalized fractional
integrals.
« A variety of numerical examples are solved by Haar wavelet technique, including
certain classes of linear and nonlinear fractional differential equations with initial and
boundary conditions. Results are analyzed in terms of computational efficiency and

accuracy.
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« Green—Haar method has been proposed for numerical solutions of linear and
nonlinear fractional boundary value problems.

« A comparison has been conducted for the proposed method with conventional Haar
wavelet technique. We conclude that Green—Haar method is relatively more efficient
and accurate.

+ The convergence and stability of Green—Haar method have also been discussed.
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