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Abstract
In this paper, by making use of the familiar q-difference operators Dq and Dq–1 , we first
introduce two homogeneous q-difference operators T(a,b, cDq) and E(a,b, cDq–1 ),
which turn out to be suitable for dealing with the families of the generalized
Al-Salam–Carlitz q-polynomials φ(a,b)

n (x, y|q) and ψ (a,b)
n (x, y|q). We then apply each of

these two homogeneous q-difference operators in order to derive generating
functions, Rogers type formulas, the extended Rogers type formulas, and the
Srivastava–Agarwal type linear as well as bilinear generating functions involving each
of these families of the generalized Al-Salam–Carlitz q-polynomials. We also show
how the various results presented here are related to those in many earlier works on
the topics which we study in this paper.
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1 Introduction, definitions, and preliminaries
The quantum (or q-) polynomials constitute a very interesting set of special functions
and orthogonal polynomials. Their generating functions appear in several branches of
mathematics and physics (see, for details, [1–5]) such as (for example) continued fractions,
Eulerian series, theta functions, elliptic functions, quantum groups and algebras, discrete
mathematics (including combinatorics and graph theory), coding theory, and so on.

Recently, new classes of special functions including (for example) q-hybrid special poly-
nomials, q-Sheffer–Appell polynomials, twice-iterated 2D q-Appell polynomials, and a
unified class of Apostol type q-polynomials were introduced in [6–8] and [9] in which
some properties of the introduced polynomials were derived. For more information, the
interested reader should refer to [6–8] and [9].

In the year 1997, Chen and Liu [10] developed a method of deriving basic (or q-) hyper-
geometric identities by parameter augmentation, which may be viewed as being analogous
to the method used rather extensively in the theory of ordinary hypergeometric functions
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and hypergeometric generating functions (see, for details, [5]). Subsequent investigations
along the lines developed in [10] can be found in [11–15] and [16]. The main objective of
this paper is to investigate two families of the generalized Al-Salam–Carlitz q-polynomials
φ

(a,b)
n (x, y|q) and ψ

(a,b)
n (x, y|q) by first representing them by the homogeneous q-difference

operators T(a, b, cDq) and E(a, b, cDq–1 ), which we have introduced here. We then de-
rive a number of q-identities such as (among other results) generating functions, Rogers
type formulas, two kind of the extended Rogers type formulas, and Srivastava–Agarwal
type generating functions for each of the generalized Al-Salam–Carlitz q-polynomials
φ

(a,b)
n (x, y|q) and ψ

(a,b)
n (x, y|q).

Here, in this paper, we adopt the common conventions and notations on q-series and
q-hypergeometric functions. For the convenience of the reader, we provide a summary of
mathematical notations and definitions, basic properties, and other relations to be used in
the sequel. We refer, for details, to the general references (see [2, 17, 18]) for the definitions
and notations. Throughout this paper, we assume that |q| < 1.

For complex numbers a, the q-shifted factorials are defined by

(a; q)0 := 1, (a; q)n =
n–1∏

k=0

(
1 – aqk) and (a; q)∞ :=

∞∏

k=0

(
1 – aqk), (1.1)

where (see, for example, [2] and [19])

(a; q)n =
(a; q)∞

(aqn; q)∞
, (a; q)n+m = (a; q)n

(
aqn; q

)
m

and

(
aq–n; q

)
n = (q/a; q)n(–a)nq–n–(n

2 ).

We adopt the following notation:

(a1, a2, . . . , ar ; q)m = (a1; q)m(a2; q)m · · · (ar ; q)m
(
m ∈N := {1, 2, 3, . . .}).

Also, for m large, we have

(a1, a2, . . . , ar ; q)∞ = (a1; q)∞(a2; q)∞ · · · (ar ; q)∞.

The q-numbers and the q-factorials are defined as follows:

[n]q :=
1 – qn

1 – q
, [n]q! :=

n∏

k=1

(
1 – qk

1 – q

)
and [0]q! := 1. (1.2)

The q-binomial coefficient is defined as follows (see, for example, [2]):

[
n
k

]

q
:=

[n]q!
[k]q![n – k]q!

=
(q–n; q)k

(q; q)k
(–1)kqnk–(k

2) (0 � k � n). (1.3)

The basic (or q-) hypergeometric function of the variable z and with r numerator and s

denominator parameters is defined as follows (see, for details, the monographs by Slater
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[19, Chap. 3] and by Srivastava and Karlsson [18, p. 347, Eq. (272)]; see also [20, 21] and
[17]):

r�s

[
a1, a2, . . . , ar;
b1, b2, . . . , bs;

q; z

]
:=

∞∑

n=0

[
(–1)nq(n

2)
]1+s–r (a1, a2, . . . , ar; q)n

(b1, b2, . . . , bs; q)n

zn

(q; q)n
,

where q �= 0 when r > s + 1. We also note that

r+1�r

[
a1, a2, . . . , ar+1

b1, b2, . . . , br;
q; z

]
=

∞∑

n=0

(a1, a2, . . . , ar+1; q)n

(b1, b2, . . . , br; q)n

zn

(q; q)n
.

Here, in our present investigation, we are mainly concerned with the Cauchy polynomi-
als pn(x, y) as given below (see [22] and [2]):

pn(x, y) := (x – y)(x – qy) · · · (x – qn–1y
)

=
(

y
x

; q
)

n
xn (1.4)

together with the following Srivastava–Agarwal type generating function (see also [23]):

∞∑

n=0

pn(x, y)
(λ; q)ntn

(q; q)n
= 2�1

[
λ, y/x;

0;
q; xt

]
. (1.5)

For λ = 0 in (1.5), we get the following simpler generating function [22]:

∞∑

n=0

pn(x, y)
tn

(q; q)n
=

(yt; q)∞
(xt; q)∞

. (1.6)

The generating function (1.6) is also a homogeneous version of the Cauchy identity or
the following q-binomial theorem (see, for example, [2, 19] and [18]):

∞∑

k=0

(a; q)k

(q; q)k
zk = 1�0

[
a;
—;

q; z

]
=

(az; q)∞
(z; q)∞

(|z| < 1
)
. (1.7)

Upon further setting a = 0, this last relation (1.7) becomes Euler’s identity (see, for exam-
ple, [2])

∞∑

k=0

zk

(q; q)k
=

1
(z; q)∞

(|z| < 1
)

(1.8)

and its inverse relation is given as follows [2]:

∞∑

k=0

(–1)k

(q; q)k
q(k

2)zk = (z; q)∞. (1.9)

The Jackson’s q-difference or q-derivative operators Dq and Dq–1 are defined as follows
(see, for example, [2, 24, 25]):

Dq
{

f (x)
}

:=
f (x) – f (qx)

(1 – q)x
and Dq–1

{
f (x)

}
:=

f (q–1x) – f (x)
(q–1 – 1)x

. (1.10)
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Evidently, in the limit when q → 1–, we have

lim
q→1–

{
Dq

{
f (x)

}}
= f ′(x) and lim

q→1–

{
Dq–1

{
f (x)

}}
= f ′(x),

provided that the derivative f ′(x) exists.
Suppose that Dq acts on the variable a. Then we have the q-identities asserted by

Lemma 1.

Lemma 1 Each of the following q-identities holds true for the q-derivative operator Dq

acting on the variable a:

Dk
q

{
1

(as; q)∞

}
=

[(1 – q)–1s]k

(as; q)∞
, (1.11)

(Dq–1 )k
{

1
(as; q)∞

}
=

q–(k
2)

(asq–k ; q)∞

(
s

1 – q

)k

, (1.12)

Dk
q
{

(as; q)∞
}

= (–1)kq(k
2)

(
asqk ; q

)
∞

(
s

1 – q

)k

, (1.13)

and

(Dq–1 )k{(as; q)∞
}

= (as; q)∞
(

–
s

1 – q

)k

. (1.14)

The Leibniz rules for the q-derivative operators Dq and Dq–1 are given by (see, for ex-
ample, [10] and [12])

Dn
q
{

f (x)g(x)
}

=
n∑

k=0

qk(k–n)
[

n
k

]

q
Dk

q
{

f (x)
}

Dn–k
q

{
g
(
qkx

)}
(1.15)

and

Dn
q–1

{
f (x)g(x)

}
=

n∑

k=0

[
n
k

]

q
Dk

q–1
{

f (x)
}

Dn–k
q–1

{
g
(
q–kx

)}
, (1.16)

where D0
q and D0

q–1 are understood to be the identity operators.

Lemma 2 Suppose that q-difference operator Dq acts on the variable a. Then

Dn
q

{
(as; q)∞
(aω; q)∞

}
=

(
ω

1 – q

)n (s/ω; q)n

(as; q)n

(as; q)∞
(aω; q)∞

(1.17)

and

Dn
q–1

{
(as; q)∞
(aω; q)∞

}
=

(
–

q
(1 – q)a

)n (s/ω; q)n

(q/(aω); q)n

(as; q)∞
(aω; q)∞

. (1.18)
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Proof Suppose that the operator Dq acts upon the variable a. In light of (1.15), we then
find that

Dn
q

{
(as; q)∞
(aω; q)∞

}
=

n∑

k=0

qk(k–n)
[

n
k

]

q
Dk

q
{

(as; q)∞
}

Dn–k
q

{
1

(aωqk ; q)∞

}

=
n∑

k=0

qk(k–n)+(k
2)

[
n
k

]

q

(
asqk ; q

)
∞

(
–

s
1 – q

)k [(1 – q)–1ωqk]n–k

(aωqk ; q)∞

=
(as; q)∞
(aω; q)∞

(
ω

1 – q

)n n∑

k=0

(q–n, aω; q)k

(as, q; q)k

(
sqn

ω

)k

=
(

ω

1 – q

)n (as; q)∞
(aω; q)∞

2�1

[
q–n, aω;

as;
q;

sqn

ω

]
, (1.19)

where we have appropriately applied formulas (1.11), (1.13), and (1.3). The proof of the
first assertion (1.17) of Lemma 2 is completed by using relation (1.21) in (1.19).

Similarly, by using relation (1.16), we have

Dn
q–1

{
(as; q)∞
(aω; q)∞

}
=

n∑

k=0

[
n
k

]

q
Dk

q–1

{
1

(aω; q)∞

}
Dn–k

q–1
{(

asq–k ; q
)
∞

}

=
n∑

k=0

[
n
k

]

q

q–(k
2)( ω

1–q )k

(aωq–k ; q)∞
(–1)n–k

(
sq–k

1 – q

)n–k(
asq–k ; q

)
∞

=
(as; q)∞
(aω; q)∞

(
–

s
1 – q

)n n∑

k=0

[
n
k

]

q

(–1)kq–(k
2)+k(k–n)(asq–k ; q)k

(aωq–k ; q)k

(
ω

s

)k

=
(as; q)∞
(aω; q)∞

(
–

s
1 – q

)n n∑

k=0

(q–n, q/(as); q)kqk

(q, q/(aω); q)k

=
(

–
s

1 – q

)n (as; q)∞
(aω; q)∞

2�1

[
q–n, q/(as);

q/(aω);
q; q

]
, (1.20)

where we have appropriately used relation (1.3).
Finally, by using relation (1.22) in (1.20), we are led to the second assertion (1.18) of

Lemma 2. We thus have completed the proof of Lemma 2. �

Remark 1 For s = 0 and ω = s, assertions (1.17) and (1.18) of Lemma 2 reduce to assertions
(1.11) and (1.12) of Lemma 1. Moreover, for ω = 0, assertions (1.17) and (1.18) of Lemma 2
reduce to assertions (1.13) and (1.14) of Lemma 1.

Lemma 3 (see, for example, [2, Eq. (0.58) and Eq. (II.6)]) The q-Chu–Vandermonde for-
mulas are given by

2�1

[
q–n, a;

c;
q;

cqn

a

]
=

(c/a; q)n

(c; q)n

(
n ∈N0 := N∪ {0}) (1.21)
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and

2�1

[
q–n, a;

c;
q; q

]
=

(c/a; q)n

(c; q)n
an (

n ∈N0 := N∪ {0}). (1.22)

We now state and prove the q-difference formulas asserted by Theorem 1.

Theorem 1 Suppose that the q-difference operators Dq and Dq–1 act upon the variable a.
Then

Dn
q

{
(as; q)∞

(at, aω; q)∞

}
=

(
t

1 – q

)n (as; q)∞
(at, aω; q)∞

3�1

[
q–n, s/ω, at;

as;
q;

ωqn

t

]
(1.23)

and

Dn
q–1

{
(as, at; q)∞

(aω; q)∞

}
=

(
–

t
1 – q

)n (at, as; q)∞
(aω; q)∞

3�2

[
q–n, q/(at), s/ω;

q/(aω), 0;
q; q

]
. (1.24)

Proof Suppose first that the q-difference operator Dq acts upon the variable a. Then, in
light of (1.15), and by using relations (1.17) and (1.11), it is easily seen that

Dn
q

{
(as; q)∞

(aω, at; q)∞

}
=

n∑

k=0

[
n
k

]

q
qk(k–n)Dk

q

{
(as; q)∞
(aω; q)∞

}
Dn–k

q

{
1

(atqk ; q)∞

}

=
n∑

k=0

[
n
k

]

q
qk(k–n) (s/ω; q)k

(as; q)k

(as; q)∞
(aω; q)∞

[(1 – q)–1tqk]n–k

(atqk ; q)∞

(
ω

1 – q

)k

=
(as; q)∞

(aω, at; q)∞

(
t

1 – q

)n n∑

k=0

(–1)kq–(k
2)(q–n, s/ω, at; q)k

(as, q; q)k

(
ωqn

t

)k

=
(

t
1 – q

)n (as; q)∞
(aω, at; q)∞

3�1

[
q–n, s/ω, at;

as;
q;

ωqn

t

]
. (1.25)

Similarly, by using (1.16), we find for the q-difference operator Dq–1 acting on the variable
a that

Dn
q–1

{
(at, as; q)∞

(aω; q)∞

}

=
n∑

k=0

[
n
k

]

q
Dk

q–1

{
(as; q)∞
(aω; q)∞

}
Dn–k

q–1
{(

atq–k ; q
)
∞

}

=
n∑

k=0

[
n
k

]

q

[–qa–1(1 – q)–1]k(s/ω; q)k(as; q)∞
(q/(aω); q)k(aω; q)∞

(
atq–k ; q

)
∞

(
–

tq–k

1 – q

)n–k

=
(

–
t

1 – q

)n (as, at; q)∞
(aω; q)∞

n∑

k=0

[
n
k

]

q
qk(1+k–n)(ta)–k (s/ω, atq–k ; q)k

(q/(aω); q)k

=
(

–
t

1 – q

)n (as, at; q)∞
(aω; q)∞

n∑

k=0

(q–n, s/ω, q/(at); q)k

(q, q/(aω); q)k
qk , (1.26)

where we have appropriately used relation (1.3) as well.
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Equations (1.25) and (1.26) together complete the proof of Theorem 1. �

Remark 2 Upon first setting ω = 0, we put t = ω in assertion (1.23) of Theorem 1. Then, if
we make use of identity (1.21), we get (1.17). Furthermore, upon setting s = 0 in assertion
(1.24) of Theorem 1, if we make use of the q-Chu–Vandermonde formula (1.22), we get
(1.18).

This paper is organized as follows. In Sect. 2, we introduce two homogeneous q-
difference operators T(a, b, cDq) and E(a, b, cDq–1 ). In addition, we define two families of
the generalized Al-Salam–Carlitz q-polynomials φ

(a,b)
n (x, y|q) and ψ

(a,b)
n (x, y|q) and repre-

sent each of the families in terms of the homogeneous q-difference operators T(a, b, cDq)
and E(a, b, cDq–1 ). We also derive generating functions for these families of the generalized
Al-Salam–Carlitz q-polynomials. In Sect. 3, we first give the Rogers type formulas and the
extended Rogers type formulas. The Srivastava–Agarwal type generating functions in-
volving the generalized Al-Salam–Carlitz q-polynomials are derived in Sect. 4. Finally, in
our last section (Sect. 5), we present the concluding remarks and observations concerning
our present investigation.

2 Generalized Al-Salam–Carlitz q-polynomials
In this section, we first introduce two homogeneous q-difference operators T(a, b, cDq)
and E(a, b, cDq–1 ) which are defined by

T(a, b, cDq) :=
∞∑

k=0

(a1, a2, . . . , ar+1; q)k

(q, b1, b2, . . . , br; q)k
(cDq)k (2.1)

and

E(a, b, cDq–1 ) :=
∞∑

k=0

(a1, a2, . . . , ar+1; q)k

(q, b1, b2, . . . , br; q)k
(cDq–1 )k , (2.2)

where, for convenience,

a = (a1, a2, . . . , ar+1) and b = (b1, b2, . . . , br).

We now derive identities (2.3) and (2.4), which will be used later in order to derive the
generating functions, the Rogers type formulas, the extended Rogers type formulas, and
the Srivastava–Agarwal type generating functions involving the families of the generalized
Al-Salam–Carlitz q-polynomials.

Theorem 2 Suppose that the q-difference operator Dq acts on the variable a. Then

T(a, b, cDq)
{

(as; q)∞
(aω, at; q)∞

}

=
(as; q)∞

(aω, at; q)∞

∞∑

n=0

(a1, a2, . . . , ar+1; q)n

(q, b1, b2, . . . , br; q)n

(
ct

1 – q

)n

· 3�1

[
q–n, s/ω, at;

as;
q;

ωqn

t

]
(
max

{|aω|, |at|} < 1
)

(2.3)
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and

E(a, b, cDq–1 )
{

(at, as; q)∞
(aω; q)∞

}

=
(at, as; q)∞

(aω; q)∞

∞∑

n=0

(a1, a2, . . . , ar+1; q)n

(q, b1, b2, . . . , br; q)n

(
–

ct
1 – q

)n

· 3�2

[
q–n, q/(at), s/ω;

q/(aω), 0;
q; q

]
(|aω| < 1

)
. (2.4)

Proof Suppose that the operators Dq and Dq–1 act on the variable a. We observe by apply-
ing (1.23) that

T(a, b, cDq)
{

(as; q)∞
(aω, at; q)∞

}

=
∞∑

n=0

(a1, a2, . . . , ar+1; q)ncn

(q, b1, b2, . . . , br; q)n
Dn

q

{
(as; q)∞

(aω, at; q)∞

}

=
∞∑

n=0

(a1, a2, . . . , ar+1; q)ncn

(q, b1, b2, . . . , br; q)n

(as; q)∞
(aω, at; q)∞

(
t

1 – q

)n

3�1

[
q–n, s/ω, at;

as;
q;

ωqn

t

]

=
(as; q)∞

(aω, at; q)∞

∞∑

n=0

(a1, a2, . . . , ar+1; q)n

(q, b1, b2, . . . , br; q)n
3�1

[
q–n, s/ω, at;

as;
q;

ωqn

t

](
ct

1 – q

)n

. (2.5)

Similarly, by applying (1.24), we find that

E(a, b, cDq–1 )
{

(at, as; q)∞
(aω; q)∞

}

=
∞∑

n=0

(a1, a2, . . . , ar+1; q)n(c)n

(q, b1, b2, . . . , br; q)n
Dn

q–1

{
(at, as; q)∞

(aω; q)∞

}

=
∞∑

n=0

(a1, a2, . . . , ar+1; q)n(c)n

(q, b1, b2, . . . , br; q)n

(at, as; q)∞
(aω; q)∞

(
t

q – 1

)n

3�2

[
q–n, q/(at), s/ω;

q/(aω), 0;
q; q

]

=
(at, as; q)∞

(aω; q)∞

∞∑

n=0

(a1, a2, . . . , ar+1; q)n

(q, b1, b2, . . . , br; q)n

(
ct

q – 1

)n

3�2

[
q–n, q/(at), s/ω;

q/(aω), 0;
q; q

]
, (2.6)

as asserted by Theorem 2. �

Definition In terms of the q-binomial coefficient, the families of the generalized Al-
Salam–Carlitz q-polynomials φ

(a,b)
n (x, y|q) and ψ

(a,b)
n (x, y|q) are defined by

φ(a,b)
n (x, y|q) =

n∑

k=0

[
n
k

]

q

(a1, a2, . . . , ar+1; q)k

(b1, b2, . . . , br; q)k
xkyn–k (2.7)

and

ψ (a,b)
n (x, y|q) =

n∑

k=0

[
n
k

]

q

(a1, a2, . . . , ar+1; q)k

(b1, b2, . . . , br; q)k
q(k+1

2 )–nkxkyn–k . (2.8)



Srivastava and Arjika Advances in Difference Equations        (2020) 2020:498 Page 9 of 17

Proposition Suppose that the operators Dq and Dq–1 act on the variable y. Then

φ(a,b)
n (x, y|q) = T

(
a, b, (1 – q)xDq

){
yn} and

ψ (a,b)
n (x, y|q) = E

(
a, b, –(1 – q)xDq–1

){
yn} (2.9)

in terms of operators (2.1) and (2.2).

Theorem 3 (Generating function for φ
(a,b)
n (x, y, z|q) and ψ

(a,b)
n (x, y, z|q)) Each of the follow-

ing generating functions holds true:

∞∑

n=0

φ(a,b)
n (x, y, z|q)

tn

(q; q)n

=
1

(yt; q)∞
r+1�r

[
a1, a2, . . . , ar+1;
b1, b2, . . . , br;

q; xt

]
(
max

{|xt|, |yt|} < 1
)

(2.10)

and

∞∑

n=0

(–1)nq(n
2)ψ (a,b)

n (x, y|q)
tn

(q; q)n

= (yt; q)∞r+1�r

[
a1, a2, . . . , ar+1;
b1, b2, . . . , br;

q; xt

]
(|xt| < 1

)
. (2.11)

In our proof of Theorem 3, the following easily derivable lemma will be needed.

Lemma 4 Suppose that the operators Dq and Dq–1 act on the variable a. Then

T(a, b, cDq)
{

1
(as; q)∞

}

=
1

(as; q)∞
r+1�r+1

[
a1, a2, . . . , ar+1;
b1, b2, . . . , br;

q;
cs

1 – q

] (
max

{
|as|,

∣∣∣∣
cs

1 – q

∣∣∣∣

}
< 1

)
(2.12)

and

E(a, b, –cDq–1 )
{

(as; q)∞
}

= (as; q)∞r+1�r

[
a1, a2, . . . , ar+1;
b1, b2, . . . , br;

q;
cs

1 – q

] (∣∣∣∣
cs

1 – q

∣∣∣∣ < 1
)

. (2.13)

Proof of Theorem 3 We suppose that the q-difference operator Dq acts upon the variable y.
In light of the formulas in (2.9), and by applying (2.12), it is readily seen that

∞∑

n=0

φ(a,b)
n (x, y|q)

tn

(q; q)n
=

∞∑

n=0

T
(
a, b, (1 – q)xDq

){
yn} tn

(q; q)n

= T
(
a, b, (1 – q)xDq

)
{ ∞∑

n=0

(yt)n

(q; q)n

}
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= T
(
a, b, (1 – q)xDq

){ 1
(yt; q)∞

}

=
1

(yt; q)∞
r+1�r

[
a1, a2, . . . , ar+1;
b1, b2, . . . , br;

q; xt

]
. (2.14)

Similarly, we have

∞∑

n=0

(–1)nq(n
2)ψ (a,b)

n (x, y|q)
tn

(q; q)n

=
∞∑

n=0

E
(
a, b, –(1 – q)xDq–1

){
yn}(–1)nq(n

2)
tn

(q; q)n

= E
(
a, b, –(1 – q)xDq–1

)
{ ∞∑

n=0

(–1)nq(n
2)(yt)n

(q; q)n

}

= E
(
a, b, –(1 – q)xDq–1

){
(yt; q)∞

}
. (2.15)

The proof of Theorem 3 can now be completed by making use of relation (2.13). �

3 The Rogers type formulas and the extended Rogers type formulas
In this section, we use the assertions in (2.9) to derive several q-identities such as the
Rogers type formulas and the extended Rogers type formulas for the families of the gen-
eralized Al-Salam–Carlitz q-polynomials φ

(a,b)
n (x, y|q) and ψ

(a,b)
n (x, y|q).

Theorem 4 (Rogers type formula for φ
(a,b)
n (x, y|q)) The following Rogers type formula holds

true for φ
(a,b)
n (x, y|q):

∞∑

n=0

∞∑

m=0

φ(a,b)
n+m(x, y|q)

tn

(q; q)n

sm

(q; q)m

=
1

(yt, ys; q)∞

∞∑

n=0

(a1, a2, . . . , ar+1; q)n

(q, b1, b2, . . . , br; q)n
(xt)n

2�0

[
q–n, yt;

—;
q;

sqn

t

]

(
max

{|yt|, |ys|} < 1
)
. (3.1)

Theorem 5 (Rogers type formula for ψ
(a,b)
n (x, y|q)) The following Rogers type formula

holds true for ψ
(a,b)
n (x, y|q):

∞∑

n=0

∞∑

m=0

(–1)n+mq(n
2)+(m

2)ψ (a,b)
n+m (x, y|q)

tn

(q; q)n

sm

(q; q)m

= (yt, ys; q)∞
∞∑

n=0

(a1, a2, . . . , ar+1; q)n

(b1, b2, . . . , br; q)n
(xt)n

2�1

[
q–n, q/(yt);

0;
q; ys

]
. (3.2)

In order to prove Theorems 4 and 5, we need Lemma 5.
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Lemma 5 It is asserted that

T(a, b, cDq)
{

1
(aω, at; q)∞

}

=
(as; q)∞

(aω, at; q)∞

∞∑

n=0

(a1, a2, . . . , ar+1; q)n

(q, b1, b2, . . . , br; q)n
2�0

[
q–n, at;

—;
q;

ωqn

t

](
ct

1 – q

)n

(
max

{|aω|, |at|} < 1
)

(3.3)

and

E(a, b, –cDq–1 )
{

(at, as; q)∞
}

= (at, as; q)∞
∞∑

n=0

(a1, a2, . . . , ar+1; q)n

(q, b1, b2, . . . , br; q)n
2�1

[
q–n, q/(at);

0;
q; as

](
ct

1 – q

)n

. (3.4)

Proof The first assertion (3.3) of Lemma 5 follows from (2.3) when s = 0. On the other
hand, the second assertion (3.4) of Lemma 5 can be deduced from (2.4) by setting ω = 0. �

Proof of Theorems 4 and 5 We suppose that the operator Dq acts upon the variable y.
Then, in view of the formulas in (2.9), we have

∞∑

n=0

∞∑

m=0

φ(a,b)
n+m(x, y|q)

tn

(q; q)n

sm

(q; q)m

=
∞∑

n=0

∞∑

m=0

T
(
a, b, (1 – q)xDq

){
yn+m} tn

(q; q)n

sm

(q; q)m

= T
(
a, b, (1 – q)xDq

)
{ ∞∑

n=0

(yt)n

(q; q)n

∞∑

m=0

(ys)m

(q; q)m

}

= T
(
a, b, (1 – q)xDq

){ 1
(yt, ys; q)∞

}
. (3.5)

The proof of assertion (3.1) of Theorem 4 can now be completed by using relation (3.3) in
(3.5).

Similarly, we observe that

∞∑

n=0

∞∑

m=0

(–1)n+mq(n
2)+(m

2)ψ (a,b)
n+m (x, y|q)

tn

(q; q)n

sm

(q; q)m

=
∞∑

n=0

∞∑

m=0

(–1)n+mq(n
2)+(m

2)E
(
a, b, –(1 – q)xDq–1

){
yn+m} tn

(q; q)n

sm

(q; q)m

= E
(
a, b, –(1 – q)xDq–1

)
{ ∞∑

n=0

(–1)nq(n
2)

(yt)n

(q; q)n

∞∑

m=0

(–1)mq(m
2)

(ys)m

(q; q)m

}

= E
(
a, b, –(1 – q)xDq–1

){
(yt, ys; q)∞

}
, (3.6)

which evidently completes the proof of assertion (3.2) of Theorem 5. �



Srivastava and Arjika Advances in Difference Equations        (2020) 2020:498 Page 12 of 17

We next derive another Rogers type formula for the family of the generalized Al-Salam–
Carlitz q-polynomials ψ

(a,b)
n (x, y|q) as follows.

Theorem 6 (Another Rogers type formula for ψ
(a,b)
n (x, y|q)) It is asserted that

∞∑

n=0

∞∑

m=0

(–1)nq(n
2)ψ (a,b)

n+m (x, y|q)
tn

(q; q)n

sm

(q; q)m

=
(yt; q)∞
(ys; q)∞

r+2�r+1

[
a1, a2, . . . , ar+1, t/s;
b1, b2, . . . , br, q/(ys);

q;
xq
y

]
(|ys| < 1

)
. (3.7)

Proof We suppose that the q-difference operator Dq acts upon the variable y. We then
obtain

∞∑

n=0

∞∑

m=0

(–1)nq(n
2)ψ (a,b)

n+m (x, y|q)
tn

(q; q)n

sm

(q; q)m

=
∞∑

n=0

n∑

m=0

(–1)nq(n
2)E

(
a, b, –(1 – q)xDq–1

){
yn+m} tn

(q; q)n

sm

(q; q)m

= E
(
a, b, –(1 – q)xDq–1

)
{ ∞∑

n=0

(–1)nq(n
2)

(yt)n

(q; q)n

∞∑

m=0

(ys)m

(q; q)m

}

= E
(
a, b, –(1 – q)xDq–1

){ (yt; q)∞
(ys; q)∞

}
. (3.8)

The proof of assertion (3.7) of Theorem 6 can now be completed by applying formula (2.4)
with s = 0 and ω = s in (3.8). �

Another extended Rogers type formula for the family of the generalized Al-Salam–
Carlitz q-polynomials �

(a,b)
n (x, y|q) is given by Theorem 7.

Theorem 7 (Another extended Rogers type formula for ψ
(a,b)
n (x, y|q)) It is asserted that

∞∑

n=0

∞∑

m=0

∞∑

k=0

(–1)n+mq(n
2)+(m

2)ψ
(a,b)
n+m+k(x, y|q)

tn

(q; q)n

sm

(q; q)m

ωk

(q; q)k

=
(yt, ys; q)∞
(yω; q)∞

∞∑

j=0

(a1, a2, . . . , ar+1; q)j

(q, b1, b2, . . . , br; q)j
(xt)j

3�2

[
q–j, q/(yt), s/ω;

q/(yω), 0;
q; q

]

(|yω| < 1
)
. (3.9)

Proof We suppose that the operator Dq acts upon the variable y. By using formulas (2.9),
we obtain

∞∑

n=0

∞∑

m=0

(–1)n+mq(n
2)+(m

2)
∞∑

k=0

ψ
(a,b)
n+m+k(x, y|q)

tn

(q; q)n

sm

(q; q)m

ωk

(q; q)k

=
∞∑

n=0

∞∑

m=0

(–1)n+mq(n
2)+(m

2)
∞∑

k=0

E
(
a, b, –(1 – q)xDq–1

){
yn+m+k} tn

(q; q)n

sm

(q; q)m

ωk

(q; q)k
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= E
(
a, b, –(1 – q)xDq–1

)
{ ∞∑

n=0

(–1)nq(n
2)

(yt)n

(q; q)n

∞∑

m=0

(–1)mq(m
2)

(ys)m

(q; q)m

∞∑

k=0

(yω)k

(q; q)k

}

= E
(
a, b, –(1 – q)xDq–1

){ (yt, ys; q)∞
(yω; q)∞

}
. (3.10)

Thus, in light of (2.4), the proof of assertion (3.9) of Theorem 7 is completed. �

4 Srivastava–Agarwal type generating functions for the families of the
Al-Salam–Carlitz q-polynomials

In this section, we use the formulas in (2.9) to derive the Srivastava–Agarwal type gener-
ating functions involving the families of the Al-Salam–Carlitz q-polynomials φ

(a,b)
n (x, y|q)

and ψ
(a,b)
n (x, y|q).

The Hahn polynomials (see [26, 27], and [28]) (or, equivalently, the Al-Salam–Carlitz
q-polynomials [29]) are defined as follows:

φ(a)
n (x|q) =

n∑

k=0

[
n
k

]

q
(a; q)kxk and ψ (a)

n (x|q) =
n∑

k=0

qk(k–n)
[

n
k

]

q

(
aq1–k ; q

)
kxk . (4.1)

Recently, Srivastava and Agarwal [30] gave a generating function which we recall here
as Lemma 6.

Lemma 6 (see [30, Eq. (3.20)]) The following generating function holds true:

∞∑

n=0

(λ; q)nφ
(α)
n (x|q)

tn

(q; q)n
=

(λt; q)∞
(t; q)∞

2�1

[
λ,α;
λt;

q; xt

]
(
max

{|t|, |xt|} < 1
)
. (4.2)

The generating function (4.2) is known as a Srivastava–Agarwal type generating func-
tion (see, for example, [23]).

In this section, we give the Srivastava–Agarwal type generating functions for the families
of the Al-Salam–Carlitz q-polynomials φ

(a,b)
n (x, y|q) and ψ

(a,b)
n (x, y|q).

Theorem 8 (Srivastava–Agarwal type generating functions for φ
(a,b)
n (x, y|q) and

ψ
(a,b)
n (x, y|q)) The following Srivastava–Agarwal type generating functions hold true for

the families of the Al-Salam–Carlitz q-polynomials φ
(a,b)
n (x, y|q) and ψ

(a,b)
n (x, y|q):

∞∑

n=0

(λ; q)nφ
(a,b)
n (x, y|q)

tn

(q; q)n

=
(λyt; q)∞
(yt; q)∞

r+2�r+1

[
a1, a2, . . . , ar+1,λ;
b1, b2, . . . , br,λyt;

q; xt

]
(|yt| < 1

)
(4.3)

and

∞∑

n=0

(λ; q)nψ
(a,b)
n (x, y|q)

tn

(q; q)n

=
(λyt; q)∞
(yt; q)∞

r+2�r+1

[
a1, a2, . . . , ar+1,λ;

b1, b2, . . . , br, q/(yt);
q;

xq
y

]
(|yt| < 1

)
. (4.4)
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Proof We suppose that the operator Dq acts upon the variable y. According to the formulas
in (2.9), we then obtain

∞∑

n=0

(λ; q)nφ
(a,b)
n (x, y|q)

tn

(q; q)n
=

∞∑

n=0

(λ; q)nT
(
a, b, (1 – q)xDq

){
yn} tn

(q; q)n

= T
(
a, b, (1 – q)xDq

)
{ ∞∑

n=0

(λ; q)n
(yt)n

(q; q)n

}

= T
(
a, b, (1 – q)xDq

){ (λyt; q)∞
(yt; q)∞

}
. (4.5)

Now, setting ω = 0 in (2.3), we have

T
(
a, b, (1 – q)xDq

){ (λyt; q)∞
(yt; q)∞

}
=

(λyt; q)∞
(yt; q)∞

r+2�r+1

[
a1, a2, . . . , ar+1,λ;
b1, b2, . . . , br, yλt;

q; xt

]
, (4.6)

which, in conjunction with (4.5), completes the proof of the first assertion (4.3) of Theo-
rem 8.

The proof of the second assertion (4.4) of Theorem 8 is much akin to that of the first
assertion (4.3). The details involved are, therefore, omitted here. �

Remark 3 Upon replacing t by λt, if we set s = t in assertion (3.7) of Theorem 6, we get
(4.4).

Theorem 9 (Srivastava–Agarwal type bilinear generating function for φ
(a,b)
n (x, y|q)) The

following Srivastava–Agarwal type bilinear generating function holds true for the family of
the generalized Al-Salam–Carlitz q-polynomials φ

(a,b)
n (x, y|q):

∞∑

n=0

φ(a,b)
n (x, y|q)φ(α)

n (μ|q)
tn

(q; q)n

=
(αμyt; q)∞

(μyt, yt; q)∞

∞∑

j=0

(a1, a2, . . . , ar+1; q)j

(q, b1, b2, . . . , br; q)j
(xt)j

3�1

[
q–j,α, yt;
αμyt;

q;μqj

]

(
max

{|yt|, |μyt|} < 1
)
. (4.7)

Proof We suppose that the q-difference operator Dq acts upon the variable y. We then find
that

∞∑

n=0

φ(a,b)
n (x, y|q)φ(α)

n (μ|q)
tn

(q; q)n
=

∞∑

n=0

T
(
a, b, (1 – q)xDq

){
yn}φ(α)

n (μ|q)
tn

(q; q)n

= T
(
a, b, (1 – q)xDq

)
{ ∞∑

n=0

φ(α)
n (μ|q)

(yt)n

(q; q)n

}

= T
(
a, b, (1 – q)xDq

){ (αμyt; q)∞
(yt,μyt; q)∞

}
. (4.8)

The proof of assertion (4.7) of Theorem 9 is now completed by making use of relation (2.3)
in (4.8). �
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Theorem 10 (Srivastava–Agarwal type bilinear generating function for ψ
(a,b)
n (x, y|q)) The

following Srivastava–Agarwal type bilinear generating function holds true for the family of
the generalized Al-Salam–Carlitz q-polynomials ψ

(a,b)
n (x, y|q):

∞∑

n=0

ψ (a,b)
n (x, y|q)ψ (α)

n (μ|q)(–1)nq(n
2)

tn

(q; q)n

=
(μyt, yt; q)∞
(αμyt; q)∞

∞∑

j=0

(a1, a2, . . . , ar+1; q)j

(q, b1, b2, . . . , br; q)j
(xt)j

3�2

[
q–j, q/(yt), 1/α;

q/(αμyt), 0;
q; q

]

(|αμyt| < 1
)
. (4.9)

Proof We suppose that the q-difference operator Dq acts upon the variable y. We then
obtain

∞∑

n=0

ψ (a,b)
n (x, y|q)ψ (α)

n (μ|q)
q(n

2)(–t)n

(q; q)n

=
∞∑

n=0

E(a, b, –xDq–1 )
{

yn}ψ (α)
n (μ|q)

q(n
2)(–t)n

(q; q)n

= E
(
a, b, –(1 – q)xDq–1

)
{ ∞∑

n=0

ψ (α)
n (μ|q)

(–1)nq n
2 (yt)n

(q; q)n

}

= E
(
a, b, –(1 – q)xDq–1

){ (yt,μyt; q)∞
(αμyt; q)∞

}
. (4.10)

The proof of assertion (4.9) of Theorem 10 can now be completed by making use of relation
(2.4) in (4.10). �

5 Concluding remarks and observations
Our present investigation is motivated essentially by several recent studies of generating
functions and other results for various families of basic (or q-) polynomials stemming
mostly from the works by Hahn (see, for example, [26, 27] and [28]; see also Al-Salam and
Carlitz [29], Srivastava and Agarwal [30], Cao and Srivastava [23], and other researchers
cited herein).

In terms of the familiar q-difference operators Dq and Dq–1 , we have first introduced two
homogeneous q-difference operators T(a, b, cDq) and E(a, b, cDq–1 ), which turn out to be
suitable for dealing with the generalized Al-Salam–Carlitz q-polynomials φ

(a,b)
n (x, y|q) and

ψ
(a,b)
n (x, y|q). We have then applied each of these two homogeneous q-difference operators

in order to derive generating functions, Rogers type formulas, the extended Rogers type
formulas, and the Srivastava–Agarwal type linear and bilinear generating functions for
each of these families of the generalized Al-Salam–Carlitz q-polynomials.

The various results, which we have presented in this paper, together with the citations
of many related earlier works are believed to motivate and encourage interesting further
research on the topics of study here.

In conclusion, it should be remarked that in a recently-published survey-cum-expository
article Srivastava [31] presented an expository overview of the classical q-analysis versus
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the so-called (p, q)-analysis with an obviously redundant additional parameter p (see, for
details, [31, p. 340]).
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