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Abstract
In this paper, an explicit fourth-order compact (EFOC) difference scheme is proposed
for solving the two-dimensional(2D) wave equation. The truncation error of the EFOC
scheme is O(τ 4 + τ 2h2 + h4), i.e., the scheme has an overall fourth-order accuracy in
both time and space. Because the scheme is explicit, it does not need any iterative
processes. Afterwards, the stability condition of the scheme is obtained by using the
Fourier analysis method, which has a wider stability range than other explicit or
alternation direction implicit (ADI) schemes. Finally, some numerical experiments are
carried out to verify the accuracy and stability of the present scheme.
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1 Introduction
In this paper, we consider the 2D wave equation as follows:

∂2u
∂t2 = a2

(
∂2u
∂x2 +

∂2u
∂y2

)
+ f (x, y, t), (x, y, t) ∈ Ω × [0, T], (1)

with the initial conditions

u(x, y, 0) = ϕ(x, y), (x, y) ∈ Ω , (2)

∂u(x, y, 0)
∂t

= ψ(x, y), (x, y) ∈ Ω , (3)

and the boundary conditions

u(0, y, t) = α0(y, t), u(l, y, t) = αl(y, t), (4)

u(x, 0, t) = β0(x, t), u(x, l, t) = βl(x, t), (x, y, t) ∈ ∂Ω × [0, T], (5)

where Ω = (x, y) : 0 ≤ x, y ≤ l and ∂Ω is the boundary of Ω . Unknown function u(x, y, t)
is displacement, a is the wave velocity, f (x, y, t) is the source term, ϕ(x, y) and ψ(x, y) are
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initial displacement and speed, respectively, α0(y, t), αl(y, t), β0(x, t), and βl(x, t) are dis-
placements on the boundaries. We assume that all the functions are sufficiently smooth
for achieving the accuracy order of the difference scheme.

Solution to wave propagation problems has received considerable attention for many
years [1–17, 19–32, 34]. Numerical methods are particularly attractive for structurally
complex subsurface geometries because of the great difficulties encountered in obtain-
ing analytical solutions. Among the numerical techniques available in the literature, the
method of finite differences is particularly versatile [1–15, 19–23, 25–28, 31, 32, 34].
The most commonly used for solving this equation is the second-order central difference
scheme. Since it is lower accuracy and lower resolution, at least 20 grid points is neces-
sary to be input into each propagating wavelength. In other words, if fewer grid points are
used, dispersion errors would make numerical solution oscillating. In order to cut down
dispersion error and get dependable results, people usually have to use fine grids for com-
putation, which inevitably increases computational costs and storage requirements signifi-
cantly. An alternate approach for overcoming this difficulty is pseudospectral (PS) method
[17]. In theory of the PS method, only two grid points are required for each wavelength
(although four or more are required in practice), and discrete Fourier transforms on each
time step are quite expensive. The space operators of the PS method fit the Nyquist fre-
quency, but it needs Fourier transform that is time-consuming and the use of a global ba-
sis, resulting in inaccuracies in wave fields for models with strong heterogeneity or sharp
boundaries [16]. To effectively eliminate numerical dispersion error when coarse grids are
used to discretize the wave equation, Yang et al. [30] proposed the nearly-analytic discrete
(NAD) approach. Later, they [29, 31] further developed several NAD-type approaches to
restrain numerical dispersion. Recently, many research works [15, 18–32] have been done
to develop higher-order finite difference methods for the above mentioned wave equa-
tions. Furthermore, it has been demonstrated that high accuracy numerical approaches
and techniques are very effective in restraining the dispersion errors [5, 8, 21, 31].

On the other hand, for multi-dimensional problems, operator splitting methods, such
as the alternating direction implicit (ADI) [5, 6, 13, 19–23, 25] methods and local one-
dimensional (LOD) approaches [15, 34], are studied extensively. The advantage of the op-
erator splitting methods is the solution of a multi-dimensional problem reduced into a
series of 1D problems, and thus the efficient algorithms for 1D such as tri-diagonal matrix
algorithm can be employed, which is more efficient than full implicit schemes. Uncon-
ditionally stable high-order compact ADI schemes with spatially fourth-order and tem-
porally second-order are investigated in [6, 13, 22, 23, 25]. Liao and Sun [19, 20] used
Richardson extrapolation technique to promote the temporally second-order to fourth-
order accuracy, but the second-order accuracy solutions on finer grid are needed to get
the fourth-order solution on coarser grid. So, computed results on fine grid still show
second-order accuracy. Das et al. [23] proposed some ADI schemes for solving the 2D
wave equation, which are fourth-order accuracy in both time and space. However, they
are conditionally stable and suffer from the stability conditions which only allow Courant–
Friedrichs–Lewy (CFL) numbers from 0.7321 to 0.8186. Liao and Sun [19] extended this
method to the 3D wave equation. It is also fourth-order accuracy in both time and space
and the stability condition allows CFL number to be about 0.6079. For the study of LOD
methods, the readers are referred to [15, 34], which still suffers from a strict stability con-
dition for the fourth-order scheme in both time and space.
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In this paper, we shall introduce an explicit high-order compact difference scheme for
solving the 2D wave equation. Our basic strategy is to perform a modified equation tech-
nique for temporal derivative, but we use the fourth mixed derivative of temporal and
spatial variables instead of pure fourth derivative of spatial variables, thus only three grid
points are used for spatial dimension. And spatial derivatives are computed by directly
using the classical fourth-order Padé schemes [18] at known time steps. This allows us to
obtain an explicit difference scheme that is formally fourth-order accurate in both space
and time. An outline of the article is as follows. In the next section, a new three-level ex-
plicit high-order compact difference scheme for solving Eq. (1) is introduced. Section 3
gives the Fourier analysis about the scheme, and the range of stability condition is ob-
tained. In Sect. 4, we give some numerical experiments to show numerical stability and
accuracy of the present new scheme. The last section draws conclusions.

2 EFOC difference scheme
Mesh point is marked as (xi, yj, tn), in which xi = ih, yj = jh, tn = nτ , i, j = 0, 1, 2, . . . , N , and
n > 0. Let un

ij be an approximation to u(xi, yj, tn). τ is temporal mesh step length and h is
spatial mesh step length.

2.1 Computation of the first time step
Using Taylor’s expansions, we have

u1
ij = u0

ij + τ

(
∂u
∂t

)0

ij
+

τ 2

2

(
∂2u
∂t2

)0

ij
+

τ 3

6

(
∂3u
∂t3

)0

ij
+

τ 4

24

(
∂4u
∂t4

)0

ij
+ O

(
τ 5). (6)

Employing Eq. (1) and initial conditions (2) and (3), we have

(
∂2u
∂t2

)0

ij
= a2

[(
∂2u
∂x2

)0

ij
+

(
∂2u
∂y2

)0

ij

]
+ f 0

ij = a2
[(

∂2ϕ

∂x2

)
ij

+
(

∂2ϕ

∂y2

)
ij

]
+ f 0

ij , (7)

(
∂3u
∂t3

)0

ij
=

∂

∂t

(
∂2u
∂t2

)0

ij
=

∂

∂t

[
a2

(
∂2u
∂x2

)0

ij
+ a2

(
∂2u
∂y2

)0

ij
+ f 0

ij

]

= a2
[

∂2

∂x2

(
∂u
∂t

)0

ij
+

∂2

∂y2

(
∂u
∂t

)0

ij

]
+

(
∂f
∂t

)0

ij

= a2
[(

∂2ψ

∂x2

)
ij

+
(

∂2ψ

∂y2

)
ij

]
+

(
∂f
∂t

)0

ij
, (8)

(
∂4u
∂t4

)0

ij
=

∂2

∂t2

(
∂2u
∂t2

)0

ij
=

∂2

∂t2

[
a2

(
∂2u
∂x2

)0

ij
+ a2

(
∂2u
∂y2

)0

ij
+ f 0

ij

]

= a2
[

∂2

∂x2

(
∂2u
∂t2

)0

ij
+

∂2

∂y2

(
∂2u
∂t2

)0

ij

]
+

(
∂2f
∂t2

)0

ij

= a4
[(

∂4ϕ

∂x4

)
ij

+
(

∂4ϕ

∂y4

)
ij

+ 2
(

∂4ϕ

∂x2∂y2

)
ij

]

+ a2
[(

∂2f
∂x2

)0

ij
+

(
∂2f
∂y2

)0

ij

]
+

(
∂2f
∂t2

)0

ij
. (9)
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Substituting (7)–(9) into (6) and throwing away the truncation error term O(τ 5), we obtain
the fourth-order compact difference scheme for the first time step as follows:

u1
ij = ϕij + τψij +

a2τ 2

2

[(
∂2ϕ

∂x2

)
ij

+
(

∂2ϕ

∂y2

)
ij

]
+

τ 2

2
f 0
ij

+
a2τ 3

6

[(
∂2ψ

∂x2

)
ij

+
(

∂2ψ

∂y2

)
ij

]
+

τ 3

6

(
∂f
∂t

)0

ij

+
a4τ 4

24

[(
∂4ϕ

∂x4

)
ij

+
(

∂4ϕ

∂y4

)
ij

+ 2
(

∂4ϕ

∂x2∂y2

)
ij

]

+
a2τ 4

24

[(
∂2f
∂x2

)0

ij
+

(
∂2f
∂y2

)0

ij

]
+

τ 4

24

(
∂2f
∂t2

)0

ij
. (10)

For interior grid points at the (n)th time moment, we use the following fourth-order
Padé approximation schemes [18]:

(
∂2u
∂x2

)n

i+1j
+ 10

(
∂2u
∂x2

)n

ij
+

(
∂2u
∂x2

)n

i–1j

= 12
un

i+1j – 2un
ij + un

i–1j

h2 + O
(
h4), i = 1, 2, . . . , N – 1, j = 0, 1, 2, . . . , N , (11)

(
∂2u
∂y2

)n

ij+1
+ 10

(
∂2u
∂y2

)n

ij
+

(
∂2u
∂y2

)n

ij–1

= 12
un

ij+1 – 2un
ij + un

ij–1

h2 + O
(
h4), i = 0, 1, 2, . . . , N , j = 1, 2, . . . , N – 1, (12)

and for grid points on the boundaries, we use Eqs. (1), (4), and (5) to give out directly

(
∂2u
∂x2

)n

0j
=

1
a2

(
∂2u
∂t2 – f

)n

0j
–

(
∂2u
∂y2

)n

0j

=
1
a2

(
∂2α0

∂t2 – f
)n

0j
–

(
∂2α0

∂y2

)n

0j
, j = 0, 1, 2, . . . , N , (13)

(
∂2u
∂x2

)n

Nj
=

1
a2

(
∂2u
∂t2 – f

)n

Nj
–

(
∂2u
∂y2

)n

Nj

=
1
a2

(
∂2αl

∂t2 – f
)n

Nj
–

(
∂2αl

∂y2

)n

Nj
, j = 0, 1, 2, . . . , N , (14)

(
∂2u
∂y2

)n

i0
=

1
a2

(
∂2u
∂t2 – f

)n

i0
–

(
∂2u
∂x2

)n

i0

=
1
a2

(
∂2β0

∂t2 – f
)n

i0
–

(
∂2β0

∂x2

)n

i0
, i = 0, 1, 2, . . . , N , (15)

(
∂2u
∂y2

)n

iN
=

1
a2

(
∂2u
∂t2 – f

)n

iN
–

(
∂2u
∂x2

)n

iN

=
1
a2

(
∂2βl

∂t2 – f
)n

iN
–

(
∂2βl

∂x2

)n

iN
, i = 0, 1, 2, . . . , N . (16)
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We notice that the coefficient matrixes of Eqs. (11) and (12), with boundary conditions
(13)–(16), are tri-diagonal, so they can be solved by the efficient tri-diagonal matrix algo-
rithm.

2.2 Total time marching scheme
For the temporal derivative ( ∂2u

∂t2 )n
ij, we use the second-order central difference and keep

the leading term of the truncation errors to get

(
∂2u
∂t2

)n

ij
= δ2

t un
ij –

τ 2

12

(
∂4u
∂t4

)n

ij
+ O

(
τ 4), (17)

in which δ2
t un

ij =
un+1

ij –2un
ij+un–1

ij
τ2 , and by using Eq. (1), we get

∂4u
∂t4 = a2

(
∂4u

∂x2∂t2 +
∂4u

∂y2∂t2

)
+

∂2f
∂t2 . (18)

Substituting (18) into (17), we have

(
∂2u
∂t2

)n

ij
= δ2

t un
ij –

a2τ 2

12

[
∂2

∂x2

(
∂2u
∂t2

)n

ij
+

∂2

∂y2

(
∂2u
∂t2

)n

ij

]
–

τ 2

12

(
∂2f
∂t2

)n

ij
+ O

(
τ 4)

= δ2
t un

ij –
a2τ 2

12

[
δ2

x

(
∂2u
∂t2

)n

ij
+ δ2

y

(
∂2u
∂t2

)n

ij

]
–

τ 2

12

(
∂2f
∂t2

)n

ij

+ O
(
τ 4 + τ 2h2), (19)

in which δ2
x ( ∂2u

∂t2 )n
ij =

( ∂2u
∂t2 )n

i+1j–2( ∂2u
∂t2 )n

ij+( ∂2u
∂t2 )n

i–1j
h2 , δ2

y ( ∂2u
∂t2 )n

ij =
( ∂2u

∂t2 )n
ij+1–2( ∂2u

∂t2 )n
ij+( ∂2u

∂t2 )n
ij–1

h2 . Rearranging
(19) and neglecting the truncation error, we have

un+1
ij = 2un

ij – un–1
ij

+
a2τ 4

12h2

[(
∂2u
∂t2

)n

i+1j
+

(
∂2u
∂t2

)n

ij+1
– 4

(
∂2u
∂t2

)n

ij
+

(
∂2u
∂t2

)n

i–1j
+

(
∂2u
∂t2

)n

ij–1

]

+ τ 2
(

∂2u
∂t2

)n

ij
+

τ 4

12

(
∂2f
∂t2

)n

ij
. (20)

Using Eq. (1) again, (20) becomes

un+1
ij = 2un

ij – un–1
ij +

(
a2τ 2 –

a4τ 4

3h2

)[(
∂2u
∂x2

)n

ij
+

(
∂2u
∂y2

)n

ij

]

+
a4τ 4

12h2

[(
∂2u
∂x2

)n

i–1j
+

(
∂2u
∂x2

)n

i+1j
+

(
∂2u
∂x2

)n

ij–1
+

(
∂2u
∂x2

)n

ij+1

+
(

∂2u
∂y2

)n

i–1j
+

(
∂2u
∂y2

)n

i+1j
+

(
∂2u
∂y2

)n

ij–1
+

(
∂2u
∂y2

)n

ij+1

]

+
τ 4

12

(
∂2f
∂t2

)n

ij
+

(
τ 2 –

a2τ 4

3h2

)
f n
ij +

a2τ 4

12h2

(
f n
i–1j + f n

i+1j + f n
ij–1 + f n

ij+1
)
. (21)
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Equation (21) is an explicit high-order compact difference scheme for solving Eq. (1).
Through the derivation process, it is easy to know that the truncation error of the scheme
is O(τ 4 + τ 2h2 + h4), i.e., it has the fourth-order accuracy for both time and space. We mark
it as EFOC scheme (explicit fourth-order compact scheme). It should be pointed out that
( ∂2u

∂x2 )n
ij and ( ∂2u

∂y2 )n
ij must be computed by Eqs. (11)–(16) in advance. Now, we can get an

algorithm for solving wave equation (1) with initial and boundary conditions (2)–(5) as
follows.

Algorithm 1
• Step 1: Let n = 1, use Eq. (10) to compute the values of u(x, y, t) at first time step, i.e.,

u1
ij ;

• Step 2: Use Eq. (11) and Eq. (12) to compute the values of the second derivatives of
u(x, y, t) about x and y at the (n)th time step, i.e., ( ∂2u

∂x2 )n
ij and ( ∂2u

∂y2 )n
ij, in which the

boundary values of them are computed by Eqs. (13)–(16);
• Step 3: Use Eq. (21) to compute the values of u(x, y, t) at the (n + 1)th time step, i.e.,

un+1
ij ;

• Step 4: Let n ← n + 1, repeat Step 2 and Step 3, till the final time step is reached.

2.3 Stability analysis
In this part, von Neumann linear stability analysis method is used to get the stability con-
dition of the present EFOC scheme(21).

Lemma 1 ([33]) If b and c are real, then both roots of the quadratic equation x2 – bx + c = 0
are less than or equal to one in modulus if and only if |c| ≤ 1 and |b| ≤ 1 + c.

We suppose that u is a periodic function, vn+1
ij = un

ij, and the source function f ≡ 0. Let-
ting un

ij = ξneI(σ1xi+σ2yj), (uxx)n
ij = ηneI(σ1xi+σ2yj), (uyy)n

ij = γ neI(σ1xi+σ2yj), in which ξ , η, and γ

are amplitudes, σ1 and σ2 are wave numbers in x and y direction, respectively. I =
√

–1 is
an imaginary unit.

Substituting the expressions of (uxx)n
ij and (uyy)n

ij into Eq. (11) and Eq. (12), we have

ηneI(σ1xi+σ2yj)
(
eIσ1h + 10 + e–Iσ1h) =

12
h2 ξneI(σ1xi+σ2yj)

(
eIσ1h – 2 + e–Iσ1h), (22)

γ neI(σ1xi+σ2yj)
(
eIσ2h + 10 + e–Iσ2h) =

12
h2 ξneI(σ1xi+σ2yj)

(
eIσ2h – 2 + e–Iσ2h). (23)

Using Euler’s formula eIσh + e–Iσh = 2 cos(σh), after rearranging them, we get

ηn =
12[cos(σ1h) – 1]
h2[cos(σ1h) + 5]

ξn, (24)

γ n =
12[cos(σ2h) – 1]
h2[cos(σ2h) + 5]

ξn. (25)

Equation (21) is rewritten as follows:

(
un+1

ij

vn+1
ij

)
=

(
2 –1
1 0

)(
un

ij

vn
ij

)
+

(
a2τ 2 – a2τ2r2

3 0
0 0

)(
(uxx)n

ij + (uyy)n
ij

(vxx)n
ij + (vyy)n

ij

)
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+

(
a2τ2r2

12 0
0 0

)(
(uxx)n

ij+1 + (uyy)n
ij+1

(vxx)n
ij+1 + (vyy)n

ij+1

)

+

(
a2τ2r2

12 0
0 0

)(
(uxx)n

ij–1 + (uyy)n
ij–1

(vxx)n
ij–1 + (vyy)n

ij–1

)

+

(
a2τ2r2

12 0
0 0

)(
(uxx)n

i–1j + (uyy)n
i–1j

(vxx)n
i–1j + (vyy)n

i–1j

)

+

(
a2τ2r2

12 0
0 0

)(
(uxx)n

i+1j + (uyy)n
i+1j

(vxx)n
i+1j + (vyy)n

i+1j

)
. (26)

Letting Un
ij = (un

ij, vn
ij)T , Un

ij = ζ neI(σ1h+σ2h), then substituting them into Eq. (26), we get

ξn+1 =

(
2 –1
1 0

)
ξn +

(
a2τ 2 – a2τ2r2

3 0
0 0

)(
ηn + γ n)

+

(
a2τ2r2

12 eIσ2h 0
0 0

)(
ηn + γ n) +

(
a2τ2r2

12 e–Iσ2h 0
0 0

)(
ηn + γ n)

+

(
a2τ2r2

12 e–Iσ1h 0
0 0

)(
ηn + γ n) +

(
a2τ2r2

12 eIσ1h 0
0 0

)(
ηn + γ n), (27)

in which λ = τ /h, r = aλ. Substituting Eq. (24) and Eq. (25) into Eq. (27), we get the prop-
agation matrix of error of the EFOC difference scheme (21) as follows:

G(τ ,σ1,σ2) =

(
C –1
1 0

)
, (28)

in which

C = 2 + 2r4[cos(σ1h) + cos(σ2h) – 2
][cos(σ1h) – 1

cos(σ1h) + 5
+

cos(σ2h) – 1
cos(σ2h) + 5

]

+ 12r2
[

cos(σ1h) – 1
cos(σ1h) + 5

+
cos(σ2h) – 1
cos(σ2h) + 5

]
, (29)

the eightvalues μ of G(τ ,σ1,σ2) satisfy the following equation:

μ2 – bμ + 1 = 0, (30)

where

b = 2 + 2r4[cos(σ1h) + cos(σ2h) – 2
][cos(σ1h) – 1

cos(σ1h) + 5
+

cos(σ2h) – 1
cos(σ2h) + 5

]

+ 12r2
[

cos(σ1h) – 1
cos(σ1h) + 5

+
cos(σ2h) – 1
cos(σ2h) + 5

]
. (31)
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From Lemma 1, we know that the necessary and sufficient condition for |μ| ≤ 1 is |b| ≤ 2,
i.e.,

∣∣∣∣2 + 2r4[cos(σ1h) + cos(σ2h) – 2
][cos(σ1h) – 1

cos(σ1h) + 5
+

cos(σ2h) – 1
cos(σ2h) + 5

]

+ 12r2
[

cos(σ1h) – 1
cos(σ1h) + 5

+
cos(σ2h) – 1
cos(σ2h) + 5

]∣∣∣∣ ≤ 2. (32)

Inequality (32) is equivalent to two inequalities as follows:

2r4[cos(σ1h) + cos(σ2h) – 2
][cos(σ1h) – 1

cos(σ1h) + 5
+

cos(σ2h) – 1
cos(σ2h) + 5

]

+ 12r2
[

cos(σ1h) – 1
cos(σ1h) + 5

+
cos(σ2h) – 1
cos(σ2h) + 5

]
≤ 0, (33)

2r4[cos(σ1h) + cos(σ2h) – 2
][cos(σ1h) – 1

cos(σ1h) + 5
+

cos(σ2h) – 1
cos(σ2h) + 5

]

+ 12r2
[

cos(σ1h) – 1
cos(σ1h) + 5

+
cos(σ2h) – 1
cos(σ2h) + 5

]
+ 4 ≥ 0. (34)

For inequality (33), it can be easily solved

0 ≤ r2 ≤ 6
2 – cos(σ1h) – cos(σ2h)

, (35)

because inequality (35) must hold for arbitrary σ1 and σ2, we have

0 ≤ r2 ≤ 6
2 – (–1) – (–1)

=
3
2

, or |a|λ ≤ √
6/2. (36)

For inequality (34), we can easily get the two roots of its equality form

r2
1,2 =

3
2 – cos(σ1h) – cos(σ2h)

±
√

9
[2 – cos(σ1h) – cos(σ2h)]2 –

2
[2 – cos(σ1h) – cos(σ2h)]A

, (37)

where A = 1–cos(σ1h)
cos(σ1h)+5 + 1–cos(σ2h)

cos(σ2h)+5 . Letting α = 1 – cos(σ1h), β = 1 – cos(σ2h), we have

S(α,β) =
3

α + β
+

√
9

(α + β)2 –
2

(α + β)( α
6–α

+ β

6–β
)
, (38)

since α ∈ [0, 2], β ∈ [0, 2], we notice that when α = β = 2, S(α,β)min = S(2, 2) = 1, i.e., r2
1 = 1.

On the other hand, we notice that r2
1 and r2

2 are symmetric about 3
α+β

, so we can get that
the other root of Eq. (38) is 1/2. Thus, we get that the solution of inequality (34) is

|r| ∈ [0,
√

2/2] ∪ [1, +∞), or |a|λ ∈ [0,
√

2/2] ∪ [1, +∞). (39)
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Table 1 CFL conditions for various finite difference schemes

Scheme CFL condition

THOC-ADI [5] |a|λ ∈ (0, 0.7321)
HOC-LOD [5] |a|λ ∈ (0, 0.7321)
CPD-ADI [5] |a|λ ∈ (0, 0.7657)
NCPD-ADI [5] |a|λ ∈ (0, 0.8186)
Present EFOC |a|λ ∈ (0, 0.7071]∪ [1, 1.2247]

Combining inequalities (36) and (39), we get that the stability condition of the EFOC dif-
ference scheme (21) is

|a|λ ∈ [0,
√

2/2] ∪ [1,
√

6/2]. (40)

Remark 1 Table 1 gives the stability regions of the EFOC difference scheme and several
ADI and LOD schemes proposed in Ref. [5]. We find that a critical value for the stability
condition is 0.7321 for the THOC-ADI scheme and the HOC-LOD scheme, 0.7657 for
the CPD-ADI scheme, and 0.8186 for the NCPD-ADI scheme, while just 0.7071 for the
present EFOC scheme. But the EFOC scheme has another stability region [1, 1.2247], i.e.,
we can use comparably bigger temporal step length to decrease computational cost only
if we choose appreciate values of mesh ratio between 1 and 1.2247. In other words, the
EFOC scheme has a wider range of stability conditions than the ADI and LOD schemes
in the literature.

3 Numerical experiments
To validate the accuracy and stability of the present EFOC scheme, two test problems
are solved by the present EFOC scheme with different temporal step length, spatial step
length, and final time. Numerical results for L∞ and L2 norm errors and convergence rate
are given, in which L∞ and L2 norm errors and convergence rate are defined as follows:

L∞-error = max
ij

∣∣un
ij – u(xi, yj, tn)

∣∣,

L2-error =
√

h2
∑

ij

[
un

ij – u(xi, yj, tn)
]2,

Rate =
log( L∞-error(h1)

L∞-error(h2) )

log( h1
h2

)
.

Problem 1 ([5])

∂2u
∂t2 =

∂2u
∂x2 +

∂2u
∂y2 , 0 < x, y < 1, t > 0,

u(x, y, 0) = cos(–x – y),
∂u(x, y, 0)

∂t
= –

√
2 sin(–x – y),

u(0, y, t) = cos(
√

2t – y), u(1, y, t) = cos(
√

2t – 1 – y),

u(x, 0, t) = cos(
√

2t – x), u(x, 1, t) = cos(
√

2t – x – 1),
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Table 2 The L∞ norm error with τ = 0.0025 at t = 1 for different h for Problem 1

h THOC-ADI [5] HOC-LOD [5] CPD-ADI [5] IPD-ADI [5] EFOC scheme

1/5 1.3769(–6) 1.3757(–6) 1.3769(–6) 1.3769(–6) 1.3416(–6)
1/10 8.6606(–8) 8.6343(–8) 8.6608(–8) 2.0245(–8) 8.5804(–8)
1/20 5.4688(–9) 5.4730(–9) 5.4690(–9) 1.4498(–9) 5.4069(–9)
1/40 3.4449(–10) 3.7600(–10) 3.4277(–10) 1.0746(–10) 3.3029(–10)
1/80 2.5746(–11) 3.4394(–11) 2.3074(–11) 5.4340(–12) 1.9000(–11)

Table 3 The L2 norm error with τ = 0.0025 at t = 1 for Problem 1

h THOC-ADI [5] HOC-LOD [5] CPD-ADI [5] IPD-ADI [5] EFOC scheme

1/5 6.4455(–7) 6.4394(–7) 6.4455(–7) 6.4455(–7) 7.4871(–7)
1/10 4.3974(–8) 4.3891(–8) 4.3974(–8) 7.0756(–9) 4.7805(–8)
1/20 2.8785(–9) 2.8814(–9) 2.8786(–9) 6.8012(–10) 2.9860(–9)
1/40 1.8559(–10) 2.0220(–10) 1.8470(–10) 5.6304(–11) 1.8246(–10)
1/80 1.3959(–11) 1.8366(–11) 1.2537(–11) 2.9731(–12) 1.0519(–11)

the exact solution is

u(x, t) = cos(
√

2t – x – y).

Table 2 and Table 3 give L∞ and L2 norm errors for t = 1 with τ = 0.0025 and different
spatial grid sizes for Problem 1 with the EFOC scheme, respectively. For comparison, we
also list the computed results in Ref. [5], in which the THOC-ADI scheme, the HOC-LOD
scheme, the CPD-ADI scheme, and the IPD-ADI schemes were given. We find that all of
these schemes reach fourth-order accuracy. The EFOC scheme yields a bit more accurate
solution than the THOC-ADI scheme, the HOC-LOD scheme, and the CPD-ADI scheme,
but a bit less accurate than the IPD-ADI scheme. But we notice that the IPD-ADI scheme,
with five grid points along one direction, is non-compact, so the computation process is
more complicated and the computational cost is higher than that of the present EFOC
scheme.

Figure 1 shows the numerical solution (a), the exact solution (b), the absolute error (c),
and the contour plots of the numerical solution and exact solution (d) by the EFOC scheme
in this article when τ = 0.0025, t = 1, N = 40, respectively, for Problem 1. It can be seen
from Fig. 1 that the numerical solution in this article agrees well with the exact solution.

Problem 2 ([34])

∂2u
∂t2 =

∂2u
∂x2 +

∂2u
∂y2 , 0 < x, y < 1, t > 0,

u(x, y, 0) = sin(πx) sin(πy),
∂u(x, y, 0)

∂t
= 0,

u(0, y, t) = u(1, y, t) = u(x, 0, t) = u(x, 1, t) = 0,

the exact solution is

u(x, y, t) = sin(πx) sin(πy) cos(
√

2π t).

We computed this problem with the present EFOC scheme and compared the results
with Ref. [34], in which a local one-dimensional scheme (New LOD scheme) and a typical
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Figure 1 (a) The numerical solution, (b) the exact solution, (c) the absolute error, and (d) the contour plots of
the numerical solution and exact solution with τ = 0.0025, t = 1, N = 40, respectively, for Problem 1

Table 4 The L∞ and L2 norm errors with τ = 0.0002 at t = 0.02 for different h for Problem 2

h New LOD scheme [34] Typical 4th-order scheme [34] EFOC scheme

L2-error L∞-error L2-error L∞-error L2-error L∞-error

1/10 1.75(–6) 3.85(–6) 2.32(–6) 1.02(–5) 7.95(–8) 1.59(–7)
1/20 1.14(–7) 2.40(–7) 2.74(–7) 6.38(–7) 4.95(–9) 9.91(–9)
1/40 7.31(–9) 1.50(–8) 1.91(–8) 3.99(–8) 3.09(–10) 6.19(–10)
1/80 4.62(–10) 9.36(–10) 1.23(–9) 2.50(–9) 1.93(–11) 3.86(–11)
1/160 2.91(–11) 5.85(–11) 7.75(–11) 1.57(–10) 1.20(–12) 2.42(–12)
1/320 2.38(–12) 4.79(–12) 4.99(–12) 1.39(–11) 7.48(–14) 1.65(–13)

fourth-order scheme are developed. Table 4 gives the numerical results with τ = 0.0002,
h = 1/10, 1/20, . . . , 1/320, and t = 0.02. It shows that the L∞ and L2 norm errors of the three
schemes decrease on behalf of the spatial grid size and fourth-order accuracy is obtained.
We notice that the present EFOC scheme produces more accurate solution than the new
LOD scheme and the typical fourth-order scheme [34].

Figure 2 shows the numerical solution (a), the exact solution (b), the absolute error
(c), and the contour plots of the numerical solution and exact solution (d) for the EFOC
scheme of Problem 2 when τ = 0.0002, t = 0.02, N = 40, respectively. In Fig. 2(d) the solid
line is exact solution and the dotted line is numerical solution. It is not difficult to find that
the numerical solution obtained from the EFOC scheme in this article agrees well with the
exact solution, and the dispersion error is very small.
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Figure 2 (a) The numerical solution, (b) the exact solution, (c) the absolute error, and (d) the contour plots of
the numerical solution and exact solution with τ = 0.0002, t = 0.02, N = 40, respectively, for Problem 2

4 Conclusion
In this paper, an explicit fourth-order compact difference scheme is proposed for solv-
ing the 2D wave equation. It is constructed by applying the fourth-order accurate Padé
scheme in space and the remainder of the truncation error correction of the second-
order central difference method is employed to discrete temporal derivative. The trun-
cation error of the schemes is O(τ 4 + τ 2h2 + h4), which means the scheme has an over-
all fourth-order accuracy. Afterwards, the stability condition of the scheme, which is
|a|λ ∈ [0,

√
2/2] ∪ [1,

√
6/2], is obtained by the Fourier analysis method. Since the EFOC

scheme has another stability region [1,
√

6/2], it allows us to use relatively bigger tempo-
ral step length to decrease computational cost. Finally, the accuracy and reliability of the
present scheme are verified by some numerical experiments.

Recently, some authors have considered high-order compact difference schemes for the
wave equation with a variable coefficient [2, 12] or with a nonlinear source term [6]. An
implicit difference scheme is constructed and an iterative method is employed to resolve
the arising linear system [2, 12], or the ADI method and Newton’s iterative method are
used [6]. To generalize the present explicit high-order compact difference method to these
two kinds of problems is our research interest in the near future.
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