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Abstract
In this article, without dividing a complex-valued neural network into two real-valued
subsystems, the global synchronization of fractional-order complex-valued neural
networks (FOCVNNs) is investigated by the Lyapunov direct method rather than the
real decomposition method. It is worth mentioning that the partial adaptive control
and partial linear feedback control schemes are introduced, by constructing suitable
Lyapunov functions, some improved synchronization criteria are derived with the
help of fractional differential inequalities and L’Hospital rule as well as some complex
analysis techniques. Finally, simulation results are given to demonstrate the validity
and feasibility of our theoretical analysis.
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1 Introduction
During the past few years, real-valued neural networks (RVNNs) have attracted much at-
tention due to the background of a wide range of applications such as associative memory,
pattern recognition, image processing and model identification [1–6]. Since Pecora and
Carroll introduced a method to realize synchronization of two identical chaotic systems
with different initial conditions [7], synchronization has become a widely studied topic.
Up to now, there are many sorts of synchronization, such as complete synchronization [8],
projective synchronization [9], and quasi-synchronization [10]. Correspondingly, several
different approaches have been used for achieving synchronization, for example, linear
feedback control [11], partial control [12] and adaptive control [13]. It is well known that
the advantage of adaptive control is that the control parameters can adjust themselves ac-
cording to the updating laws, which are designed according to the characteristics of the
considered system. As we know, many applications of neural networks refer to complex-
valued signals, which cannot be handled well by RVNNs, complex-valued neural networks
(CVNNs) are such neural networks that their states, connection weights and activity func-
tions are all complex-valued [14, 15]. Compared with RVNNs, CVNNs have more com-
plicated properties, and can handle complex signals better. In recent years, the study on
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CVNNs has attracted some attention, and some important and interesting results have
been obtained [16–18]. In [18], Song et al. studied the global exponential stability for the
addressed CVNNs based on Lyapunov direct method.

Compared with integer-order derivative, fractional-order derivatives can better depict
processes and materials possessing hereditary and memory characteristics [19–21], these
characteristics make fractional-order systems promising candidates for describing some
real-world phenomena [22, 23]. Some recent studies regarding synchronization control
and optimal control for fractional-order systems may be found in [24–26]. Lately, many
researchers consider fractional-order complex-valued neural networks (FOCVNNs), and
some remarkable results on bifurcation [27] and stability [28] as well as synchronization
[29–31] have been reported. We note that the key technique in [27–31] is to transform the
considered FOCVNNs into two equivalent real-valued subsystems, and then their dynam-
ics are studied by employing methods of dealing with fractional-order real-valued neural
networks (FORVNNs), that is, the real decomposition method. In [32], Li et al. designed a
linear feedback controller and adaptive controller, and the complete synchronization and
quasi-projective synchronization criteria for FOCVNNs were derived by using the Lya-
punov direct method, respectively.

To the best of our knowledge, a neural network may have a large amount of neurons,
it is impossible and unnecessary to impose controllers on all neurons in such large-scale
network. To reduce the number of controlled neurons, partial control should be consid-
ered. Till now, partial control for neural networks remains little investigated [33, 34]. In
[34], Wu et al. discussed the stability control for FORVNNs by employing partial linear
feedback control strategy. However, to the best of the authors’ knowledge, there is no re-
sult concerning synchronization problem for FOCVNNs by using partial control scheme.
Motivated by the above discussions, this paper investigates the global synchronization for
the addressed FOCVNNs by partial control. The main contributions of this paper are the
following three aspects: (1) The partial adaptive control and partial linear feedback control
schemes are first proposed to realize synchronization of FOCVNNs. (2) FOCVNNs are
investigated by Lyapunov direct method rather than real decomposition method, which
can reduce computational complexity. (3) Several succinct synchronization criteria for
FOCVNNs are derived.

The organization of the paper is as follows. In Sect. 2, the model formulation and pre-
liminary results are presented. In Sect. 3, the partial adaptive control and partial lin-
ear feedback control schemes are proposed to achieve synchronization for the addressed
FOCVNNs. In Sect. 4, numerical simulations are provided to illustrate the effectiveness
of our theoretical results. Finally, conclusions are given in Sect. 5.

2 Preliminaries and model description
In this section, some definitions and lemmas are recalled, which will be needed later.

Definition 1 ([35, 36]) The Riemann–Liouville fractional integral of the function w(t) is
defined by

t0 Iq
t w(t) =

1
Γ (q)

∫ t

t0

w(ζ )
(t – ζ )1–q dζ , q > 0.
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Definition 2 ([35, 36]) The Caputo fractional derivative of function w(t) is defined by

c
t0 Dq

t w(t) =
1

Γ (1 – q)

∫ t

t0

w′(ζ )
(t – ζ )q dζ , 0 < q < 1.

Next, we consider a FOCVNN described by

c
t0 Dq

t wj(t) = –cjwj(t) +
n∑

p=1

ajpfp
(
wp(t)

)
+ Ij(t), j = Λ, (1)

or in a compact form

c
t0 Dq

t w(t) = –Cw(t) + Af
(
w(t)

)
+ I(t), (2)

where 0 < q < 1, w(t) = (w1(t), w2(t), . . . , wn(t))T ∈ C
n is the state vector, C = diag(c1, c2,

. . . , cn) ∈ Rn×n is the self-feedback connection weight matrix with cj > 0, j ∈ Λ, A =
(ajp)n×n ∈ C

n×n is the connection weight matrix, I(t) = (I1(t), I2(t), . . . , In(t))T ∈ C
n is the

external input vector, f (w(t)) = (f1(w1(t)), f2(w2(t)), . . . , fn(wn(t)))T : Cn → C
n denotes the

vector-valued activation function, and the activation fp(·) satisfies the following assump-
tion.

Assumption 1 For any w, u ∈C, there exists a positive constant lp satisfying

∣∣fp(z) – fp(w)
∣∣ ≤ lp|z – w|.

For simplicity, we refer to FOCVNN (2) as the drive system, and the controlled response
system is given as

c
t0 Dq

t zj(t) = –cjzj(t) +
n∑

p=1

ajpfp
(
zp(t)

)
+ Ij(t) + uj(t), 1 ≤ j ≤ l, (3)

or, in a compact form,

c
t0 Dq

t z(t) = –Cz(t) + Af
(
z(t)

)
+ I(t) + u(t), (4)

where z(t) = (z1(t), z2(t), . . . , zn(t))T ∈C
n is the state vector, u(t) = (u1(t), u2(t), . . . , un(t))T ∈

C
n is the control input vector.
Now, we introduce some lemmas, which will be used in the proof of our main results.

Lemma 1 ([35, 36]) If w(t) ∈C
n([t0, +∞),R), then

t0 Iq
t

c
t0 Dq

t w(t) = w(t) –
n–1∑
m=0

w(m)(t0)
m!

(t – t0)m.

In particular, if 0 < q < 1,

t0 Iq
t

c
t0 Dq

t w(t) = w(t) – w(t0).
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Lemma 2 ([37]) Let z(t) ∈ C
n be a differentiable complex-valued vector, then the following

inequality holds:

c
t0 Dq

t
(
zH (t)Pz(t)

) ≤ zH (t)Pc
t0 Dq

t z(t) +
(c

t0 Dq
t zH (t)

)
Pz(t),

where q ∈ (0, 1], t ≥ t0, P ∈C
n×n > 0.

Lemma 3 ([38]) Suppose function σ (t) is nondecreasing and differentiable on t ∈ [t0,∞),
then, for any constant μ and t ∈ [t0,∞],

c
t0 Dq

t
(
σ (t) – μ

)2 ≤ 2
(
σ (t) – μ

)c
t0 Dq

t σ (t),

where 0 < q < 1.

Lemma 4 ([39]) Assume that B and G are n × n Hermitian matrices. Let p1 ≥ p2 ≥ · · · ≥
pn, h1 ≥ h2 ≥ · · · ≥ hn, r1 ≥ r2 ≥ · · · ≥ rn be eigenvalues of B, G, and B + G, respectively.
Then one has pi + hn ≤ ri ≤ pi + h1, i = 1, 2, . . . , n.

Lemma 5 ([39]) For a symmetric matrix W ∈R
n×n and a diagonal matrix K = diag(k1, k2,

. . . , kl, 0, 0, . . . , 0︸ ︷︷ ︸
n–l

) with ki > 0, i = 1, 2, . . . , l (1 ≤ l < n), let W – K =
( B–K̃ G

GT Wl

)
, where Wl is the

minor matrix of W by removing its first l row–column pairs, B and G are matrices with
appropriate dimensions, K̃ = diag(k1, k2, . . . , kl). If ki > λmax(B – GW –1

l GT ), i = 1, 2, . . . , l,
W – K < 0 is equivalent to Wl < 0.

Lemma 6 ([40]) Let V (t) be a continuous function on [t0, +∞) satisfying

c
t0 Dq

t V (t) ≤ ζV (t),

where 0 < q < 1, ζ ∈R and t0 is the initial time. Then

V (t) ≤ V (t0)Eq
[
ζ (t – t0)q].

3 Main results
In this section, the partial adaptive control and partial linear control strategies are em-
ployed to reduce the control costs, and some novel criteria are derived to ensure the global
synchronization of FOCVNNs (2) and (4).

Define the error ej(t) = uj(t) – wj(t) for j ∈ Λ, and design the partial adaptive controller
uj(t) as follows:

⎧⎪⎨
⎪⎩

uj(t) = –ξj(t)ej(t), 1 ≤ j ≤ l, 1 ≤ l ≤ n – 1,
c
t0 Dq

t ξj(t) = ηjej(t)ej(t),
uj(t) = 0, l + 1 ≤ j ≤ n,

(5)

where ηj > 0, ξj(t) ∈R.

Remark 1 Let ξj(t0) ≥ 0, j ∈ Λ, obviously, it follows from the second equality of (5) that
ξj(t) = ξj(t0) +t0 Iq

t (ηjej(t)ej(t)) ≥ ξj(t0), thus we can easily derive ξj(t) ≥ 0.
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Remark 2 When the FOCVNN (1) and the controlled FOCVNN (3) achieve the global
synchronization, the adaptive control gain ξj(t) tends to some positive constant, this is
because the Caputo derivative of a constant is equal to zero

According to (2) and (4) as well as (5), we derive the error system

c
t0 Dq

t e(t) = –Ce(t) + A
[
f
(
z(t)

)
– f

(
w(t)

)]
– Dξ (t)e(t), (6)

Dξ (t) = diag(ξ1(t), ξ2(t), . . . , ξl(t), 0, 0, . . . , 0︸ ︷︷ ︸
n–l

).

Theorem 1 Under Assumption 1 and the partial adaptive controller (5), FOCVNNs (2)
and (4) can achieve the global synchronization if

max
l+1≤j≤n

{
l2
j – 2cj

}
+ λmax

(
AAH)

< 0, (7)

where (AAH )l is the minor matrix of matrix AAH by removing its first l (1 ≤ l < n) row–
column pairs.

Proof Construct a Lyapunov function in the following form:

V1(t) = eH (t)e(t) +
l∑

j=1

1
ηj

(
ξj(t) – ξ	

j
)2, (8)

where ξ	
j is a positive constant to be determined.

Calculating the derivative of (8) along the trajectories of (6), we obtain

c
t0 Dq

t V1(t) ≤ eH (t)c
t0 Dq

t e(t) +
(c

t0 Dq
t eH (t)

)
e(t) +

l∑
j=1

2
ηj

(
ξj(t) – ξ	

j
)c

t0 Dq
t ξj(t)

= eH (t)
(
–Ce(t) + A

[
f
(
z(t)

)
– f

(
w(t)

)]
– Dξ (t)e(t)

)

+
(
–Ce(t) + A

[
f
(
z(t)

)
– f

(
w(t)

)]
– Dξ (t)e(t)

)He(t)

+ 2
l∑

j–1

(
ξj(t) – ξ	

j
)

= –eH (t)
(
C + CH)

e(t) + eH (t)A
(
f
(
z(t)

)
– f

(
u(t)

))

+
(
f
(
z(t)

)
– f

(
u(t)

))HAHe(t) – 2eH (t)D	
ξ e(t)

≤ –2eH (t)Ce(t) + λmax
(
AAH)

eH (t)e(t)

+
(
f
(
z(t)

)
– f

(
u(t)

))H(
f
(
z(t)

)
– f

(
u(t)

))
– 2eH (t)D	

ξ e(t), (9)

where D	
ξ = diag(ξ	

1 , ξ	
2 , . . . , ξ	

l , 0, 0, . . . , 0︸ ︷︷ ︸
n–l

). From Assumption 1, we can obtain

(
f
(
z(t)

)
– f

(
u(t)

))H(
f
(
z(t)

)
– f

(
u(t)

)) ≤ eH (t)LLe(t), (10)
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where L = diag(l1, l2, . . . , ln) is the real-valued positive diagonal matrix. According to (9)
and (10), we have

c
t0 Dq

t V1(t) ≤ eH (t)
(
W – 2D	

ξ

)
e(t), (11)

where W = λmax(AAH )In×n + LL – 2C. Using matrix decomposition, we have

W – 2D	
ξ =

(
B – 2D̃ G

GH Wl

)
,

where B = (bij)l×l , bij = wij, i, j = 1, 2, . . . , l, D̃ = diag(ξ	
1 , ξ	

2 , . . . , ξ	
l ), G = (gij)l×(n–l), gij = wij,

i = 1, 2, . . . , l, j = l + 1, l + 2, . . . , n, and Wl is the minor matrix of W by removing its
first l (1 ≤ l ≤ n – 1) row–column pairs. It follows from Lemma 4 and condition (7)
that λmax((λmax(AAH )In×n + LL – 2C)l) ≤ λmax((LL – 2C)l) + λmax(AAH ) < 0, which im-
plies that Wl < 0. If we choose positive constants ξ	

j > 0, i = 1, 2, . . . , l, such that ξ	
j >

1
2λmax(B – GW –1

l GH ), according to Lemma 5 and Wl < 0, we derive W – 2D	
ξ < 0, then

it follows from (11) that

c
t0 Dq

t V1(t) ≤ –λ	eH (t)e(t), (12)

where –λ	 = λmax(W – 2D	
ξ ) and λ	 > 0. According to (12), there exists a nonnegative func-

tion r(t) such hat

c
t0 Dq

t V1(t) + r(t) = –λ	eH (t)e(t). (13)

Integrating both sides of (13) from t0 to t, we obtain

–λ	

∫ t

t0

eH (ζ )e(ζ ) dζ =
∫ t

t0

c
t0 Dq

ζ V1(τ ) dζ +
∫ t

t0

r(ζ ) dζ

=
1

Γ (1 – q)

∫ t

t0

∫ ζ

t0

V ′
1(τ )

(ζ – τ )q dτ dζ +
∫ t

t0

r(ζ ) dζ

=
1

Γ (1 – q)

∫ t

t0

∫ t

τ

V ′
1(τ )

(ζ – τ )q dζ dτ +
∫ t

t0

r(ζ ) dζ

=
1

(1 – q)Γ (1 – q)

∫ t

t0

V ′
1(τ )(t – τ )1–q dτ +

∫ t

t0

r(ζ ) dζ

= –
V1(t0)(t – t0)1–q

Γ (2 – q)
+

1
Γ (1 – q)

∫ t

t0

V1(τ )(t – τ )–q dτ

+
∫ t

t0

r(ζ ) dζ

≥ –
V1(t0)(t – t0)1–q

Γ (2 – q)
, (14)

it is easy to obtain from (14) that

∫ t

t0

eH (ζ )e(ζ ) dζ ≤ V1(t0)(t – t0)1–q

λ	Γ (2 – q)
, (15)
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hence

lim
t→+∞

∫ t
t0

eH (ζ )e(ζ ) dζ

(t – t0)1–q ≤ V (t0)
λ	Γ (2 – q)

. (16)

By employing the L’Hospital rule, we get

lim
t→+∞ eH (t)e(t)(t – t0)q ≤ V1(t0)

λ	Γ (2 – q)
. (17)

Taking fractional integration of (13) from t0 to t one derives

V1(t) – V1(t0) = –
1

Γ (q)

∫ t

t0

r(ζ )
(t – ζ )1–q dζ –

λ	

Γ (q)

∫ t

t0

eH (ζ )e(ζ )
(t – ζ )1–q dζ

= 0. (18)

Combining (8) and (18) yields

eH (t)e(t) ≤ V1(t) ≤ V1(t0), (19)

that is, eH (t)e(t) must be bounded. Together with (17) and (19), we know that there exists
a t1 > 0 satisfying

eH (t)e(t) ≤ V1(t0)
λ	Γ (2 – q)(t – t0)q

for all t ≥ t1, which implies

lim
t→+∞ eH (t)e(t) = 0,

this indicates that the controlled response FOCVNN (4) is synchronized with FOCVNN
(2) under the partial adaptive controller (5). �

If we take ηj = 0 in controller (5), then the partial adaptive controller (5) degenerates into
the partial linear feedback controller

{
uj(t) = –ξjej(t), 1 ≤ j ≤ l, 1 ≤ l ≤ n – 1,
uj(t) = 0, l + 1 ≤ j ≤ n,

(20)

where ξj ∈ R. In this case, we can derive the following corollary.

Corollary 1 Under Assumption 1 and condition (7), if the algebraic inequality

min
1≤j≤l

{ξj} >
1
2
λmax

(
B – GW –1

l GH)
(21)

is satisfied, then FOCVNNs (2) and (4) can achieve the global Mittag-Leffler synchroniza-
tion under the partial linear feedback controller (20).
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Proof Construct a Lyapunov function in the following form:

V2(t) = eH (t)e(t). (22)

Using a similar process with respect to (9)–(12), we derive

c
t0 Dq

t V2(t) ≤ –λ̂1V2(t),

where –λ̂1 = λmax(W – 2Dξ ), W = λmax(AAH )In×n + LL – 2C, Dξ = diag(ξ1, ξ2, . . . , ξl,
0, 0, . . . , 0︸ ︷︷ ︸

n–l

). According to Lemma 6, we have V (t) ≤ V (t0)Eq(–λ̂1(t – t0)q), the proof of

Corollary 1 is completed. �

Remark 3 We observe that the existing control schemes for neural networks almost con-
trol all neurons, we realize synchronization for the addressed FOCVNNs in this paper by
employing partial linear control and partial adaptive control schemes.

If we take l = n, that is, all neurons are controlled, then the partial adaptive controller
(5) becomes the adaptive controller

{
uj(t) = –ξj(t)ej(t), 1 ≤ j ≤ n,
c
t0 Dq

t ξj(t) = ηjej(t)ej(t),
(23)

where ηj > 0, ξj(t) ∈R. In this case, we can derive the following corollary.

Corollary 2 Under Assumption 1, FOCVNNs (2) and (4) can achieve the global synchro-
nization under the adaptive controller (23).

Proof Construct a Lyapunov function in the following form:

V3(t) = eH (t)e(t) +
n∑

j=1

1
ηj

(
ξj(t) – ξ	

j
)2, (24)

where ξ	
j is a positive constant to be determined.

Calculating the derivative of (24) along the trajectories of (6), we obtain

c
t0 Dq

t V (t) ≤ eH (t)c
t0 Dq

t e(t) +
(c

t0 Dq
t eH (t)

)
e(t) +

n∑
j=1

2
ηj

(
ξj(t) – ξ	

j
)c

t0 Dq
t ξj(t)

= –eH (t)
(
C + CH)

e(t) + eH (t)A
(
f
(
z(t)

)
– f

(
u(t)

))

+
(
f
(
z(t)

)
– f

(
u(t)

))HAHe(t) – 2eH (t)D̃	
ξ e(t)

≤ eH (t)
(
AAH + LL – 2C – 2D̃	

ξ

)
e(t)

≤ λ̂2eH (t)e(t), (25)

where D̃	
ξ = diag(ξ	

1 , ξ	
2 , . . . , ξ	

n ). We choose ξ	
j > 1

2λmax(AAH + LL – 2C), j ∈ Λ, which im-
plies that AAH + LL – 2C – 2D̃	

ξ < 0, let –λ̂2 = λmax(AAH + LL – 2C – 2D̃	
ξ ). Using a similar
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proof with respect to (13)–(19), we derive limt→+∞ eH (t)e(t) = 0, the proof of Corollary 2
is completed. �

Remark 4 Evidently, Theorem 1, Corollaries 1 and 2 still hold for q = 1.

Remark 5 In [23, 29–31], the authors obtained synchronization criteria by real decom-
position method. Compared with the real decomposition method in [23, 29–31], the Lya-
punov direct method employed in this paper is more nature and compact. In [23], the
authors adopted adaptive feedback control strategy, and realized synchronization for the
considered FOCVNNs. In [32], the authors employed linear feedback control strategy, and
achieved synchronization for the considered FOCVNNs. Compared with control strate-
gies in [23, 32], our partial adaptive control strategy is more easy and has less cost from
the point of view of practical applications.

4 Numerical simulations
In this section, some numerical simulations are presented to illustrate the effectiveness of
our results obtained in the previous section.

Consider a FOCVNN consisting of four neurons described by

c
0Dq

t wj(t) = –cjwj(t) +
4∑

p=1

ajpfp
(
wp(t)

)
+ Ij(t), j = 1, 2, 3, 4, (26)

where q = 0.98, wj(t) = wR
j (t) + iwI

j (t) with wR
j (t), wI

j (t) ∈ R, the initial state w1(0) = 0.5 +
0.1i, w2(0) = –0.6 – 0.3i, w3(0) = 0.4 + 0.2i, and w4(0) = 0.1 + 0.2i. In addition, fp(wp(t)) =
tanh(wR

p (t)) + i tanh(wI
p(t)), I1(t) = I2(t) = I3(t) = I4(t) = 0, C = diag(1, 1, 12.5, 12.5), and

A =

⎛
⎜⎜⎜⎝

2 – 2i –1.2 + 1.2i 0 –0.6 – 0.4
1.8 + 1.8i 1.71 + 1.71i 1.15 + 1.15i 0.4 + 0.1i

–1.75 – 1.75i 0 0.1 + 0.1i 0.5 + i
1 + 0.2i –1 + 0.1i 0.1 + 0.2i 0.2 + 0.1i

⎞
⎟⎟⎟⎠ .

By simple calculation, we derive that Assumption 1 is satisfied with lp = 1, j = 1, 2, 3, 4.
Figures 1 and 2 depict the phase trajectories of real and imaginary parts with respect to
the state variables of FOCVNN (26), respectively.

Figure 1 Real part of state variables of FOCVNN (26)
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Figure 2 Imaginary part of state variables of FOCVNN (26)

Figure 3 Time response curves of errors eRj (t) and eIj(t) under the partial adaptive controller (5)

The response system is given by

c
0Dq

t zj(t) = –cjzj(t) +
4∑

p=1

ajpfp
(
zp(t)

)
+ Ij(t) + uj(t), j = 1, 2, 3, 4, (27)

where the initial state is selected as z1(0) = –0.3 + 0.7i, z2(0) = –1 – 0.7i, z3(0) = 1.2 + 0.6i,
z4(0) = –0.5 – 0.8i, and the other parameters of FOCVNN (27) are the same as that of
FOCVNN (26). In the simulation, we only control the first two neurons of FOCVNN (27).

If we take q = 0.98, η1 = η2 = 0.36, ξ1(0) = 0.4, ξ2(0) = 0.6 in the partial adaptive controller
(5). By simple calculation, we get

max
3≤j≤4

{
l2
j – 2 Re(cj)

}
+ λmax

(
AAH)

= –0.8270 < 0,

then condition (7) is satisfied. On the basis of Theorem 1, the FOCVNN (26) and the con-
trolled FOCVNN (27) can achieve the global synchronization under the partial adaptive
controller (5), which is depicted in Fig. 3. As shown in Fig. 3, the state trajectories of er-
rors eR

j (t) and eI
j (t) converge to zero. The time response trajectories of ξ1(t) and ξ2(t) are

depicted in Fig. 4, we can see from Fig. 4 that the adaptive control gains ξ1(t) and ξ2(t)
converge to some positive constants, which is in accordance with Remark 2.
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Figure 4 Time response curves of ξ1(t) and ξ2(t)

Figure 5 Time response curves of errors eRj (t) and eIj(t) under the partial linear controller (20)

If we set ξ1 = ξ2 = 11.3 in the partial linear controller (20), by simple calculation,

11.3 = min
1≤j≤l

{ξj} >
1
2
λmax

(
B – GW –1

l GH)
= 11.0865.

According to Corollary 1, the FOCVNN (26) and the controlled FOCVNN (27) can
achieve the global synchronization under the partial linear controller (20), which is de-
picted in Fig. 5, we can observe from Fig. 5 that the state trajectories of errors eR

j (t) and
eI

j (t) converge to zero.
If we set q = 0.98, η1 = η2 = η3 = η4 = 0.36, ξ1(0) = 0.4, ξ2(0) = 0.6, ξ1(0) = 0.5, ξ2(0) = 0.3

in the adaptive controller (23). The evolutions of synchronization errors eR
j (t) and eI

j (t)
are shown in Fig. 6, we can observe from Fig. 6 that the controlled FOCVNN (27) can
synchronize with the FOCVNN (26) under the adaptive controller (23). Figure 7 shows
the time response trajectories of ξ1(t) , ξ2(t), ξ3(t) and ξ4(t).
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Figure 6 Time response curves of errors eRj (t) and eIj(t) under the adaptive controller (23)

Figure 7 Time response curves of ξj(t), j = 1, 2, 3, 4

5 Conclusion
This paper is concerned with the global synchronization of FOCVNNs. To realize the
synchronization goal, the partial adaptive controller and partial linear feedback controller
are designed, respectively. On the basis of the Lyapunov method, the L’Hospital rule and
some complex analysis techniques, some succinct criteria are derived to ensure the global
synchronization for the considered FOCVNNs. Numerical simulations are given to show
the effectiveness and feasibility of the proposed method. The topic concerning dynamics
analysis for FOCVNNs is of importance, we will make some efforts on the finite-time
synchronization of FOCVNNs.
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